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INTRODUCTION 

“Radiomics” is the process of converting radiographic images into mineable data. The 
overarching hypothesis of Radiomics is that image features describing size, shape and texture, 
reflect the underlying tumor pathophysiology and hence, can be developed and qualified as 
biomarkers for prediction, prognostication or response monitoring. Radiomics is designed to 
use standard-of-care images, allowing the development and curation of large data sets that are 
needed for statistical power. In the first cycle of the award we addressed challenges to all 
steps in the “radiomic pipeline”, viz. (1) defining the impact of acquisition and image 
reconstruction on the quality of radiomics data; (2) curating to maintain high data quality; (3) 
qualifying semi-automated segmentation tools; (4) statistical qualification of radiomic 
features; (5) developing database sharing tools to allow rapid hypothesis testing; and (6) 
developing and applying informatics approaches to these datasets.  With this pipeline, we have 
identified specific features from CT (and PET) images that accurately predicted overall 
survival (OS) in lung cancer patients treated with surgery or chemo-radiation. Importantly, 
these features have been validated in completely independent data sets. 

In the current award, we will build on this prior work to incorporate radiomics into a 
multi-parametric “Risk-of-Recurrence” score for patients with resectable non-small cell lung 
cancer (NSCLC). NSCLC is the leading cause of cancer deaths worldwide and hence, even 
incremental improvements in decision support can have a profound impact on patients’ lives.  
We will use and extend the radiomics framework that we have developed to address a 
compelling and focused question in lung cancer care: whether to treat post-surgery (stages I-
IIIa) patients with adjuvant chemotherapy. Virtually all NSCLC surgical candidates receive 
high-quality diagnostic CTs. Early stage NSCLC patients are commonly resected with 
lobectomy and complete mediastinal lymph node removal.  Of these, up to 35% will 
experience distant recurrence within 5 years. Recurrence can be reduced with adjuvant therapy 
(AT), yet the decision whether or not to use AT is not trivial, as it is associated with significant 
morbidities and even mortality. This decision is currently ill-informed by stage or gene 
expression patterns alone.  Predictive models are lacking that can accurately identify which 
patients have the highest likelihood of recurrence, thus requiring most aggressive adjuvant 
follow-up. Our proposal addresses this important clinical problem, by using radiomics 
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pipeline to develop a Risk-of-Recurrence score for pre-operative patients using radiomic, 
clinical and genomic data. 

PROGRESS OVER THE PAST YEAR 

§ Aim 1. Develop a Risk-of-Recurrence Score. 

(1.1) Assemble a two-institution cohort into a radio(geno)mic database. 

Moffitt: 
We assembled a retrospective cohort of surgically resected lung cancer patients with 

the following inclusion criteria: had a pre-surgical CT at Moffitt within three months prior 
to surgery, stage IA to IIIA disease, and a primary non-small cell lung cancer diagnosis 
that was surgically resected at Moffitt between Jan 2008 and December 2016.  As such, 
we curated a dataset of 800 patients that met the aforementioned criteria.  The pre-surgical 
CTs were identified, downloaded and databased, and the lung lesions are currently being 
segmented by Moffitt’s IRAT (Image Response Assessment Team) using the HealthMyne 
PACs.   Patient demographic information and clinical data from the Cancer Registry were 
obtained, curated, and QA/QCed.  Additionally, manually abstraction was initiated and 
completed to obtain progression and recurrence (date and location), tumor mutation data 
(e.g., KRAS, EGFR, BRAF, etc), and IHC protein biomarkers, where available. Among 
the 1,093 patients, 285 also had PET images which were downloaded and curated for 
future PET-CT analyses. The data and images from a test set of 10 patients were uploaded 
to the Translation Research IT (TraIT) infrastructure in the Netherlands (see Aim 2.1 
below).  

Tianjin: 
We retrospectively reviewed all the lung cancer cases in the PACS system from Jan 

2013 to Dec 2016. According to the criteria in our study, 500 cases were selected finally. 
All the CT images have been stored and shared. The clinical information is uploading via 
Open Clinica.  Another 100 new cases were prospectively collected. The CT images have 
been stored separately. The clinical characteristics, pathological results, and treatment 
information were recorded one by one. 

(1.2) Analyze the acquired radiomic-clinical-genomic data in a Bayesian framework 
to develop a “risk-of-recurrence” score for individual patients to support a decision whether 
to treat with AT. This has not yet started as we have not yet completed 1.1 

(1.3) Investigate the influence of acquisition conditions (kVp, recon kernel, slice 
thickness, FOV, contrast).  This has not yet started as we have not yet completed 1.1 

§ Aim 2.  Improve Radiomics Data Sharing through the NCI QIN. Image sharing: share 
specific high quality, curated image sets for validation and share image sets from aim 1 
as open data. 
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(2.1) Develop platform to house images and CDEs. 

To support the work in Aim 1, a platform was developed which can host all image sets 
and clinical data elements. For the image upload and archive a combination of open source 
tools (local CTP clients for de-identification and a cloud based instance of NBIA for storage, 
Figure 1), similar to the setup used by The Cancer Imaging Archive, is hosted by the 
Translation Research IT (TraIT) infrastructure in the Netherlands.  

Figure 1: Screen capture of the NBIA image archive to support Aim 1 
For the clinical data elements, the open source tool OpenClinica is used – again cloud-based 
and hosted by TraIT. An eCRF designed for this project is given in the below figure. The 
eCRFs underwent multiple iterations and testing phases, with a final version accepted in Q3 
2017 (Figure 2). 
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Figure 2: Screen capture of one of the CDE forms designed in OpenClinica 
to support Aim 1. After extensive testing the first 10 patients are now live 
with 500 patients ready to be de-identified and uploaded (Figure 3). 
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Figure 3: Screen capture of Trait Dbase showing de-identified patient data. 

(2.2) Share high quality multiple segmentation sets for validation and provide 
tools to the QIN to compare segmentations. 

CT-PET image sets and clinical data elements from 22 NSCLC patients segmented by 
5 human observers were curated and published open-access in 2017 
(https://tinyurl.com/RadiomicsMultipleDelineation) for validation use and comparison of 
various segmentation tools. These are the data sets which were used in same Radiomics 
publication mentioned above (http://doi.org/10.1038/ncomms5006). 

An important contribution was made to the AAPM (American Association of Physicist 
in Medicine) Task Group No. 263 - Standardizing Nomenclature for Radiation Therapy. This 
task group has standardized over 700 segmentation names used in radiation oncology and 
importantly link these the the Foundational Model of Anatomy ontology and thereby to the 
Radlex ontology which is the most common ontology in Radiology. The AAPM task group 
report will be published in 2018. When implemented, the recommendations if this task group 
will be very instrumental in comparing segmentations. 
Finally a thoracic segmentation grand challenge was co-organized with Jayashree Kalpathy-
Kramer and others at AAPM 2017: 
(https://www.aapm.org/meetings/2017AM/PRAbs.asp?mid=127&aid=35318). 

The aim of the challenge was to compare various (semi-)automatic segmentation 
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methods. The data used in the challenge consisted of images and segmentations of 60 thoracic 
cancer patients (incl. contributions from this project) were made publically available at TCIA 
(http://doi.org/10.7937/K9/TCIA.2017.3r3fvz08) after the challenge (see below: Network 
Collaborations). 

(2.3) Define ontology for Radiomics features, provide tools to publish Radiomics 
features independent of the specific Radiomics application and provide tools to 
compare Radiomics features as a first step to harmonization. 

The first version of the Radiomics Ontology (RO) was published to the NCBO 
Bioportal on May 11, 2017. It has been visited over 700 times in 2017. A journal manuscript 
detailing the development and initial testing of the RO is in preparation. A further update of 
the RO is currently in progress, in collaboration with LaTIM in Brest, France to align the RO 
with the international biomarker standardization initiative (IBSI -
https://arxiv.org/abs/1612.07003). Based on Semantic Web technology, the Radiomics 
Ontology allows image features to be published independent on the specific Radiomics 
implementation. This is an important step towards the ultimate aim of FAIR (Findable, 
Accessible, Interoperable, Reusable: https://www.nature.com/articles/sdata201618) imaging 
datasets. 

The open source pyRadiomics was extended with open source components 
(https://github.com/zhenweishi/Py-rex). These extra components allow pyRadiomics to 
handle DICOM RTSTRUCT segmentations, apply the standardized nomenclature described 
in Aim 2.2 and subsequently export the Radiomics features using Semantic Web technology 
(RDF) using the concepts defined in the Radiomics Ontology. This extended pyRadiomics 
serves as a reference implementation of the Radiomics Ontology. Ongoing work is to 
implement the Radiomics Ontology for other Radiomics implementations (e.g. IBEX, Philips 
proprietary, OncoRadiomics proprietary). 

Finally, a systematic literature review (submitted) was performed to establish which 
factors influence the repeatability and reproducibility of radiomics features. This review 
serves as an important driver of the concept to be included in the Radiomics Ontology so that 
radiomics features can be compared and ultimately harmonized. A synthesis is given in Figure 
4 (Figure 2 in MS) with details on segmentation, image reconstruction, acquisition and pre-
processing shown to be important to capture in Radiomics studies. 
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Figure 4: Synthesis of Radiomic feature classes. 

(2.4) Host Annual workshops.  

On October 23-24, 2017, we hosted the 8th annual Radiomics workshop in Clearwater 
Beach, FL. This workshop was supported by Moffitt Cancer Center and the U01 provided 
travel support for investigators on this grant.  There were 98 attendees (Figure 5) from 35 
different institutions from 6 different countries (USA, China, Netherlands, Canada, Germany, 
France).  There was significant participation from industrial academic investigators as well 
(e.g. IBM, GE, HealthMyne, Draper, Oncoradiomics, Pulsar).  As in the past, there was no 
travel support, and all who attended gave talks, if they wanted to.  There were three invited 
talks: 

Plenary 1: “Adaptive Therapy” (Bob Gillies for Bob Gatenby) 
Plenary 2: “How Pathomics can Compliment Radiomics: (Joel Saltz) 
Plenary 3:  “Prediction of Glioma Molecular Markers from MRI using Deep Learning” 
(Bradley Erickson) 
and the following sessions:
Session One: LONGITUDINAL MONITORING OF THERAPY RESPONSE (5 
speakers)
Session Two: EARLY DETECTION (6 speakers)
Session Three: HABITAT IMAGING (8 speakers)
Session Four: RESPONSE PREDICTION AT BASELINE (15 speakers)
Session Five:  DEEP LEARNING (6 speakers)
Session Six: STANDARDIZATION EFFORTS (6 speakers) 
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Session Seven:  CHALLENGES and TOOLBOXES (6 speakers) 
Session Eight:  PHANTOM STUDIES (3 speakers) 

Figure 5: Attendees at the 2017 Radiomics 
Workshop in Clearwater Beach (taken indoors 
because of inclement weather) 
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COLLABORATIONS WITHIN THE QIN 

We had an active collaborative research year working with leaders in medical imaging 
through QIN working groups and outside the network. Our members are active participants in 
the PET/CT subgroup and frequently attend the Bioinformatics working group. Below is the 
outline of our participation and research activity for the year. 

• Dr. Dmitry Goldgof has taken responsibility as chair of the PET-CT working group for 
year 2016-17; previously he served as a Co-Chair. He actively stimulates discussion in the 
monthly conference call and documents discussion. Both monthly agendas and minutes 
are available on QIN Sharepoint site. He personally takes effort to push group research 
effort to promote institutional collaboration.   Dr. Goldgof is responsible for producing the 
PET-CT WG annual report. He is also a member of QIN Coordinating Committee and 
attends monthly meetings. Drs. Schabath and Balagurunathan are both members of the 
PET-CT working group. 

• We continue to contribute in the harmonizing and creating feature ontology. The group 
effort is led by Dr. McNitt-Gray (UCLA) and Kalpathy-Cramer (MGH) and the effort is 
titled: “Quantitative Feature Standardization – Creating a Feature Ontology”. This is in 
high-bandwidth communication with the international IBSI effort, described above. 

• We played an active role in co-organizing community wide challenge with the NCI and 
QIN members, which will be conducted under the IEEE’s International Symposium on 
Biomedical Imaging (ISBI 2018, http://biomedicalimaging.org/2018/challenges/). The 
challenge will involve using medical image data (CT lung) previously provided by the 
Moffitt team, used by PET-CT subgroup along with the segmentation mask created by the 
team. The challenge will have multiple phases and will go from January to April 2018. 

• We participate in inter-working group Quarterly meetings (IAPM). In the past year, we 
have presented our feature challenge and interval challenge collaborative research. 

• Dr. Matt Schabath has served as an ad hoc reviewer for two QIN Grant Review Study 
sections. 

Collaborative Research Projects: We actively work with the QIN member teams and 
IBSI to participate in collaborative challenges with a goal to develop, validate reproducible 
imaging biomarkers. In the last year we participated and lead following collaborative research 
projects, which had been published/ accepted in peer-reviewed journals. 

Feature Variability Study Across Sites: Our members participated and provided data 
and logistic support for the Radiomics feature computation challenge in the last year, which 
we published in the Special issue of Tomography December 2016. The goal of the study was 
to compare the Radiomics features generated at different institutional sites with different 
segmentations. 
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• The study goal was to investigate sensitivity of radiomic descriptors on pulmonary nodules 
with different segmentations and different feature types using institutional specific feature 
implementations. We calculated the concordance correlation coefficients of the features 
as a measure of their stability with the underlying segmentation; 68% of the 830 features 
had concordance of over 75%. We then found groups of features using graph tree method 
(cutoff of 0.75) there were 75 subgroups of features and it increased to 246 groups with a 
larger cutoff (0.95). The study illustrates the diversity in the types of quantitative features 
extracted by different groups on the same set of patients. Some categories of features show 
lower variability but few others show broad differences.  Few key details of this research 
projects are briefly described below: 

• We used 41 CT images (52 lung nodules) from 5 different collections of images with 
feature extraction from different institutions. The collections were: Phantom images & 
RIDER images from Columbia University, Lung Image Database Collection (LIDC) from 
Stanford University, and Images from TCIA (with additional IRB requirement waived). 

