Skip to Content
Cancer Imaging Program (CIP)
Contact CIP
Show menu
Search this site
Last Updated: 01/25/18
Quantitative Imaging Network (QIN)

Selected QIN Publications

Since the inception of the QIN program nearly a decade ago, QIN team members have actively published nearly 400 peer reviewed articles in various imaging journals. A profile of recent published articles by specific QIN team can be found under their respective team’s name. A sample of a few recent representative QIN articles are listed here below:

  1. Columbia
    Yang H, Schwartz LH, and Zhao B. A Response Assessment Platform for Development and Validation of Imaging Biomarkers in Oncology. Tomography. 2016; 2(4):406-410.

  2. Emory
    Cordova, J.S., Shu, H.G., Liang, Z., Gurbani, S. S., Cooper, L.A.D., Holder, C.A. Olson, J.J., Kairdolf, B., Schreibmann, E., Neill, S., Hadjipanayis, C.G., Shim, H. (2016) Whole-brain, spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro-Oncology, Neuro-Oncology, 18(8): 1180-9. PMC4933486

  3. John Hopkins
    Jha AK, Mena E, Caffo B, Ashrafinia S, Rahmim A, Frey EC and Subramaniam R, “A practical no-gold-standard framework to evaluate quantitative imaging methods: Application to lesion segmentation in PET”, J. Med. Imag., Special Section on PET imaging, 4(1), 011011, PMCID: PMC5335899, 2017.

  4. Stanford
    Hoogi A, Beaulieu CF, Cunha GM, Heba E, Sirlin CB, Napel S, Rubin DL. Adaptive local window for level set segmentation of CT and MRI liver lesions. Med Image Anal 37:46-55, 2017, PMCID PMC5393306.

  5. U. Washington
    Kurland BF, Muzi M, Peterson LM, Doot RK, Wangerin KA, Mankoff DA, Linden HM, Kinahan PE. Multicenter Clinical Trials Using 18F-FDG PET to Measure Early Response to Oncologic Therapy: Effects of Injection-to-Acquisition Time Variability on Required Sample Size. J Nucl Med 57:226-230, 2016. PMID: 26493206.PMCID: PMC4749350

  6. UCLA
    Young S, Lo P, Kim G, Brown M, Hoffman J, Hsu W, Wahi-Anwar W, Flores C, Lee G, Noo F, Goldin J, McNitt-Gray M. The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population. Med Phys. 2017 Apr;44(4):1337-1346. PMID: 28122122

  7. Univ. Iowa
    Beichel RR, Van Tol M, Ulrich EJ, Bauer C, Chang T, Plichta KA, Smith BJ, Sunderland JJ, Graham MM, Sonka M, Buatti JM. Semi-automated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach. Med Phys. Jun 2016; 43(6):2948. PMID: 27277044.

  8. Mayo
    Machine Learning: Discovering the Future of Medical Imaging. Erickson BJ. J Digit Imaging. 2017 Aug; 30(4):391. PMID: 28653122

  9. U. Penn
    Scheuermann JS, et al. J Nucl Med. 58(7):1065-1071. 7 2017. doi: 10.2967/jnumed.116.186759. Epub 2017 Mar 2. Qualification of National Cancer Institute-Designated Cancer Centers for Quantitative PET/CT Imaging in Clinical Trials. PMID: 28254874

  10. Vanderbilt
    Li X1, Abramson RG, Arlinghaus LR, Kang H, Chakravarthy AB, Abramson VG, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Grau AM, Sanders M, Yankeelov TE. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Invest Radiol., 2015, Vol 50; Pp195-204, PMID: 25360603 PMCID: PMC4471951

A few recent QIN collaborative publications:

Hylton N, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC, Bernreuter WK, Pisano ED, Morris EA, Weatherall PT, Polin SM, Newstead GM, Marques HS, Esserman LJ, Schnall MD. Neoadjuvant Chemotherapy for Breast Cancer: Functional Tumor Volume by MR Imaging Predicts Recurrence-free Survival-Results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology. 2016 Apr; 279(1):44-55. PMID: 26624971.

Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, LaViolette PS, Oborski, MJ, O’Sullivan F. The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast — Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge. Tomography: a journal for imaging research. 2016;2(1):56.

Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, Napel S., A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-Institutional Study. J Digit Imaging. 2016 Aug;29(4):476-87, PMID: 26847203

Recent QIN News Letters:

Newsletter Volume 4 Issue 1
Newsletter Volume 4 Issue 2
Newsletter Volume 4 Issue 3
Newsletter Volume 4 Issue 4

Agenda from the recent QIN Face-to-Face Annual Meeting:

April 10-11, 2017, NCI Shady Grove, Gaithersburg, MD

Recent QIN Team’s Annual Meeting Reports:

2017 Annual Report