• We had seven participating group that included, Moffitt Cancer Center, Stanford 
University, Columbia University, University of California at Los Angeles, University of 
Iowa, Princess Margaret Cancer Center, and the University of Michigan.  Each team 
computed features on the nodule segmentations (which was about 468) and uploaded 
features extracted with their own pipeline. 

• Extracted features include: size, intensity, global shape, local shape descriptors, margin 
and texture features: gray level co-occurrence matrices, shape descriptors (LSD: local 
shape descriptor and GSD: global shape descriptor), margin, followed by Texture features 
across sites. Size based features shows lowest variability across sites, followed by shape 
descriptors (LSD and GSD), margin.  Figure 6 shows different ways to visualize the 
intergroup variability. 

Figure 6: Concordance correlation of features category across sites. 

This study illustrates the spread of quantitative features extracted across sites. The 
variability could arise from implementational difference, different formulation followed at the 
sites for categories that warrants further investigation. 
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Semi-automated Pulmonary Nodule Interval Segmentation Challenge: 

Lung nodule size estimation is an important measurement that can trigger an array of 
clinical treatments. Nodules are considered positive for follow-up if they measure 6 to 8mm 
in recent guidelines (LungRads and NCCN). In most cases, a trained Radiologist, who may 
use a suite of semi-automated tools, bases the decision on measured size. Recently, change in 
size and volume has shown to be related to aggressiveness of the disease. Since size and 
change in size/volume are important prognostic factors for the oncologist, we investigated the 
measurement variability across participating centers through the group challenge. 

Study Goal: We proposed to study the variability of size measurements in the screening 
intervals, across teams. We believe any bias that may exist in each teams size measurements 
(obtained via segmentations) would offset by repeating the segmentation at a later time point, 
for the same nodule. In this study, we obtained 100 patient image datasets from the National 
Lung Screening Trial (NLST) that had a nodule detected on each of two consecutive low dose 
computed tomography (LDCT) scans, with an equal proportion of malignant and benign cases 
(50 malignant, 50 benign). The teams were asked to provide segmentation masks for each 
nodule at both time points. From these masks, the volume was estimated for the nodule at 
each time point; the change in volume (absolute and percent change) across time points was 
estimated as well (Figure 7). 

Figure 7: Work flow followed in the challenge and sample nodules detected at 
different time points. 

We used the concordance correlation coefficient (CCC) to compare the similarity of 
computed nodule volumes (absolute and percent change) across algorithms. We used Logistic 
regression model on the change in volume (absolute change and percent change) of the 
nodules to predict the malignancy status, the area under the receiver operating characteristic 
curve (AUROC) and confidence intervals were reported. Because the size of nodules was 
expected to have a substantial effect on segmentation variability, analysis of change in 
volumes was stratified by lesion size, where lesions were grouped into those with a longest 
diameter of <8mm and those with longest diameter ≥ 8mm. 
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Figure 8. ROC curve for predicting cancer 
status using change in volume estimates 
across different teams. 

We observed that segmentation of the nodules showed substantial variability across 
algorithms, with the CCC ranging from 0.56 to 0.95 for change in volume (percent change in 
volume range was [0.15 to 0.86]) across the nodules. When examining nodules based on their 
longest diameter, we find the CCC had higher values for large nodules with a range of [0.54 
to 0.93] among the algorithms, while percent change in volume was [0.3 to 0.95]. The 
AUROC generated from change in volume ranged from 0.65 to 0.89 (Percent change in 
volume was 0.64 to 0.86) for entire nodule range (Figure 8). Prediction improves for large 
nodule range (≥ 8mm) with AUC range 0.75 to 0.90 (percent change in volume was 0.74 to 
0.92). 

When considering the entire nodule size range, Team 1 and 2 showed statistically 
comparable AUCs with overlapping confidence range [0.78, 0,86] and [0.73, 0.83]. Team 
3A’s (corrected) AUC was superior to any other teams with a confidence limits of [0.86, 0.92], 
while their uncorrected AUC showed slightly lower performance that was comparable with 
other teams [0.82, 0.90]. Team 4’s corrected estimates’ AUC was in the range of [0.79, 0.87], 
while their uncorrected AUC showed lower average AUC with a confidence range of [0.59, 
0.71]. Team 5’s average AUC was in the middle compared to others uncorrected estimates, 
with confidence limits of [0.72, 0.83]. It is interesting to note that, most semi-automated 
AUC’s showed slightly superior performance compared to radiologist delineated contours, 
whose average AUC was 0.78 with a confidence range of [0.73, 0.83]. When nodule sizes 
were restricted to smaller size (<8mm), Team 1, 3 and 5’s predictor AUC confidence ranges 
are comparable. Teams 2 and 4 AUC performances were lower compared to other teams. 
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Lessons Learned from the challenge: 

• It is important to avoid biases in size and volume measurements. Some common biases 
include use of any clinical diagnostics and or radiological observational intuition prior 
to delineate the region of interest. 

• Some known variations are attributed to the segmentation algorithms and the imaging 
suites methodologies, which show differences 

• There are few others variability sources caused by scanner parameters and 
reconstruction methods which influence the image intensity. 

(4.0) Targets of Opportunity 

To expand our presence in the radiomics community, we are continually and actively 
pursuing new and orthogonal research directions.  Over the last year, two specific studies 
arose as targets of opportunity that align with our current efforts to identify radiomic 
signatures that predict lung cancer outcomes.  Both studies were spearheaded by a promising 
doctoral student (Mr. Ilke Tunali) that are described below. 

In the first study that was published in Oncotarget (Tunali et al. at 
https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29221183/), a set of image features 
extracted from radial gradient (RG) and radial deviation (RD) maps generated from thoracic 
CT images. It’s worth noting that these are features were not part of our radiomics pipeline 
and have since been included in our toolbox.    In this study, we assessed whether these RD/RG 
features were associated with clinical outcomes in patients with lung adenocarcinoma in a 
training and test cohort.  Following feature reduction and model building analyses, we 
identified two combinatorial features discriminates indolent lung cancers vs. aggressive lung 
cancer. Additionally, we explored the potential biological underpinnings of these features by 
analyzing the association between radial gradient and radial deviation image features with 
semantic radiological features. We found that three RD/RG radiomic features that were 
statistically significantly associated with three semantic features: lobulation, pleural 
attachment, and border definition. 

In the second study, we curated a dataset of lung cancer patient treated with 
immunotherapy to develop clinical and radiomic models to predict treatment response.  The 
manuscript from these efforts is in preparation and expected to be submitted for review to 
Cancer Discovery in February 2018.  Among 235 NSCLC patients treated with single agent 
or double agent immunotherapies, we identified parsimonious models containing highly 
informative clinical covariates and radiomic image features with modest to high ability to 
predict rapid disease progression with AUROCs ranging from 0.821 to 0.865. These models 
have potential important translational implications to identify highly vulnerable patients that 
experience disease progression, rapid tumor growth, and poor patient outcomes. 

Finally, based on the aforementioned immunotherapy work, we have a review 
manuscript in preparation to synthesize the current knowledge of Clinical, Genomic, and 
Radiomic Predictors of Lung Cancer Immunotherapy Response. 
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PLANS FOR NEXT YEAR 

We will complete curation of the surgical cases with CDEs by the end of 2018. We 
will perform another query of surgical cases from Moffitt to include patients from 2017 
through 2018. The total accrual goal is to exceed 2,200 patients deposited into TRAIT. With 
these in hand, data mining will actively begin by the end of Q4 YR03. 

• Finish development automated upload tools for clinical data elements (Q2 2018) 

• Upload the current 1,300 image and clinical data elements for Aim 1 to the central 
infrastructure (Q2 2018) 

• Finish curation of the datasets (Q4 2018) 

• Complete segmentation of lung lesions, extract radiomic features, and QA/QC 
radiomic datasets Q4 2018) 

• Analyze demographic and clinical descriptors of our data set, and prepare first 
publication. 

We will also continue to collaborate within the QIN 

• We will continue to work closely with the QIN working group teams to harmonize the 
quantitative features across centers and work with the group to formulate ontology for 
feature definition. 

• We will validate newly discovered biomarkers by our center through with other QIN 
member teams. 

• We will work with the QIN and NCI team members to disseminate knowledge and 
participate in wider community challenges through leading conferences, such as the 
ISBI 2018. 

• We will continue to play an active to catalytic role to promote the use of quantitative 
imaging biomarkers for oncology research through the QIN working groups. 

• Develop Radiomics Ontology implementations for additional Radiomics software 
implementation (IBEX, Philips, OncoRadiomics) 

Publications Planned 

• APPM grand challenge 
• AAOM TG 263 report 
• Update on the Radiomics Ontology 
• Review on Repeatability and reproducibility of radiomics features 
• Review on Radiomic Predictors of Immune Therapy 
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INTRODUCTION 

The University of Iowa QIN team continues to improve and develop tools for 
quantitative image analysis both for assessment of response and for tumor targeting.  The 
group remains committed to the QIN central mission of “improving the role of quantitative 
imaging for clinical decision making in oncology by the development and validation of data 
acquisition, analysis methods and tools to tailor treatment to individual patients and to predict 
or monitor response to drug or radiation therapy.” 

This completes our 7th year of participation and significant progress building both 
developed infrastructure and through multi-institutional working group teams as part of QIN. 
Several new publications highlight this progress. Our group continues to move forward on 4 
specific aims in a highly innovative fashion to help accelerate QIN progress and collaboration: 

§ Specific Aim 1 

Develop a novel, robust imaging genomics-based decision support platform using a 
combination of our successful Phase-I developed and validated highly automated quantitative 
image analysis methods applied to linked and publicly-available well curated image (TCIA) 
and molecular (The Cancer Genome Atlas–TCGA) data warehouses along with an established 
outcomes database for H&N cancers. This will facilitate new methods and decision support 
tools necessary for future risk adaptive trials that will certainly include both genomic and 
quantitative image data. 

§ Specific Aim 2 

Build and innovate based on Phase-I developed and validated image analysis tools: a) 
Apply highly and fully automated quantitative image analysis methods to a cooperative group 
data set of H&N cancers, b) Develop unique new tools through creative new image analysis 
methods for application to FLT/PET in H&N cancer, FLT/PET in pelvis and bone marrow, as 
well as DOTATOC for liver metastases in neuroendocrine cancers. These newly refined 
approaches will be made publicly available and will contribute to future clinical trials, 
decision support, quantitative imaging response assessment and therapy targeting in a variety 
of cancer sites. 
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§ Specific Aim 3 

Create a novel link between our established work in PET quantification and calibration 
phantoms with our image analysis and decision support tools to create a clinically practical 
open source automated phantom analysis tool that can be applied to national efforts aimed to 
improve quantitative imaging quality assurance for clinical trials across multiple modalities 
including PET, CT, and MRI. This will provide a critical tool for improving the ease, accuracy 
and harmonization for clinical trials data acquisition. 

§Specific Aim 4 

Adapt, enhance and extend quantitative image-based response assessment in clinical 
trial decision-support through relevant active clinical trials. Several clinical trials are 
highlighted exploring: 1) FLT-PET as a predictor of bone marrow activity and toxicity in 
pelvic malignancies treated with chemoradiotherapy, 2) DOTATOC as an indicator of disease 
burden in neuroendocrine tumors and 3) quantitative MR imaging [T2, T1, T1ρ, quantitative 
susceptibility mapping (QSM) and MRSI] as effective predictors of response in malignant 
glial tumors treated with intravenous high dose vitamin C. These trials will facilitate 
quantitative image analysis tool development, decision support tools and risk adaptive 
approaches in future clinical trials. 

PROGRESS OVER THE PAST YEAR 
§Aim 1 

Over the past year, we have been working to develop new algorithms to compensate 
for several sources of error in the TCGA HNSC clinical data as well as our pre-processing of 
such data to enhance feature selection and power. The pre-processing improvements have 
shown progress in reducing the class imbalance problem within the dataset, thereby correctly 
identifying more cases with undesirable outcomes. This had a slight negative effect on 
classifier performance likely due to the reduction of class imbalance within the data. We 
continue to develop in this area. 

Additionally, it became clear that the TCGA HNSC clinical dataset is subject to 
anticipated fundamental problems associated with multi-institutional clinical data collection; 
e.g., data inconsistency/sparsity. In a large fraction of cases, this sparsity strongly affects 
treatment information—features that are important to the goals of our research. To combat 
this issue, we have experimented with several forms of feature imputation, filling in missing 
entries using complex modeling software (Multivariate Imputation by Chained Equations 
2011)1. 

This imputation yielded improved classifier performance, as well as notable increases 
in measures of feature importance. Before imputation, the treatment fields in question ranked 
at 7th and 12th most important among 24 clinical features. After imputation, these features 
ranked 4th and 5th respectively. 
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In addition, processes to mine linked tissue samples for whole exome analysis have 
begun for our internal database for fully curated head and neck cancer cases with metadata 
and PET/CT image analysis.  Working with our head and neck cancer pathologist and Institute 
for Human Genetics we are moving forward with a planned set of 100 cases with full imaging 
and genomic data.  Finally, we have requested tissue samples and imaging from both the NRG 
and ECOG-ACRIN cooperative groups.  We are hopeful some of this data will become 
available in the coming year. 

§ Aim 2 

Progress to apply highly and fully automated quantitative image analysis methods to 
a cooperative group data set of H&N cancers has been active in that all forms necessary to 
acquire images and tissue data have been submitted to the NRG and ECOG-ACRIN groups. 
The access to the ECOG-ACRIN 6685 data has been approved but access will still await 
completion of the primary data analysis and initial publication of results.  We anticipate 
gaining access to actual images and metadata in the coming year and will continue to monitor 
progress in the coming year.  Access to the NRG 0522 data is pending committee review. 

Progress in developing unique new tools for FLT/PET in H&N cancer including 
assessment of 4D data has made significant progress. Initial data suggests heterogeneity may 
be an important finding in the FLT HNC subgroup although final analysis and publication of 
results are pending.  Some work in analysis of bone marrow uptake for FLT has also been 
undertaken. We have also made progress in identifying advanced quantitative imaging 
biomarkers (QIBs) for HNC treatment outcome prediction based on both FDG as well as FLT 
PET-CT scans. For this purpose, we have developed a framework for early stage QIB 
discovery. Advanced features investigated include texture- and shape-based markers. We are 
currently working on publishing our results to disseminate our findings. 

We have updated and further enhanced our publicly released quantitative image 
analysis tools, which are based on 3D Slicer (Figure: 1). Specifically, we have added DICOM-
based Structured Reporting (SR) capabilities, enabling archiving of quantitative analysis 
results together with acquired image data on PACS systems, which will help increasing 
transparency/reproducibility and sharing of research results. 

21 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

 
 

 
  

  
  

 
 

 

  
  

  
 

  
 

   
 

 
 
 
 
 
 
 
 

Figure 1: 3D Slicer-based quantitative analysis tool for PET-CT scans, enabling DICOM 
SR based reporting of QIBs. 

Research in liver and liver-tumor segmentation from CT-PET multimodality images is 
ongoing. We have developed a quantitative approach for determination of liver tumor load in 
DOTATOC images. This approach consists of two main steps: 1) liver segmentation primarily 
using volumetric CT images, 2) tumor segmentation primarily using PET images within the 
liver volume, and 3) quantification of tumor load. 

Liver segmentation based on an Alpha-Path-Moves strategy introduced in a general form 
as part of 3D and 4D volumetric image segmentation methodology (NIH R01 EB004640, 
Sonka PI) and further developed and modified for liver segmentation in CT data. Tumor 
segmentation uses graph-cut approach considering global SUV and 3D spatial context as well 
as the liver volume segmentation. Quantitative analysis of tumor load provides mean liver and 
tumor SUV information and volumetrically quantifies percent liver subjected to tumor 
presence – see Figs. 2-4 below. 

In a preliminary fashion, 16 liver PET/CT datasets were analyzed providing good-
quality segmentation of liver and tumor volumes Quantitative validation on a larger dataset is 
ongoing. 
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Figure 2: Liver and liver tumor segmentation. Left to right: Original CT, original PET, 
liver/tumor segmentation overlaid on CT, liver/tumor segmentation overlaid on PET, 
liver/tumor segmentation overlaid on PET after PET image enhancement for visibility. Two 
slices of a 3D volume shown. 

Figure 3: Quantitative analysis of liver tumor load in patient from Fig. 1. (a) Global 
histogram of PET SUV in the liver. (b) SUV histogram of normal liver and liver tumor 
tissue. Normal liver SUV: 4:77±1.11, tumor SUV: 6:97±0:56. Tumor-to-liver 
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Figure 4: Quantitative analysis of liver tumor load in a pilot cohort of 16 patients. (a) Global 
histogram of PET SUV in the cohort. (b) SUV histogram of normal liver and liver tumor 
tissue. Normal liver SUV: 3.78±1.35, tumor SUV: 8.47±3.54. Average tumor-to-liver volume 
ratio: 15.5%. 

§ Aim 3 

The developed fully-automated PET phantom analysis software for PET scanner 
quality control was evaluated. A paper describing our approach as well as evaluation results 
was published in Medical Physics 2. It was highlighted under the Editors' Choice column for 
the Medical Physics citation and medphys.org websites for the January 2018 issue. This was 
the third time that a Medical Physics paper stemming from our QIN project was highlighted 
as Editors' Choice (2-4; see below). In addition, we are actively working with SNMMI on 
disseminating our work by development and implementation of a Joint-Commission 
compliant phantom program for PET/CT with fully-automated cloud-based analysis enabled 
by our analysis algorithm. 

In 2015 The Joint Commission published new “Diagnostic Imaging Requirements” 
that mandated phantom-based PET/CT scanner performance evaluations by diagnostic 
medical physicists. Image uniformity, high contrast resolution/system spatial resolution, low 
contrast resolution or detectability, and artifact evaluation are the newly required components. 
No guidance is given as to which phantoms or what criteria are to be used in these assessments. 
Since most PET/CT scanners are hospital-based in the US, and 82% of hospitals are currently 
Joint Commission accredited, these new required evaluations impact the majority of PET/CT 
scanners in the US. We developed a phantom-based PET/CT scanner evaluation program 
designed to be compliant with these Joint Commission requirements while providing 
meaningful and actionable scanner performance information. 
The proposed phantom program requires sites to perform two phantom scans. The first scan 
images a standard uniform 20 cm diameter cylinder phantom filled with aqueous [18F]FDG. 
The cylinder is centered in the gantry, but tilted at a slightly oblique angle with respect to the 
z-axis and is imaged for two bed positions at 20-30 minutes per bed position. Images 
reconstructed using the site’s standard clinical reconstruction yields data for in-plane 
uniformity, axial uniformity, assessment of quantitative calibration, and reconstructed 
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resolution in the radial and axial directions. Spatial resolution is calculated using measurement 
of the edge response function using the method of Lodge and Leal5. The second phantom scan 
uses either the NEMA Image Quality (IQ) phantom, or the new version of the SNMMI 
Clinical Trials Network (CTN) oncology phantom with NEMA sized spheres (Figure 5). A 
4:1 sphere-to-background ratio is used in either case. The phantom data are acquired using the 
site’s standard oncology protocol including time per bed position and reconstruction 
parameters (advanced reconstructions allowed). Image data yields a contrast recovery 
coefficient curve, clinically relevant noise assessment, and assessment of low-contrast lesion 
detectability. 

The two phantom image sets are uploaded to a cloud-based server along with phantom-
fill documentation. After a manual image quality control check, the datasets sets are exported 
to a folder that is continuously interrogated (Python). Upon dataset detection, images are 
automatically downloaded and analyzed in a fully automated fashion (C++, ITK) and a full 
scanner performance report (PDF) is generated. The report is designed to demonstrate Joint 
Commission compliance and record other performance metrics (Fig 6). In the final step, a 
medical physicist reviews the images and PDF report (Fig. 7), performs an assessment for 
lesion detectability and artifacts, and approves the report. 

Robustness of the automated phantom analysis software for the CTN and NEMA IQ 
phantoms has been validated across a number of PET/CT systems over a range of orientations 
and statistical image quality (Ulrich, Med Phys 23 Nov 2017). The uniform phantom 
algorithm for spatial resolution has been similarly validated. Analysis of three phantom 
datasets (uniform, NEMA IQ, and CTN) is benchmarked at 5 minutes 20 seconds. 
This efficient Joint Commission compliant phantom program for PET/CT has been developed 
and tested using commonly available phantoms and a robust cloud-based analysis tool. 
Dissemination of the program to the general public is planned in the coming year. 

Figure 5: Example Phantoms 
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Figure 6: Recovery coefficients for CTN spheres and 
modified NEMA IQ Phantom (8.5--‐ 44mm) 
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Figure 7: Sample Report document 
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§ Aim 4 

The focus in Aim 4 over the past year was to validate the changes in T2*/QSM 
measurements in response to administration of intravenous high dose vitamin C in gliomas. 
Labile iron has been demonstrated in vitro to be one of the mechanisms by which 
pharmacological ascorbate is selectively toxic to tumor cells. Labile ferric iron (Fe3+) is 
proposed to be reduced to ferrous iron (Fe2+). This reduction is what we aim to image using 
T2* and QSM.  To demonstrate first that T2* relaxation times and susceptibility are affected 
specifically by Fe3+ and not by Fe2+, phantoms consisting of physiologically relevant 
concentrations of iron were created in a agar based phantom. The iron concentrations ranged 
from 0 to 175 uM. The phantom was scanned at on a Siemens Tim TRIO scanner using a 12 
channel head coil. A multi-echo gradient-echo sequence was collected with the following 
parameters: TE [8, 16, 24, 32, 40, 48, 56, and 64 ms], TR 300 ms, flip angle 30 degrees. Both 
the T2* relaxation times and the magnetic susceptibility maps were found to be linear with 
Fe3+ concentrations while the Fe2+ had little effect (Figure 8). 

Figure 8: Effects of Fe3+ (ferric) and Fe2+ (ferrous) 
concentrations on T2* relaxation times and magnetic 
susceptibility as measured by QSM 
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Figure 9: Effects of ascorbate on H1299 cells 

This study then expanded into cancer cell lines to observe the affect that ascorbate had 
on these cells. H1299 cells were exposed to either 80 µM ferrous sulfate, 1 mM ascorbate, or 
left untreated. Cells were pelleted and loaded into an agar phantom. The phantom was scanned 
using a multi-echo gradient echo sequence with echoes times of 4.6, 10, 20, and 40 ms. 
Relaxation maps were calculated by fitting a mono-exponential decay curve to the echoes on 
a voxel-by-voxel basis. The data shown in Figure 9 suggest that Fe3+ is reduced in vitro, and 
that this reduction can be measured via T2* relaxometry. 

To demonstrate the alteration of iron oxidation state in vivo, Patients were recruited 
from a Phase II trial of pharmacological ascorbate as an adjuvant to standard of care for 
glioblastoma. 10 subjects undergoing radiotherapy and temozolamide treatment for 
glioblastoma received concurrent ascorbate. The imaging study was conducted on the same 
day as boost simulation. Ascorbate therapy was administered between morning and noon 
imaging sessions. Tumors were contoured to gross tumor volume using FLAIR and contrast-
enhanced T1. Tumor median relaxation rates increase after therapy and continue to increase 
for an additional four hours (Figure 10). This change indicates that the steady-state level of 
Fe3+ is decreased. This suggests enhanced redox cycling of labile iron, one of the key 
mechanisms of the selective toxicity of ascorbate to tumors. No significant change is seen in 
normal tissue, suggesting that, as seen in biochemical assays, normal tissue has a smaller 
redox-active labile iron pool, leading to nearly zero toxicity in normal tissue. 
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Figure 10: T2* relaxation times shown 
before (morning), immediate after (noon), 
and 4 hours post (afternoon) ascorbate 
administration. 

COLLABORATIONS WITHIN THE NETWORK 

Our efforts in comparing PET segmentation approaches on a national level have led 
to first results. In the first analysis phase of the QIN PET segmentation challenge (seven QIN 
sites participated), we have assessed the bias and variability of PET phantom and clinical HNC 
scan segmentations. Findings were summarized in a Medical Physics paper 4, which was 
highlighted as Editors' Choice in the February 2017 issue of Medical Physics. We continue 
our efforts with a second analysis phase, where we will focus on assessing the variability of 
PET segmentation derived quantitative imaging biomarkers. For this purpose we have 
established a statistical analysis framework that was published in Statistical Methods in 
Medical Research6. Quantitative biomarkers derived from medical images are being used 
increasingly to help diagnose disease, guide treatment, and predict clinical 
outcomes. Measurement of quantitative imaging biomarkers is subject to bias and variability 
from multiple sources, including the scanner technologies that produce images, the 
approaches for identifying regions of interest in images, and the algorithms that calculate 
biomarkers from regions. Moreover, these sources may differ within and between the 
quantification methods employed by institutions, thus making it difficult to develop and 
implement multi-institutional standards. We present a Bayesian framework for assessing bias 
and variability in imaging biomarkers derived from different quantification methods, 
comparing agreement to a reference standard, studying prognostic performance, and 
estimating sample size for future clinical studies. The statistical methods are illustrated with 
data obtained from a positron emission tomography (PET) challenge conducted by members 
of the NCI's Quantitative Imaging Network program, in which tumor volumes were measured 
manually and with 7 different semi-automated segmentation algorithms. Estimates and 
comparisons of bias and variability in the resulting measurements are provided along with an 
R software package for the technical performance analysis and an online web application for 
sample size and power analysis (Figure11). 
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Figure: 11: Power and sample size web application for quantitative imaging biomarkers. 

In addition, the group has participated in two papers under review from the Clinical Trials 
Design and Development Working Group.  One involves Quantitative Imaging in Radiation 
Oncology and the other Standards in Reporting in Quantitative Imaging.  Initial contribution 
evaluating the ability to use Auto-percist in a multi-group collaboration is also under analysis. 

PLANS FOR NEXT YEAR 

• Finish Joint-Commission SNMMI dissemination project 
• Publish results of FDG and FLT QIB analysis 
• Finish and evaluate FLT PET based quantification of bone marrow. 
• Finish second phase of PET Segmentation challenge by summarizing results in a paper and 

submit to a journal for review. 
• Participate in QIN phantom study of ‘hypoxic fraction’ measurement 
• Initiate analysis of whole exome sequence data from University of Iowa 
• Begin analysis of cooperative group clinical data from NRG 0522 and ECOG-ACRIN 6685 
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U01 CA190214: Qualification and Deployment of Imaging 
Biomarkers of Cancer Treatment Response 

Stanford University Department of Radiology (team 1) 

Daniel L. Rubin, M.D., M.S. 

INTRODUCTION 

Response to cancer therapy in clinical trials has traditionally been assessed via simple 
linear tumor size measurement on images. However, linear measurement may be less effective 
for newer targeted agents that can arrest tumor growth without causing shrinkage. While novel 
imaging biomarkers, such as those being developed in the NCI Quantitative Imaging Network 
(QIN), may be more appropriate for detecting and predicting treatment response to these 
agents, few as of yet have been used in clinical trials, primarily due to three major challenges: 
(1) it is difficult to introduce new imaging biomarkers into the workflow of clinical trials, 
since current image viewing tools are generally closed systems and limited to linear 
assessment of target lesions, and time does not allow for more complex human-guided 
measurements; (2) there are no decision support tools that can employ new quantitative 
imaging biomarkers to assess treatment response in individual patients or drug effectiveness 
in clinical trial cohorts; and (3) it is difficult to repurpose existing clinical trial imaging data 
to accrue aggregate evidence needed to show that new imaging biomarkers predict survival, 
thereby qualifying them as surrogate endpoints in clinical trials. 

We recently developed the electronic Physician Annotation Device (ePAD) to 
facilitate collecting annotations and measurements on target lesions in compliance with 
standards in the cancer imaging community. In this proposal, we will leverage our prior work, 
our active collaborations with current QIN researchers, and our engagement with the ECOG-
ACRIN national cooperative group to develop and evaluate a software platform, algorithms, 
and tools that meet all of these challenges. 

Our project will tackle the foregoing challenges by developing a software platform 
that incorporates ePAD for image viewing, enhancing it with a plugin architecture to deploy 
novel quantitative imaging biomarkers developed by QIN and other researchers, and by 
providing tools that facilitate translating and evaluating novel imaging biomarkers in clinical 
trials. Our infrastructure will contain a workflow engine that computes these novel imaging 
biomarkers during image interpretation, and tools for decision making about treatment 
response and drug effectiveness based on them. It will also enable repurposing imaging data 
from previous clinical trials to assess the benefit of these imaging biomarkers for predicting 
treatment response. 

Our flexible platform and tools will have substantial impact in cancer research and 
ultimately in clinical care, specifically by (1) advancing cancer research and accelerating 
clinical trials by enabling novel quantitative imaging biomarkers being developed by QIN 
researchers and others, which may be more appropriate for newer, targeted anti-cancer agents, 
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to be introduced into the clinical trial workflow, (2) improving both clinical trials and clinical 
practice by providing decision support about cancer treatment response based on these 
biomarkers, and (3) accelerating the acquisition of sufficient data needed to qualify new and 
potentially better imaging biomarkers of cancer treatment response and survival. 

PROGRESS OVER THE PAST YEAR 

§ Specific Aims 

Specific Aim 1: We will develop a platform and tools to facilitate deploying new 
imaging biomarkers in clinical trials and using them for decision support. We will create 
a plug-in mechanism to our ePAD platform that allows novel quantitative imaging algorithms 
developed by us or by others to be incorporated into the clinical trial workflow with minimal 
impact on the time required for image interpretation. To assess individual and cohort response 
based on new imaging biomarkers, we will develop decision support tools that summarize 
their output in relation to clinical outcome. We will also develop tools that compare the 
assessments of novel and conventional (e.g., linear dimension) imaging biomarkers of cancer 
treatment response. 

Specific Aim 2: We will develop methods to repurpose existing imaging data from 
clinical trials to study new imaging biomarkers. We will develop automated image 
segmentation methods that use seed points from conventional clinical trial lesion 
measurements to derive volumetric lesion outlines, from which novel quantitative imaging 
biomarkers of treatment response can be computed efficiently in the workflow of clinical 
trials. With the goal of generalizability, we will develop and deploy two quantitative image 
biomarkers: (1) target lesion volume in carcinoid tumors imaged by CT and (2) functional 
quantitative image parameters in hepatocellular carcinoma (HCC) imaged by MRI. We will 
deploy these as plugins to our ePAD platform so that they can be used for repurposing existing 
imaging data, and can be incorporated into the clinical trial workflow. 

Specific Aim 3: We will deploy and evaluate our platform and tools in the core 
imaging laboratories of two cancer centers and the ECOG-ACRIN national cooperative 
group. We will apply our tools retrospectively to a recently-completed ECOG-ACRIN 
cooperative group trial (carcinoid tumors imaged by CT, linear measure vs. volumetric image 
biomarkers to assess treatment response) and a prospective investigator-initiated trial (HCC 
imaged by MRI, linear measure vs. novel functional quantitative MRI biomarkers to assess 
treatment response), with image assessments performed at two cancer centers (Stanford and 
Vanderbilt University). For both studies, we will compare the efficiency of the analysis done 
with and without our platform. Finally, we will use aggregate image biomarker data we 
acquire in conjunction with survival data from these clinical trials to study the important 
hypothesis that radiological response based on quantitative image biomarkers can predict 
overall survival. 
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§ Progress on the Specific Aims 

Figure 1: Gantt chart showing planned developments per Specific Aims. Red line is 
current point in time. 

Our specific objectives and progress against these Aims for Years 1 & 2 were to: 
(labels C.n.m refer to our grant proposal and the Gantt Chart (Figure. 1)): 

AIM 1: Develop a suite of configurable image feature characterization 
algorithms: 

C.1.2.1 Plugin architecture and workflow execution engine for deploying new 
imaging biomarkers: We improved our plugin mechanism to accommodate 
the expanding number of plugins with a plugin store. The plugin store is a more 
extensive and flexible way of installing/managing the default local plugins and 
remote plugins developed by ePad Team or third parties. Local plugins are 
embedded in ePAD and can be activated or deactivated. The remote plugins, 
on the other hand are downloaded from our repository with the installation 
request. The plugins can specify parameters in addition to the executable files. 

There are three components of the plugin architecture of ePAD: 

• Biomarker plugins are code modules that can be added to the ePAD 
virtual machine to execute the algorithms that QIN or others develop to 
compute novel imaging biomarkers, or for producing automated segmentation 
of lesions during image viewing. We have improved ePAD to aggregate 
biomarkers automatically from each annotation and save them to the produced 
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AIM file. The biomarkers that are collected automatically for all the 
annotations are minimum, maximum, standard deviation and mean for all the 
pixels that are in the region of interest. If the region of interest is marked using 
a line, ePAD also calculates the length of the line and stores it. If the region of 
interest is marked using perpendicular lines, ePAD will calculate the length of 
the long axis and short axis, and store the values as long axis and short axis 
respectively in the AIM file. 

We have also added new biomarker plugins: 

Quantitative Image Feature Engine (QIFE): An Open-Source, Modular 
Engine for 3D Quantitative Feature Extraction from Volumetric Medical 
Images: QIFE is an open-source feature-extraction framework that works on 
Quantitative Imaging Feature Pipeline (QIFP), a separate QIN project 
undertaking developing a workflow engine. It computes 3D radiomics features 
for the region of interests that are marked as DICOM Segmentation Objects 
[Echegaray S, Bakr S, Rubin DL, Napel S. Quantitative Image Feature Engine 
(QIFE): An Open-Source, Modular Engine for 3D Quantitative Feature 
Extraction from Volumetric Medical Images. Journal of Digital Imaging 
2017]. ePAD can run QIFE through QIFP, get the feature values and store them 
in an AIM file for future reference. 

Quantitative Feature Explore (QFExplore) plugin suite - Feature 
Extraction, Comparison and Classifier: The Quantitative Feature Explore 
(QFExplore) plugin suite for ePAD platform enables the exploration and 
validation of imaging biomarkers in a clinical environment [Schaer R, Dicente 
Cid Y, Alkim E, John S, Rubin DL and Depeursinge A, Web-Based Tools for 
Exploring the Potential of Quantitative Imaging Biomarkers in Radiology: 
Intensity and Texture Analysis on the ePAD Platform, in: Biomedical Texture 
Analysis: Fundamentals, Applications and Tools, Elsevier, 2017]. The latter 
include: 

o the extraction, visualization and comparison of intensity- and texture-
based quantitative imaging features (Fig. 2), 

o regional division of Regions of Interests (ROI) to reveal tissue diversity 
o the construction, use and sharing of user-personalized statistical 

machine learning models, 
o helper tools for image segmentation are also available (Exampler #3c). 

Imaging features that can be extracted using QFExplore are: 
o histogram bins of Pixel Intensity Distributions (PID), 
o statistical moments of PIDs (i.e., mean, standard deviation, skewness, 

kurtosis), 
o Gray-Level Co-occurrence Matrices (GLCMs), 
o Riesz wavelets 

38 



Figure 2: QF Explore Plugin Suite: GLCM feature extraction and 
comparison chart. The user can compare the feature's values for various 
ROIs. GLCM contrast and correlation is higher for vascular ROIs. 

 
 

  
  

 
 

 

 

 

 

 

 

 

  

   
      

   

 

   
 

   
   

   
 

 
  

     
 
 

    
  

 
 

     
    

  
  

   
 
 

  
  

The machine learning model that is used is based on linear Support Vector 
Machines (SVMs). 

• Application modules are software applications that leverage data in the ePAD 
platform, typically implemented as web-based applications that access data in 
ePAD via a RESTful application interface. We created the RECIST, 
Longitudinal and Waterfall reports as application modules for a modular 
design and independence from platform. See section C.1.2.3 for more 
information on reporting tools. 

• Workflow execution engine: We have implemented a prototype of workflow 
engine by running the QIFE feature extraction via Quantitative Imaging 
Feature Pipeline (QIFP). The prototype runs the QIFE to extract 3D 
quantitative features for the segmentation objects that are created in ePAD with 
default parameters, waits for the results to be ready and writes the features to 
the AIM file when the results are received. 

We have implemented running plugins on the existing annotations after the 
fact. There are two types of plugins, first type works on a single annotation 
whereas the second one gets a list of annotations and extracts information by 
comparing/processing all of them cumulatively. Depending on the type of the 
plugin, ePAD can run the plugin in parallel by queuing the execution on each 
annotation or sending all the annotations to the plugin. 

During the interoperability efforts, we have developed a plugin wrapper to run 
a Slicer plugin, Lung segmentation plugin in particular. The wrapper sends the 
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request to the Slicer via SlicerChronicle module, retrieves the created DICOM 
Segmentation Object when it is ready and saves it in ePAD. 

We also made enhancements to the core ePAD functionality, including 
DicomRT migration support, DicomSR migration and export support for 
segmentation annotations and more extensive DICOM Segmentation Object 
(DSO) support with probability masks. We are also participating actively on 
Supp 200-Transformation of NCI Annotation and Image Markup (AIM) and 
DICOM SR Measurement Templates Standard efforts to extend the DICOM-
SR support to all annotation types. 

C.1.2.2 Image viewing to facilitate assessment of quantitative imaging 
biomarkers: We made progress on several of the tasks: 

Facilitating image biomarker assessments by clinical centers 
The waterfall plot tool shows the summary of the biomarker assessment taking 
into account the quantitative measurements of the annotations across a study 
for a cohort of patients. More information about the waterfall plot tool can be 
found below (see “Waterfall Report”). 

Facilitating oversight of image readings by clinical trial researchers and 
sponsors: ePAD associates radiologists with the images they interpret. We 
developed a study monitoring application module that permits ePAD to 
monitor the status of image interpretations made in multiple clinical trials and 
summarized as a table in ePAD viewer. The module enables a user to follow 
the image annotations made in multiple studies by group of users assigned to 
a particular study. It can also track the progress of the annotation process by 
identifying which subjects are fully annotated by all the annotators, which 
annotators have completed the annotation process for each subject and which 
subjects/studies have not been annotated yet (Figure 3). 
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Figure 3: Progress View 

This functionality has been helpful in a project that adopted ePAD: the 
MGH/HST Martinos Center for Biomedical Imaging) used this for MEDICI 
project. 

In addition, we have added a view in ePAD to show Multi-planar 
reconstruction (MPR) view of DICOM images and to support drawing of 3D 
annotations on the MPR view (Figure 4). To support the MPR development, 
we have leveraged the open source AMI JavaScript toolkit in ePAD 
(https://github.com/FNNDSC/ami). 
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Figure 4: MPR view of a series implemented using AMI.js in ePAD. 

C.1.2.3 Decision support in assessing treatment response: We have developed tools 
to assist decision making based on image biomarker assessments in two major 
clinical trial tasks: (1) determine treatment response in patients (RECIST, 
Longitudinal annotation report), and (2) evaluate treatment effectiveness by 
determining the cohort-based treatment response (Waterfall). 

RECIST Report: We have improved our RECIST report by re-implementing 
it as an application module (Figure 5). It analyzes all the annotations of a 
patient, calculates sum of lesion dimensions (SLD) on each time point. 
RECIST report generation depends on the usage of the RECIST templates to 
annotate the lesions and supports the geometric shape annotations of line and 
perpendicular lines. The report checks the consistency of the annotations, if the 
location is specified differently in the annotation of the same lesion on different 
time points, the cell will be marked as error to notify the user. The report also 
marks missing annotations for a lesion as error. 

The user can open the annotation in the image viewer by clicking on the 
annotation measurement on a specific time point. The user can also open all 
annotations of the lesions on all time points by clicking the lesion name. The 
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populated report can be exported as a word document that can be filed in the 
clinical workflow. 

Figure 5: RECIST Report with measurable and non-measurable disease 
tables. 

Longitudinal Annotation Reporting: We have implemented a more generic 
Longitudinal annotation reporting tool that analyzes all the annotations of a 
subject and doesn’t filter automatically for any template (Figure. 6). The report 
populates three dropdown menus by analyzing the annotations: shape, template 
and measurement type. The user can filter using the shape and/or template or 
choose to see all annotations. The table will be populated using the selected 
measurement type. If the measurement is not present in a specific time point 
of a lesion, the table display it as NA. The summary section will be filled 
automatically for the measurement type in a similar manner to the RECIST 
report but by using the selected measurement type. The access to the 
annotations on the image viewer works in the same manner with RECIST 
report. 
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Figure 6: Longitudinal annotation report 

Waterfall Report: We have implemented a waterfall report plotting 
application module to evaluate treatment effectiveness by determining the 
cohort-based treatment response (Figure 7). 

The report can use either RECIST and ADLA as the imaging biomarker used 
to calculate the best response rate of a subject. If the user selects to use 
RECIST, Waterfall report module analyzes every subject in the cohort, 
generates the RECIST tables, gets the best response for each subject and plots 
it in a decreasing order forming a waterfall plot. If the user selects to use 
ADLA, Waterfall report module generates an ADLA table for each subject by 
using the Longitudinal report and filtering the shape to Line and using the 
standard deviation as the measurement type. Then, the best response from the 
ADLA table for each patient is used to plot the waterfall graph. The waterfall 
plot is responsive, the user can access the table that is used to make the best 
response rate computation by clicking the specific bar in the waterfall plot. 
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Figure 7: Waterfall report plot 

Dissemination: We have kept our public website for ePAD up-to-date. Our 
public website,  http://epad.stanford.edu/ contains introductory material, a 
demo movie, documentation, a detailed description of the developer interface, 
download information in addition to user and download statistics. ePAD is 
open source, and the license is posted as well. We have regular releases, at least 
6 times per year, and release notes are at 
https://epad.stanford.edu/documentation/release-notes. 

AIM 2: Develop methods to repurpose existing imaging data from clinical trials 
to study new imaging biomarkers: 

C.2.2.1 Automated segmentation in PET-Tedseg: We have integrated an automatic 
segmentation plugin which works on PET images. The plugin, which was 
developed by Edward Graves [Technol Cancer Res Treat, 6(2):111-21, 2007], 
is triggered with a seed point. It analyzes the image volume to find the whole 
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Figure 8: Tedseg: Automated segmentation plugin for PET images. The segmentation 
is highlighted using colored overlay in the image viewer of ePAD 

 
 

   
   

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

     
     

 
 

      
  

   
 

region of the lesion and creates a DICOM Segmentation object marking the 
volume of the lesion (Figure 8). 

C.2.2.2 Automated 2D lesion segmentation in MR-LesionSeg: We have 
integrated an automatic 2D lesion segmentation plugin which works on 
MR images. The plugin, is triggered with drawing a polygon inside the 
region of interest. It analyzes the image and expands the polygon ROI to 
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Figure 9: QF Explore Plugin Suite Automated image segmentation plugin: Two 
images of automatically segmented lungs in a DICOM volume. The detected lung 
regions are highlighted with green image overlays in the front-end of ePAD. 

 
 

    
 

 
   

 
    

 
 
 

 
      

   
   

 

 
     

  
  

 
 
 

the edges by adding more points [Ref 12; Med Image Anal 2017]. 

C.2.2.3 Automated image segmentation of QF Explore Plugin Suite: The QF 
Explore plugin suite has a plugin for automatically segmenting lungs in a 
DICOM volume (Figure 9). 

– 

C.2.2.4 ADLA biomarker plugin: We have integrated Attenuation Distribution across the 
Long Axis (ADLA) plugin. ADLA is a semi-quantitative imaging biomarker for 
assessing treatment response in solid malignancies and a measure of intralesional 
heterogeneity [Nikita Lakomkin, Hakmook Kang, Bennett Landman, Radiology, 
Volume 23, Issue 6, 2016, Pages 718-723, ISSN 1076-6332]. ePAD calculates the 
standard deviation along the long axis to compute the ADLA and saves in the AIM 
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file to be used for further analysis. ePAD also draws an ADLA histogram when the 
long axis is selected (Figure 10) and an ADLA change report (Figure 11) 

Figure 10: ADLA histogram 

Figure 11: ADLA Report 

C.2.2.5 T1 map extraction from Philips MRI images:  We have integrated a T1 map 
extraction plugin that is developed by Vanderbilt University [Yankeelov and 
Gore, Curr Med Imaging Rev. 2009 May 1;3(2):91-107]. The plugin analyses 
the multiframe MRI image with different phases and calculates the T1 map for 
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the volume. ePAD gets the T1 map volume, scales it to 8 bits to be able to save 
in DICOM standard, saves in a probability DICOM Segmentation object and 
paints the mask on the image using a color LUT (Figure 12). 

Figure 12: T1 map overlaid on MR image using color LUT 

COLLABORATIONS WITHIN THE NETWORK 

We have engaged actively in QIN collaboration as well as community outreach and 
dissemination. 

Vanderbilt QIN: We worked with the Vanderbilt QIN to deploy their perfusion MRI 
biomarker methods as a plugin to ePAD (see C.2.2.5). 

MGH/HST Martinos Center for Biomedical Imaging): This site used ePAD 
functionality for tracking radiologist progress in making image annotations in their MEDICI 
project. We interacted with them to collect requirements and address usage issues. 

ECOG-ACRIN: We have begun interacting with the ECOG-ACRIN cooperative 
group Core Laboratory to interface it with their DART infrastructure to enable collecting 
image annotations as part of clinical trials in AIM format and storing that in DART. 
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IROC: We have begun talking with IROC about doing a pilot project of using ePAD 
for image management within their clinical trial workflow to facilitate collection and 
management of image annotations as part of clinical trial workflow in IROC. 

Commercial and open source interoperability: We have worked with various 
laboratories to develop migration tools for ePAD to enable ePAD to leverage the existing 
annotations that are created by other software tools. These include ROIs exported from Osirix, 
ROIs and measurements collected by MINT Lesion commercial software. We have also made 
improvements in ePAD core capabilities to handle the laboratories’ special needs, in particular 
to support small imaging data better. 

NCIP and DICOM Committee: We are also participating actively in an NCIP-
funded project to harmonize AIM with the DICOM standard, which was taken up in the past 
year by DICOM WG-8. This work is extending DICOM-SR support to AIM annotation types. 

PLANS FOR NEXT YEAR 

§ Tumor volume plugin: 

We will create a plugin to compute the volume of target lesions that have been 
outlined using DSO objects. We will use this plugin in our evaluate Aim 3 studies as one of 
the imaging biomarkers to be compared against another biomarker (ADLA). 

Tools to assess the benefits of new imaging biomarkers: 

The Waterfall chart module was implemented for the RECIST and ADLA tumor 
response rules. As a subsequent step, we will develop the biomarker comparison module, an 
application module in ePAD viewer that compares the cohort treatment response results 
obtained when using novel vs. conventional (e.g., linear dimension, RECIST vs ADLA) 
imaging biomarkers. This module will summarize the treatment response in patient cohorts 
based on the new imaging biomarker (using linear measurement for comparison) using several 
methods: waterfall plots to show the best overall response rates in the cohort, progression-free 
survival (PFS), MRR, and MTP. 

Build biomarker plugin to derive lesion volume from linear measurements: 

In addition: 
In addition to the MPR view, we will develop a new viewer using AMI.js that 
will support display of multi-segment DICOM Segmentation Objects (DSOs) 
and 3D ROI annotations. 

There are several plugins that have been implemented outside of ePAD and we 
will integrate these plugins as modules that can be executed within ePAD: 

1. 

2. 
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a. Automated lesion tracking:  This plugin will use a 2D ROI and image to 
generate binary masks or segmentation that will be used to create a mesh that 
can be visualized in ePAD as a 3D volume rendering model. 
The automated progress or tracking of a lesion will be triggered after 
selecting a baseline AIM file, which will then prompt the module to generate 
AIM files for follow-up segmentations. This module will have a User 
Interface for selection of baseline annotation and for displaying the 
automated lesion tracking. 

b. FASR plugin: This tool will return a predictive score after a user enters inputs 
for questions in a template for mammography interpretations, providing the 
probability of malignancy for evaluated lesions. We will integrate this plugin 
into ePAD. 

3. We will make regular public releases of ePAD and will submit an educational 
exhibit to RSNA 2018 that will allow us to begin to train the broader 
community regarding the use of the QIFP. 

Specific Aim 3: We will commence work on this Specific Aim, deploying and 
beginning to evaluate our platform and tools in the core imaging laboratories of two cancer 
centers and the ECOG-ACRIN national cooperative group. We will apply ePAD 
retrospectively to a recently-completed ECOG-ACRIN cooperative group trial (SWOG 
0518), with image assessments performed at two cancer centers (Stanford and Vanderbilt 
University). For both studies, we will compare the efficiency of the analysis done with and 
without our platform. We will use aggregate image biomarker data we acquire in conjunction 
with survival data from these clinical trials to study the important hypothesis that radiological 
response based on quantitative image biomarkers can predict overall survival. 

PUBLICATIONS AND PRESENTATIONS FROM QIN EFFORTS 

§ Published papers: 

1. Hwang KH, Lee H, Koh G, Willrett D, Rubin DL. Building and Querying RDF/OWL 
Database of Semantically Annotated Nuclear Medicine Images. J Digit Imaging 2016. 
PMID:27785632. 

2. Barker J, Hoogi A, Depeursinge A, Rubin DL. Automated classification of brain tumor 
type in whole-slide digital pathology images using local representative tiles. Med 
Image Anal 2016; 30:60-71. PMID:26854941. 

3. Yuan Y, Hoogi A, Beaulieu CF, Meng MQ, Rubin DL. Weighted locality-constrained 
linear coding for lesion classification in CT images. Conf Proc IEEE Eng Med Biol Soc 
2015; 2015:6362-6365. PMID:26737748. 

4. Diamant I, Hoogi A, Beaulieu C, Safdari M, Klang E, Amitai M, Greenspan H, Rubin 
D. Improved patch based automated liver lesion classification by separate analysis of 
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the interior and boundary regions. IEEE J Biomed Health Inform 2015. 
PMID:26372661. PMCID:PMC5164871. 

5. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for 
Brain MRI Segmentation: State of the Art and Future Directions. J Digit Imaging. 
2017; 30:449-459. doi: 410.1007/s10278-10017-19983-10274. 

6. Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology Report Annotation using 
Intelligent Word Embeddings: Applied to Multi-institutional Chest CT Cohort. J 
Biomed Inform 2017; 23:30257-30255. 

7. Banerjee I, Malladi S, Lee D, Depeursinge A, Telli M, Lipson J, Golden D, Rubin 
DL. Assessing treatment response in triple-negative breast cancer from quantitative 
image analysis in perfusion magnetic resonance imaging. J Med Imaging 
(Bellingham). 2018; 5:011008. doi: 
011010.011117/011001.JMI.011005.011001.011008. Epub 012017 Nov 011002. 

8. Diamant I, Hoogi A, Beaulieu CF, Safdari M, Klang E, Amitai M, Greenspan H, 
Rubin DL. Improved Patch-Based Automated Liver Lesion Classification by Separate 
Analysis of the Interior and Boundary Regions. IEEE J Biomed Health Inform. 2016; 
20:1585-1594. doi: 1510.1109/JBHI.2015.2478255. Epub 2472015 Sep 2478211. 

9. Farahani K, Kalpathy-Cramer J, Chenevert TL, Rubin DL, Sunderland JJ, Nordstrom 
RJ, Buatti J, Hylton N. Computational Challenges and Collaborative Projects in the 
NCI Quantitative Imaging Network. Tomography. 2016; 2:242-249. doi: 
210.18383/j.tom.12016.00265. 

10. Finlayson SG, Levy M, Reddy S, Rubin DL. Toward rapid learning in cancer 
treatment selection: An analytical engine for practice-based clinical data. J Biomed 
Inform. 2016; 60:104-13.:10.1016/j.jbi.2016.1001.1005. Epub 2016 Feb 1012. 

11. Graim K, Liu TT, Achrol AS, Paull EO, Newton Y, Chang SD, Harsh GRt, Cordero 
SP, Rubin DL, Stuart JM. Revealing cancer subtypes with higher-order correlations 
applied to imaging and omics data. BMC Med Genomics. 2017; 10:20. doi: 
10.1186/s12920-12017-10256-12923. 

12. Hoogi A, Beaulieu CF, Cunha GM, Heba E, Sirlin CB, Napel S, Rubin DL. Adaptive 
local window for level set segmentation of CT and MRI liver lesions. Med Image 
Anal. 2017; 37:46-55.:10.1016/j.media.2017.1001.1002. Epub 2017 Jan 1013. 

13. Hoogi A, Subramaniam A, Veerapaneni R, Rubin DL. Adaptive Estimation of Active 
Contour Parameters Using Convolutional Neural Networks and Texture Analysis. 
IEEE Trans Med Imaging. 2017; 36:781-791. doi: 710.1109/TMI.2016.2628084. 
Epub 2622016 Nov 2628011. 

14. Hwang KH, Lee H, Koh G, Willrett D, Rubin DL. Building and Querying RDF/OWL 
Database of Semantically Annotated Nuclear Medicine Images. J Digit Imaging. 
2017; 30:4-10. doi: 10.1007/s10278-10016-19916-10277. 

52 



 
 

 

 

    
  

 

  
  

  

   
 

 

 

  

  
  

 
 

 
   

 
 

   
 

 
  

 

 
 

  
  

 
 

     
   

   
 

 

15. Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL. A curated 
mammography data set for use in computer-aided detection and diagnosis research. 
Sci Data. 2017; 4:170177.:10.1038/sdata.2017.1177. 

16. Lekadir K, Galimzianova A, Betriu A, Del Mar Vila M, Igual L, Rubin DL, 
Fernandez E, Radeva P, Napel S. A Convolutional Neural Network for Automatic 
Characterization of Plaque Composition in Carotid Ultrasound. IEEE J Biomed 
Health Inform. 2017; 21:48-55. doi: 10.1109/JBHI.2016.2631401. Epub 2632016 
Nov 2631422. 

17. Rister B, Horowitz MA, Rubin DL. Volumetric Image Registration From Invariant 
Keypoints. IEEE Trans Image Process. 2017; 26:4900-4910. doi: 
4910.1109/TIP.2017.2722689. Epub 2722017 Jul 2722683. 

18. Yu KH, Berry GJ, Rubin DL, Re C, Altman RB, Snyder M. Association of Omics 
Features with Histopathology Patterns in Lung Adenocarcinoma. Cell Syst. 2017; 
5:620-627.e623. doi: 610.1016/j.cels.2017.1010.1014. Epub 2017 Nov 1015. 

§ Submitted Manuscripts 

1. S. Bakr, O. Gevaert, S. Echegaray, K. Ayers, M. Zhou, M. Shafiq, H. Zheng, W. 
Zhang, A.N.C. Leung M. Kadoch, J. Shrager, A. Quon, D.L. Rubin, S. K. Plevritis*, 
Sandy Napel*, “A Radiogenomic Dataset of Non-Small Cell Lung Cancer,” submitted 
to Nature Scientific Data, Dec. 2017. 

§ Presentations 

1. Fedorov A, O'Donnell LJ, Rubin DL, Clunie DA, Flade D, Nolden M, et al., 
DICOM4QI demonstration and connectathon: Structured communication of 
quantitative image analysis results using the DICOM standard Scientific Exhibit in the 
Quantitative Imaging Reading Room of the Future (QIRR), One hundred and third 
annual scientific meeting of the RSNA, Chicago, IL, 2017. 

2. Rubin DL, John S, Altindag C, Alkim E, New developments in the ePAD platform to 
support quantitative imaging assessment in the research workflow, Scientific Exhibit 
in the Quantitative Imaging Reading Room of the Future (QIRR), One hundred and 
third annual scientific meeting of the RSNA, Chicago, IL, 2017. 

3. Rubin DL, Image Annotation and Semantic Labeling, in Refresher Course, 
“Radiomics Mini-Course: From Image to Omics,” One hundred-third annual scientific 
meeting of the RSNA, Chicago, IL, 2017. 

4. Rubin DL, Machine Learning and Radiomics in Practice: Tools and Case Example, in 
Refresher Course, “Platforms and Infrastructures for Accelerated Discoveries in 
Machine Learning and Radiomics,” One hundred-third annual scientific meeting of 
the RSNA, Chicago, IL, 2017. 
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5. S. Napel, S. Echegaray, D. Gude, O. Gevaert, D. L. Rubin, “The Quantitative Image 
Feature Pipeline (QIFP) for Discovery, Validation, and Translation of Cancer Imaging 
Biomarkers,” Radiological Society of North America 102nd Scientific Sessions, 
Chicago, December 2016. 

6. D. L. Rubin, C. Altindag, E. Alkim, “New developments in the ePAD platform to 
support quantitative imaging assessment in the research workflow,” Scientific Exhibit 
in the Quantitative Imaging Reading Room of the Future (QIRR), Radiological Society 
of North America 102nd Scientific Sessions, Chicago, December 2016. 

7. S. Napel, D. L Rubin, S. John, D. Gude, S. Echegaray, S. Bakr, D. Gude, et al. “The 
Quantitative Image Feature Pipeline (QIFP): Automated Radiomic Feature Extraction 
to Derive Associations with and Prediction of Clinical Variables from Image 
Features,” Radiological Society of North America 103rd Scientific Sessions, December 
2017.  

8. J. Kalpathy-Cramer, B. Zhao, D. Goldgof, S. Napel, D. L. Rubin, M. F. McNitt-Gray, 
et al, “Standardizing Radiomic Feature Descriptions for Quantitative Imaging: A 
Preliminary Report of the Cooperative Efforts of the NCI’s QIN PET-CT Subgroup,” 
Radiological Society of North America 103rd Scientific Sessions, December 2017. 
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U01 CA148131: Advanced PET/CT Imaging for Improving Clinical Trials 

University of Washington 
Seattle Cancer Care Alliance 

Hannah Linden, M.D. 
Dave Mankoff, M.D., Ph.D. 

Paul Kinahan, Ph.D. 

INTRODUCTION 

The goal of this project is to improve cancer clinical trials by enhancing the 
effectiveness of quantitative PET/CT imaging of tumor response. This has three distinct and 
linked components: 
1. Develop and implement a unified database and imaging platform for our phantoms 

and software tools. 
2. Extend our biologically principled imaging tools developed for FDG to FLT 

(proliferation) and FES (receptor status) in multicenter studies. 
3. Prospectively test the integration of the above tools and methods in a newly approved 

ECOG-ACRIN clinical trial that uses FES PET imaging to evaluate new breast cancer 
therapies. 

§ Discussion and Results of Progress made over the previous year 

Survey of PET/CT protocol parameters that affect standardized uptake values. 
Clinical trials that evaluate cancer treatments may benefit from positron emission tomography 
(PET) imaging, which for many cancers can discriminate between effective and ineffective 
treatments. However, the image metrics used to quantify disease and evaluate treatment may 
be biased by many factors related to clinical protocols and PET system settings, many of 
which are site- and/or manufacturer-specific. 

We conducted an observational study using two surveys that were designed to record 
key sources of bias and variability in PET imaging. These were distributed to hospitals across 
the United States. The first round of surveys was designed and distributed by the American 
College of Radiology’s Centers of Quantitative Imaging Excellence program in 2011. The 
second survey expanded on the first and was completed by the National Cancer Institute’s 
Quantitative Imaging Network. Sixty-three sites responded to the first survey and 36 to the 
second. 

55 



Figure 1: For body imaging, smoothing (post filter full width at half maximum) versus 
iterative updates for the (a) QIN survey and (b) CQIE survey. Where multiple points lie in 
the same location, small shifts have been introduced to make markers visible. On the x-axis, 
where a post-filter of 0 mm is indicated, no post-filtering was applied. Algorithms plotted 
on the y-axis, implying no updates, are non-iterative methods. 

 
 

 
 
 
 
 
 

 
     
     

      
           

 
 

 
   

  
 
 
 

 
 

  
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

There are roughly 10 parameters that can affect PET SUVs, and the survey found 
substantial variations in all of them between sites. For example, reconstruction methods varied 
across scanners in the QIN survey. The most common algorithm reported was the ordered-
subsets expectation maximization (OSEM) algorithm without time-of-flight data, used by 31 
sites (one of these used two-dimensional OSEM). Eight sites indicated their reconstructions 
used time-of-flight data and three used the analytic methods. Some sites used Fourier 
rebinning. Figure 1. shows the reported image smoothing parameters versus the number of 
iterative updates (defined as the number of iterations times the number of subsets). 

For scanners in the QIN survey, the reported trans-axial field-of-view diameter was 
63±11 cm (range 30 to 81 cm) for body imaging and 32±10 cm (range 25 to 70 cm) for brain 
imaging. The surprisingly wide distributions of trans-axial voxel dimensions and slice 
thicknesses are shown in Figure 2. 
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Figure 2: Histograms of (a) trans-axial voxel sizes and (b) slice thicknesses for 
body and brain imaging protocols at surveyed suites. 

 
 

 
 
 
 
 
 
 

 
    

 
 
 

 
  

   
 

 
 

  
  

 
   

   
  

  
 

 
 

   
  

 
 

  
 
 
 

The range of reported methods for image acquisition and reconstruction suggests that 
signal biases are not matched between sites. Patient preparation was also inconsistent, 
potentially contributing additional variability. For multicenter clinical trials, efforts to control 
biases through standardization of imaging procedures should precede patient measurements. 
These results were recently published. 

§ Measuring temporal stability of positron emission tomography standardized uptake 
value bias using long-lived sources in a multicenter network. 

We have recently published a QIN-wide assessment of the variability in the calibration 
PET process in multicenter clinical trials. Sealed source kits containing traceable amounts of 
68Ge/68Ga were distributed to 9 hospitals in the QIN (Table 1). Repeat measurements of the 
sources were performed on PET scanners and in dose calibrators. The measured scanner and 
dose calibrator signal biases were used to compute the bias in SUVs at multiple time points 
for each site over a 14-month period.  On average, single-scanner SUV bias varied over a 
range of 10%.  (Figure 3). Calibration factors from the image metadata were nearly as variable 
as scanner signal, and were correlated with signal for many scanners. This shows that SUV 
biases are unstable even when measurements are repeated at a single site. Long-lived sources 
and image metadata may provide a check on the recalibration process. 

A more extensive review of these results has been published in the QIN special issue 
of Journal of Medical Imaging. 
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Table 1: Participating QIN sites. 
H. Lee Moffitt Cancer Center 
Johns Hopkins University 
Massachusetts General Hospital 
Memorial Sloan Kettering Cancer 
Center 
Ohio State University 
University of Iowa 
University of Pennsylvania 
University of Pittsburgh 
University of Washington 

 
 

 
 

 
  

 
 
 
 

 
  

 
 

 
 

 
  

 
 

 
 

 
 

 
  

    
  

  
  

  
 
 
 
 

 

Figure 3: SUV bias versus time for 9 QIN PET sites. 

§ Virtual Clinical Trials 

We are continuing to extend our 'Virtual Clinical Trial' (VCT) concept, which is used 
to evaluate variation in the PET imaging process to characterize the ability of static and 
dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We 
have competed and published three studies: Estimating the effect of uptake time on lesion 
detectability in PET imaging of early stage breast cancer showing that delayed imaging 
improves detection [2], estimating the effects of uptake time variability on required sample 
size showing that variability in uptake time can double the needed number of patient studies 
in clinical trials [3], and comparing static versus dynamic PET imaging in measuring response 
to breast cancer therapy showing that as expected, dynamic imaging improves the correct 
discrimination of response [4]. 
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In this study, we were interested in measuring change in the true underlying biology 
of the tumor, not random change due to noise in the imaging process. Outside of the VCT 
framework, this would have been very difficult to do. Note that all of the data points are below 
the line of identity, indicating that Ki was the preferred metric for this particular patient cohort. 
This allowing lowering the number of patients we need to enroll a clinical trial. 

Figure 4: AUC for SUV vs AUC for Ki. 

§ Test-retest reproducibility of FDG-PET/CT uptake in cancer patients within a 
qualified and calibrated local network 

We are continuing our evaluation of the multi-center test-retest studies. Figure: 5 
shows representative lesions from a 60 year-old woman (Patient 03) with Stage IV invasive 
ductal breast carcinoma studied in the same scanner 8 days between FDG scans. The patient 
had 9 evaluable lesions. SUVmax ranged from 3.4-5.1 (average 4.0) in the first scan and 3.1-
4.9 (average 4.2) in the second scan. Percentage difference ranged from -16% to +16% 
(average 3.9%) and the absolute SUV unit difference was -0.62 to +0.64 (average 0.15). 

Figure 5: Coronal image examples. 
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Patient test/retest studies show that if PET/CT systems are carefully calibrated and 
monitored, and imaging protocols are consistent, then variability associated with FDG 
SUVmax between scans is similar to prior test/retest studies (manuscript submitted). 

§ Integration of QIN tools into prospective clinical trials 

We are deploying a set of the X-cal phantom kits in the ECOG-ACRIN trial I142 
"[18F] Fluoroestradiol (FES) as a Predictive Measure for Endocrine Therapy in Women with 
Newly Diagnosed Metastatic Breast Cancer". It is a multi-center trial for which Dr Linden is 
the co-PI. 

COLLABORATIONS WITHIN THE NETWORK 

We have collaborated with the QIN Network on the following projects: 
1. Multicenter survey and publication of PET/CT protocol parameters that affect 

standardized uptake values (described above). 
2. Multicenter measurement of temporal stability of PET SUV bias using long-lived sources 

(described above). 
3. Multicenter data analysis challenge on the impact of arterial input function determination 

variations on prostate dynamic contrast-enhanced magnetic resonance imaging 
pharmacokinetic modeling (published). 

4. Multi-site quality and variability analysis of 3D FDG PET segmentations based on 
phantom and clinical image data. 

PLANS FOR NEXT YEAR 

• Develop and implement a unified database and imaging platform for our phantoms and 
software tools. 

• Develop PET study guidelines that incorporate instrument performance, patient 
variability, and protocol adherence into study design. 

• Extend our biologically principled Virtual Clinical Trials tools developed for FDG to FLT 
(proliferation) and FES (receptor status) in multicenter studies. 

PUBLICATIONS AND PRESENTATIONS FROM QIN 
INVOLVEMENT 

1. Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, 
LaViolette PS, Oborski MJ, O'Sullivan F, Jafari-Khouzani K, Afzal A, Tudorica A, 
Moloney B, Gupta SN, Besa C, Kalpathy-Cramer J, Mountz JM, Layman CM, Muzi M, 
Kinahan PE, Schmainda K, Cao Y, Chenevert T, Taoluli B, Yankeelov TE, Fennessy FM, 
Li X. The Impact of Arterial Input Function Determination Variations on Prostate 
Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: 
A Multicenter Data Analysis Challenge. Tomography 2:56-66, 2016. PMID: 27200418. 
PMCID: PMC4869732 
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2. Rosen M, Kinahan PE, Gimpel JF, Opanowski A, Siegel BA, Hill GC, Weiss L, Shankar 
L. Performance Observations of Scanner Qualification of NCI-Designated Cancer 
Centers: Results From the Centers of Quantitative Imaging Excellence (CQIE) Program. 
Acad Radiol 24(2):232-245, 2017. PMID: 28395794. PMCID: PMC5389125. 

3. Byrd DW, Doot RK, Allberg KC, MacDonald LR, McDougald WA, Elston BF, Linden 
HM, Kinahan PE. Evaluation of Cross-Calibrated (68)Ge/(68)Ga Phantoms for Assessing 
PET/CT Measurement Bias in Oncology Imaging for Single- and Multicenter Trials. 
Tomography 2(4):353-360, 2016. PMID: 28066807. PMCID: PMC5214172. 

4. Beichel RR, Smith BJ, Bauer C, Ulrich EJ, Ahmadvand P, Budzevich MM, Gillies RJ, 
Goldgof D, Grkovski M, Hamarneh G, Huang Q, Kinahan PE, Laymon CM, Mountz JM, 
Muzi JP, Muzi M, Nehmeh S, Oborski MJ, Tan Y, Zhao B, Sunderland JJ, Buatti JM. 
Multi-site quality and variability analysis of 3D FDG PET segmentations based on 
phantom and clinical image data. Med Phys 44(2):479-496, 2017. PMID: 28205306. 

5. Wangerin KA, Muzi M, Peterson LM, Linden HM, Novakova A, Mankoff DA, Kinahan 
PE. A virtual clinical trial comparing static versus dynamic PET imaging in measuring 
response to breast cancer therapy. Phys Med Biol 62(9):3639-3655, 2017. PMID: 
28191877. 

6. Scheuermann JS, Reddin JS, Opanowski A, Kinahan PE, Siegel BA, Shankar LK, Karp 
JS. Qualification of National Cancer Institute-Designated Cancer Centers for Quantitative 
PET/CT Imaging in Clinical Trials. J Nucl Med 58(7):1065-1071, 2017. PMID: 
28254874. 
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Stephen Yip, Ph.D. Dana Farber Cancer Institute 
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Hugo Aerts, Ph.D. Dana Farber Cancer Institute 

INTRODUCTION 

There is overwhelming evidence that the initiation and progression of lung cancer are 
caused by specific genetic abnormalities, such as mutations in EGFR, KRAS, and ALK. 
Tumor tissues acquired from biopsies and surgical resection are used for genotyping but these 
procedures are invasive and are not generally repeated during treatment. The aim of this grant 
is to investigate if radiomic features combined with genetic mutation profiles can improve 
tumor characterization and predict therapeutic response and clinical outcome. In addition, we 
are exploring the relationship between radiomic features and genomic abnormalities. To 
achieve these goals we aim to develop a radiomic system for the assessment of NSCLC tumors 
by non-invasive imaging, develop a rigorous statistical platform, develop radiomic and 
genomic biomarkers, and share computational resources to the community. This grant takes 
advantage of large cohorts of public and private non-small cell lung cancer (NSCLC) patients, 
using tumor samples for which we have both non-invasive imaging data (CT-PET) and 
mutational profiling data. One of these resources is the Profile study at the Dana-Farber 
Cancer Institute, a comprehensive personalized cancer medicine initiative generating 
mutational data of nearly all patients undergoing therapy. 

PROGRESS OVER THE PAST YEAR 

The progress over the past year has been divided along the main aims. In specific, we 
are actively building a database of patients with imaging and mutational data, and developing 
platforms for the radiomic feature extraction. 

A key study has been published in Cancer Research in 2017. As tumors are 
characterized by somatic mutations that drive biological processes ultimately reflected in 
tumor phenotype. With regard to radiographic phenotypes, generally unconnected through 
present understanding to the presence of specific mutations, artificial intelligence (AI) 
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Figure 1: Analysis workflow. A) Examples of lung adenocarcinomas tumors imaged 
with computed tomography (CT) imaging (left) and segmented in 3D (right). B) 
Quantification of the tumor phenotype using radiomics feature algorithms. C) 
Radiomic and clinical data was used to develop signatures for EGFR and KRAS 
mutation status from four independent datasets, to investigate associations between the 
radiomic features and somatic mutations. (Rios Velazquez et al, Somatic Mutations 
Drive Distinct Imaging Phenotypes in Lung Cancer, Cancer Research 2017). 

 
 

 
  

 
 

   
  

   
 

 
 

  
  

 
  

 
 

  
  
   

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   
        

   
    

        
  

  
 

 

methods can automatically quantify phenotypic characters by using predefined, engineered 
algorithms or automatic deep-learning methods, a process also known as radiomics. Here we 
demonstrate how imaging phenotypes can be connected to somatic mutations through an 
integrated analysis of independent datasets of 763 lung adenocarcinoma patients with somatic 
mutation testing and engineered computed tomography (CT) image analytics (Figure 1). We 
developed radiomic signatures capable of distinguishing between tumor genotypes in a 
discovery cohort (n=353) and verified them in an independent validation cohort (n=352). All 
radiomic signatures significantly outperformed conventional radiographic predictors (tumor 
volume and maximum diameter). 

We found a radiomic signature related to radiographic heterogeneity that successfully 
discriminated between EGFR+ and EGFR- cases (AUC=0.69) (Figure 2). Combining this 
signature with a clinical model of EGFR status (AUC=0.70) significantly improved prediction 
accuracy (AUC=0.75). The highest performing signature was capable of distinguishing 
between EGFR+ and KRAS+ tumors (AUC=0.80) and, when combined with a clinical model 
(AUC=0.81), substantially improved its performance (AUC=0.86). A KRAS+/KRAS-
radiomic signature also showed significant albeit lower performance (AUC=0.63) and did not 
improve accuracy of a clinical predictor of KRAS status. Our results argue that somatic 
mutations drive distinct radiographic phenotypes that can be predicted by radiomics. This 
work has implications for the use of imaging-based biomarkers in the clinic, as applied non-
invasively, repeatedly and at low cost. 
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Another key analysis was published in eLife in 2017. While radiomics has been 
associated with several clinical endpoints, the complex relationships of radiomics, clinical 
factors, and tumor biology are largely unknown. To this end, we analyzed two independent 
cohorts of respectively 262 North American and 89 European patients with lung cancer, and 
consistently identified previously undescribed associations between radiomic imaging 
features, molecular pathways, and clinical factors. In particular, we found a relationship 
between imaging features, immune response, inflammation, and survival, which was further 
validated by immuno-histochemical staining (Figure 2). Moreover, a number of imaging 
features showed predictive value for specific pathways; for example, intra-tumor 
heterogeneity features predicted activity of RNA polymerase transcription (AUC = 0.62, 
p=0.03) and intensity dispersion was predictive of the autodegration pathway of a ubiquitin 
ligase (AUC = 0.69, p<10-4). 

To test our hypothesis that radiomic data provide prognostic information 
complementary to clinical and genomic data, we built a clinical, genomic, and radiomic 
biomarkers to predict survival in lung cancer cases38 . We tested previously published gene 
and radiomic biomarkers to predict for OS. In addition, we tested a radiomic biomarker that 
we recently published. Using independent datasets to train and validate the models, we 
observed that prognostic performance consistently increased with the addition of different 
data types. While the clinical model performed with a concordance index (CI) of 0.65 
(Noether p=0.001), the combined radiomic-genomic-clinical model performed significantly 
higher (permutation test p=0.001) with a CI of 0.73 (p=2x10-9). This radiomic-genomic-
clinical model also performed significantly better than the combined clinical-radiomic model 
(p=0.007) and the clinical-genomic model (p=0.01). These results show the complementary 
value of clinical, radiomic, and genomic data for prediction of overall survival. 

In conclusion, we demonstrate that radiomic approaches permit noninvasive 
assessment of both molecular and clinical characteristics of tumors, and therefore have the 
potential to advance clinical decision-making by systematically analyzing standard-of-care 
medical images. To enhance the scientific premise of current research, we address general 
strengths and weaknesses of previous results. As shown by previous studies, there have been 
associations found between features and somatic mutations. However, the overall sample sizes 
were low, and this is especially a concern as mutations in key genes (such as EGFR), occur in 
only a small subset of patients. 
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Figure 2: Radiomic pathway-clinical associations. Clustering of selected 
radiomic-pathway association modules. Normalized enrichment scores 
(NESs) have been biclustered to coherently expressed modules. Every 
heatmap in this figure corresponds to a module (M1 M13) with radiomic 
features in columns and pathways in rows. Module sizes are proportional to 
heatmap sizes. Elements are NESs as Z-scores across features, and are 
displayed in blue when positive and green when negative. (Grossmann et al, 
Defining the biological basis of radiomic phenotypes in lung cancer, Elife. 
2017) 
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COLLABORATIONS WITHIN THE NETWORK 

We have been active within the network and have contributed to a number of 
community efforts. Specifically, we actively participated in the activities of the BIDS working 
group by contributing to the development of consensus on the process of tool catalog 
collection, and the development of the idea of a challenge. Following up on those efforts, we 
contributed the tools developed by our project to the QIN catalog, and initiated a challenge 
for PyRadiomics. We developed PyRadiomics, a flexible open-source platform capable of 
extracting a large panel of engineered features from medical images. PyRadiomics is 
implemented in Python and can be used standalone or using 3D-Slicer. Source code, 
documentation, and examples are publicly available at www.radiomics.io. With this platform, 
we aim to establish a reference standard for radiomic analyses, provide a tested and maintained 
resource, and to grow the community of radiomic developers addressing critical needs in 
cancer research. Within this CCP project, we evaluate the application of our radiomic 
informatics platforms at several QIN sites and assess the performance on a reference dataset 
as well as their own datasets. We will evaluate metrics, such as dissemination, training, 
evaluation, and reporting. The process of evaluating this tool is currently ongoing with the 
participation of sites inside and outside the QIN, including Stanford: lung cancer, Moffitt: 
lung cancer, PMH: H&N cancer, NKI: rectum cancer, and MD Anderson: lung cancer. Other 
interested QIN members are invited to participate as well. 

PLANS FOR NEXT YEAR 

During the next year, we plan to continue our research program, pursuing both the 
refinement of existing methods and the development of new datasets. Our results generated in 
the first years of our proposal, demonstrated strong associations between imaging phenotypes 
and somatic mutations, in an integrated analysis of several external and internal cohorts. 
However, to evaluate the association of less frequent mutations, even larger cohorts are 
needed. The next years will focus on generating and analyzing these. First, we will curate and 
analyze additional large datasets by collecting and analyzing, imaging, genomic, and clinical 
outcome data. We will build on important analyses that are recently published in Cancer 
Research 2017 (somatic mutation and radiomics) and in eLife 2017 (biological basis of 
imaging phenotypes). Second, we are extent our machine-learning framework to include novel 
methods for classification, such as deep learning. We will refine these models over time by 
including additional sources of data as they become available and as our methodologies are 
refined. Open source toolboxes are being developed and will be shared to the community. 
Third, we will further validate developed radiomic, genomic, and integrated biomarkers. For 
this purpose, we have access to multiple novel datasets and techniques to validate developed 
signatures. Several machine-learning techniques have been evaluated and will be applied to 
build novel predictors for mutational status as well as clinically relevant outcomes, such as 
overall survival, local control, and distant metastasis. Fourth, we will share the radiomic 
system implemented in the open source software suite 3D-Slicer and instantiate our data 
analysis methods in freely-available Bioconductor packages. While the focus of this project 
is on NSCLC patient data, we are using this disease as a model. Our ultimate goal is to develop 
computational methods that can be more broadly applied in cancer research as we recognize 
that the data-generation landscape in oncology is rapidly evolving. Therefore, we aim to make 
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all software as independent as possible for disease site, imaging modality, and genomic data. 
Our radiomic systems are integrated within 3D-Slicer and shared with the public using a free 
installable application. We will educate and help other investigators with applying the 
radiomic system to their own data using the “project week” of 3D-Slicer, which is an open 
forum held twice each year. 
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U01 CA140207: Quantitative Volume and Density Response Assessment: 
Sarcoma and HCC as a Model 

Columbia University 

Lawrance H Schwartz, M.D. and Binsheng Zhao, D.Sc. 

INTRODUCTION 

Methodology used to assess tumor response to a given therapy is critical to success 
of the treatment. Ideally, response to therapy would be determined with the highest accuracy 
as early as possible, so that a lack of response would prompt a quick change of the 
inefficient, toxic treatment. Conventional methods utilizing tumor diameter and the 
unproven “arbitrarily” determined response cut-off thresholds to estimate change in tumor 
burden are outdated and may delay detection of tumor progression or underestimate tumor 
response to therapy. The goal of our research is to develop new response parameters and 
assessment criteria for cancer treatment based on CT imaging of changes in tumor volume 
and density (e.g., necrosis fraction). This study will seek a proof of concept using two types 
of tumors (i.e., HCC and sarcoma) in which RECIST is known to correlate poorly with 
tumor response to treatment and clinical outcome. HCC is one of the most common 
malignancies worldwide, and sarcomas, though rare, carry the same molecular alterations as 
many other heterogeneous cancers; they are the classic cancer studied in drug discovery. 

PROGRESS OVER THE PAST YEAR 

§ A statement of progress made towards the achievement of originally stated aims 

Our project demonstrated the feasibility and value of the volumetric CT as a new 
quantitative imaging biomarker for early and more accurate assessment of tumor responses to 
therapies especially novel targeted therapies in clinical trials. 

A list of major activities, significant results, and key outcomes 

• We developed three robust computer algorithms for semi-automated segmentation of 
tumors in the lungs (REF #1), liver (REF #2) and lymph nodes (REF #3; minor revision 
under review), the three most common sites of cancer metastases. These three algorithms 
will allow total tumor burden to be efficiently and reproducibly measured for response 
assessment in clinical trials evaluating new therapies. 

• Using the three segmentation algorithms, we explored the variability in measuring total 
tumor burden in a metastasis setting on CT scan images and revealed the low variation 
magnitudes of 22%, 19%, and 11% for the volumetric, bi-dimensional, and uni-
dimensional measurements, respectively (Ref #4). 
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• Based on an open source, Weasis, we developed a client-based user-friendly response 
assessment platform that has integrated the three segmentation algorithms and an efficient 
editing tool (Ref #5). We used this system to complete the tumor measurements for the 
two proposed clinical trial studies, SARC 011 and HCC CALGB 80802. Since it was 
developed, the Weasis-based platform has been used in numerous studies to help validate 
the volumetric technique as a better technique for tumor response assessment including the 
FNIH-sponsored VOL-PACT study (Ref #6). 

• We completed the data analysis of SARC 011 (A phase II trial of R1507, a recombinant 
human monoclonal antibody to the insulin-like growth factor-1 receptor for the treatment 
of patients with recurrent or refractory Ewing’s sarcoma). In this study, we analyzed 101 
sarcoma patients (303 scan time points). We compared prediction power of the response 
assessment metrics of volume, bi- and uni- to the overall survival (OS) and found that the 
volumetric technique was superior to WHO and RECIST methods in identifying tumor 
response. Our result, along with the PET part of this study, was reported at ASCO 2015 
annual meeting and published in JCO (Ref #7). 

• We completed the tumor measurement for HCC CALGB 80802 (A Phase II/III 
randomized study of Sorafenib plus Doxorubicin versus sorafenib in patients with 
advanced hepatocellular carcinoma). In this study, we measured target tumors in 207 
HCC patients (683 scan time points). When investigating the density-based response 
assessment metrics, we noticed considerable differences in the measured density values 
due to varying timing of contrast-enhanced CT acquisition. This was a not yet studied 
area, though tumor density change has been suggested to add a new dimension for 
improved response assessment in the era of targeted therapies. We thus decided to first 
explore the impact of the density variability due to imperfect portal venous phase (PVP) 
acquisition timing in response assessment. Using a machine learning approach, we 
developed a computer-aided, semi-automated quality control algorithm to gauge scans’ 
timing (early/optimal/late PVP) based on the acquired images and found that density of 
lesions metastatic to liver could be decreased by 16.7% at early-PVP and 12.6% at late-
PVP (Ref #8). Latterly, we developed a fully-automated QC program for CT scan timing 
using artificial intelligence technology. 

• We actively participated in the four CT and PET segmentation and characterization 
challenges within the QIN. These challenges were designed to explore possible variability 
existed in measuring tumors and tumor changes. All of the four challenge results are 
published (Refs #9 – #12). 

• As one of the four QIN teams (the other three sites: MGH (PI site), Stanford, and Moffitt), 
we jointly applied and received a U24 grant entitled “Informatics Tools for Optimized 
Imaging Biomarkers for Cancer Research & Discovery” (U24 CA180927). The purpose of 
this new grant is to widely support the development and validation of quantitative imaging 
biomarkers for the oncology community. 
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• We extended our volume- and necrosis-based imaging metrics to more complex radiomic 
biomarkers and, besides the clinical studies (Refs #13, #14), we intensively explored the 
reproducibility and variability in radiomic features and biomarkers, an important area in 
the rapidly emerging field of radiomics (Refs #15 – #18). 

• Our other activities at QIN include: 

Dr. Schwartz (contact PI) served as the Chair for QIN Executive Committee (EC) and 
organized monthly EC t-cons between May 2016 – April 2017. 

Dr. Zhao (Co-PI) served as Co-chair for QIN Image Analysis & Performance Metrics 
Working Group between May 2011 – April 2013 (two terms). 

We contributed to the QIN joint publication on Quantitative Imaging in Cancer Clinical 
Trials (Ref  #19) 

We contributed multiple times to QIN Specific Issues articles (Refs #5, #10, #15, #18) 

A LIST OF PUBLICATIONS RESULTING FROM THE PROJECT 

1. Tan Y, Schwartz LH and Zhao B, Segmentation of lung tumors on CT Scans using 
Watershed and Active Contours. Med Phys. 2013; 40(4):043502. PubMed PMID: 
23556926; PubMed Central PMCID: PMC3618093. 

2. Yan J, Schwartz LH, and Zhao B. Semi-automatic segmentation of liver metastases on 
volumetric CT images. Med Phys. 2015 Nov;42(11):6283. doi: 10.1118/1.4932365. 
(Article chosen as 2015 Editor’s Picks). PubMed PMID: 26520721; PubMed Central 
PMCID: PMC4600084. 

3. Tan Y, Lu L, Bonde A, Wang D, Qi J, Schwartz LH and Zhao B. Lymph node 
segmentation by dynamic programming and active contours. Med Phys. Minor 
revision submitted. 

4. Zhao B, Lee S, Lee HJ, Tan Y, Qi J, Persigehl T, Mozley PD and Schwartz LH. 
Variability in assessing treatment response: metastatic colorectal cancer as a paradigm. 
Clin Cancer Res. 2014; 20(13):3560-8. (Article featured in Highlights of This Issue). 
PubMed PMID: 24780294; PubMed Central PMCID: PMC4337392. 

5. Yang H, Schwartz LH, and Zhao B. A Response Assessment Platform for Development 
and Validation of Imaging Biomarkers in Oncology. Tomography. 2016; 2(4):406-410. 
QIN Special Issue. 

6. Dercle L, Connors DE, Tang Y, Adam SJ, Gönen M, Hilden P, Karovic S, Maitland M, 
Moskowitz CS, Kelloff G, Zhao B, Oxnard GR, Schwartz LH. Vol-PACT: An FNIH 
public-private partnership supporting sharing of clinical trial data for development of 
improved imaging biomarkers in oncology. JCO Clinical Cancer Informatics (in press). 
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7. Koshkin VS, Bolejack V, Schwartz LH,  Schuetze S, Wahl RL, Chugh R, Reinke DL, 
Zhao B, Joo HO, Patel S, Schuetze SM and Baker LH. Assessment of Imaging 
Modalities and Response Metrics in Sarcoma - Correlation with Survival. JCO 2016; 
34(30): 3680-5. PubMed PMID: 27573658; PubMed Central PMCID: PMC5065114. 

8. Dercle L, Lu L, Lichtenstein P, Yang H, Wang D, Zhu J, Wu F, Piessevaux H, Schwartz 
HL, Zhao B. Impact of Variability in Portal Venous Phase Acquisition Timing in Tumor 
Density Measurement and Treatment Response Assessment: Metastatic Colorectal 
Cancer as a Paradigm. JCO Clinical Cancer Informatics (in press) 

9. Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, 
Napel S, A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results 
from a Multi-institutional Study. J Digit Imaging 2016; 29(4):476-87. PubMed PMID: 
26847203; PubMed Central PMCID: PMC4942386. 

10. Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, Echegaray S, 
Rubin D, McNitt-Gray M, Lo P, Sieren JC, Uthoff J, Dilger SKN, Driscoll B, Yeung I, 
Hadjiiski L, Cha K, Balagurunathan Y, Robert Gillies R, and Goldgof D. Radiomics of 
lung nodules: a multi-institutional study of robustness and agreement of quantitative 
imaging features. Tomography. 2016; 2(4):430-437. QIN Special Issue. PubMed PMID: 
28149958; PubMed Central PMCID: PMC5279995. 
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PMID not yet available 
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Response Phenotype: A Pilot Study using TKI therapy in NSCLC. Nat Sci Rep 6; 
33860, 2016. PubMed PMID: 27645803; PubMed Central PMCID: PMC5028716. 

15. Zhao B, Tan Y, Tsai WY, Schwartz HL, Lu L, Exploring variability in CT 
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INTRODUCTION  

Imaging data and in particular quantitative features extracted by image analysis 
have been identified as a critical source of information particularly for cohort 
classification (imaging phenotypes) and tracking response to therapy (1-3). Radiomics and 
Pathomics, where quantitative features are extracted from Radiology and Pathology 
imaging studies, provide valuable diagnostic and prognostic indicators of cancer (4-11) 
(12). For example, Aerts and Gillies (6-8, 13-16) have shown that Radiology image features 
can be linked to patient outcomes, Pathologist generated classifications and genomic 
signatures. Such methodologies require large collections of well-curated data for 
development, validation and to ensure research reproducibility. (17-19) 

The Cancer Imaging Archive (TCIA) continues to be NCI’s primary resource for 
acquiring, curating, managing and distributing images and related data to support Cancer 
Research and the primary image repository for the Quantitative Imaging Network (20). 
Integrative imaging studies enable a highly data- driven approach to diagnosis and outcome 
prediction (21), and are a key component of precision medicine. Locating and accessing 
datasets with the relevant information, is frequently cited as one of the major hurdles to 
such Integrative Imaging Studies. It is therefore no surprise that TCIA has been the image-
source of many such studies (13, 22-25) Tools and procedure developed by our QIN team 
that enhance TCIA capabilities enable new innovations for the cancer imaging research 
community. 

PROGRESS  OVER  THE  PAST  YEAR  

The Cancer Imaging Archive provides both data to support our investigations in 
radiomics and an informatics resource to which we add capabilities in support of QIN and 
the broader user community. During 2017, 80,946 users from 166 countries visited TCIA. 
As of December 31, 2017 the registered user community was 9258 and TCIA data had 
been used in 553 peer reviewed publications and graduate theses. TCIA was recognized 
by the Cancer Moonshot Blue Ribbon Panel’s Enhanced Data Sharing Working Group as 
an example of the type of multimodal data repositories that are needed to develop a Cancer 
Data Ecosystem (26). Figure 1 summarizes the volume of data downloaded from TCIA 
during each month of 2017. 

Expert curation and quality control of incoming data sets significantly contribute to 
the success of TCIA. Curation workflows (see Figure 2) for radiology and pathology 

77 



 
 

             
                  

           
               
            

               
              
               

         
 
 
 
 
 
 
 
 
 

 
 

          
             

            
            

             
             
         

 
 
 
 

images and radiation therapy data have been continuously improved during the past year 
in large part due to the use and extension of the Posda open source toolkit (27, 28). To 
support acquisition of data from the Veteran’s Administration’s Precision Oncology Pilot 
as a contribution to the Cancer Moon Shot Apollo program, Posda tools and TCIA’s variant 
of the Clinical Trial Processor (CTP) de-identification and secure transport package, have 
been approved for use on the VA’s secure internal network. Fully de-identified VA data 
is now flowing into TCIA. A publication on Posda and curation workflow was submitted 
in 2017 and is still in review (Bennett et al., Reengineering Workflow for Curation of 
DICOM Datasets, Journal of Digital Imaging, 2018, in review.) 

The TCIA infrastructure has been enhanced by extending the application 
programming interface (API) to better support data mashups. We have deployed a visual 
query and analytics environment, DataScope (Figure 3) that gives users an interactive 
environment to create scientific mashups and graphically explore TCIA image data and 
associated clinical data. DataScope utilizes the TCIA API and has been extended through 
mashups of TCIA image metadata with clinical data from The Cancer Genome Atlas 
(TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) collections. 
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Figure 2: TCIA Curation Workflow. Posda has been extended and 
used to increase the automation and thereby the throughput of TCIA 
data curation including pathology data objects. 

Work toward a QIN Portal that supports radiomics pipelines on both high 
performance and cloud computing platforms continues on two fronts. The Galaxy web-
based scientific workflow and data integration package (29) continues to be a productive 
platform into which we have added custom processing tools for radiomic analysis and data 
visualization. We have integrated our lung nodule segmentation pipeline into Galaxy and 
liked it to the visualization tools we incorporated during the prior reporting period (Figure 
4). In parallel we have expanded our efforts to containerize radiomics pipelines, now using 
the singularity (30) container technology. UAMS has deployed a large-scale high-
performance computing (HPC) environment providing our team access to both the UAMS 
and Washington University HPC environments as well as the Amazon and Google clouds 
for testing and performance analysis. Thus, we incorporate containerized pipelines into 
Galaxy and explore running them independently as well. Our goal remains to develop a 
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radiomics portal for QIN researchers that allows execution of QIN developed radiomics 
tools on TCIA image data without an explicit download of data. 

Figure 3: DataScope provides an interactive exploration of TCGA images, 
on TCIA, using a combination of image metadata and clinical data. 

Figure 4: QIN Portal is based on Galaxy’s plugin capability. We have 
implemented a screening radiomics pipeline and linked it to the Papaya 
visualization tool we previously incorporated into Galaxy. This figure illustrates 
the output of the lung nodule segmentation stage of the pipeline. 
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Work continues on radiomic analysis of lung CT images. Our attention has shifted 
from graph theoretic approaches to machine learning (random forests, support vector 
machines) and most recently on deep learning (convolutional neural networks). A 
publication on our work applying radiomics and deep learning to enhance lung screening 
was submitted in 2017 and is still in review (Causey et al., Highly accurate model for 
prediction of lung nodule malignancy with CT scans, Nature Scientific Reports, 2018, in 
review, available as a preprint on arXiv). 

Although prohibited from competing in the Data Science Bowl challenge 
competition because much of the data was provided by TCIA, our team was allowed 
to participate. Our algorithm, DeepScreener, ranked 16th (out of 1972 teams) in the 
competition. The algorithm is based on a novel deep learning approach and does not 
need lung nodule annotations to conduct cancer prediction. DeepScreener takes as input 
complete lung CT image sets and can predict a patient’s cancer status with an AUC of 
0.885 an AUPRC of 0.866. 

We believe from the challenge and subsequent analysis of NLST data not used 
in the competition (manuscript in preparation) that the deep learning approach has the 
potential to reach to a performance comparable to human experts for lung cancer 
screening with low-dose CT and could have great clinical impact. 

Each year we present hands-on TCIA training courses at professional society 
meetings including the Radiological Society of North America annual meeting. A short 
course on the advanced features added to TCIA was presented at RSNA 2017: Course 
number RCB54 (Using Publicly Accessible 'Big Data' from the NIH/NCI's Cancer 
Imaging Archive (TCIA) to Research Quantitative Radiomics, Proteomics, Genetics and 
Pathology). In addition, Dr. Prior participated in RSNA Course RCC45A where he 
presented a talk based on our radiomics research (Computer Science 'Deep Learning' 
Research by the Academic Community). The complete list of publications, presentations 
and training courses is presented in Table 1. 

The imphub open source community support and software development 
environment continues to support TCIA operations, Posda and API development, and 
new projects being developed as part of our team’s participation in ITCR. 

COLLABORATIONS  WITHIN  THE  NETWORK  

During the past year Dr. Sharma chaired the BIDS working group with Dr. Prior 
participating as a member. In conjunction with BIDS we have explored containerizing 
community pipelines and improving data curation and accessibility. One or both PIs 
participate in the QIN Executive Committee calls. 

§Collaborations  Outside  the  Network  

Dr. Sharma collaborated with the ISB Cancer Genomics Cloud Pilot and Amazon 
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to host TCIA collections in the cloud pilot. The TCIA team is discussing further cloud 
hosting options with Google. 

Dr. Bosch is an active member of DICOM WG-7 (RT Information Objects) and 
Dr. Tarbox is an active member of several DICOM working groups. UAMS is currently 
the only academic institution to have full voting membership in DICOM. 

Dr. Bosch continues to serve as Connectathon Test Manager for the IHE 
Radiation Oncology (IHE- RO) Domain, and in AAPM TG-263, which seeks to 
standardize nomenclature for radiotherapy treatment planning. 

Dr. Bosch (lead PI) and Dr. Prior continue to direct the Radiorepository core of 
the PCORI funded Pragmatic Randomized Trial of Proton vs. Photon Therapy for Patients 
with Stage II or III Breast Cancer (PI: Bekelman). The Radiotherapy Comparative 
Effectiveness (RADCOMP) Consortium was given permission by NCI to use TCIA in 
this prospective trial. The ability of TCIA to support this trial was a direct result of our 
efforts under AIM 1 to expand the capabilities of TCIA to collect and curate RT objects. 
TCIA is currently collecting data from this trial. 

Dr. Prior and Dr. Bosch have been working with PCORI on an Open Science Pilot 
project to help PCORI and their contractors to understand how to acquire and manage data 
from PCORI funded clinical trials, drawing on our TCIA experience and use of TCIA and 
QIN developed curation tools and processes. 

In September 2017 the UAMS-Emory QIN team in collaboration with Dr. Saltz’s 
team from Stony Brook, joined NCI’s Informatics Technology for Cancer Research 
(ITCR) network. The new ITCR award, on which Dr. Prior, Dr. Sharma and Dr. Saltz 
are co-PIs, focuses on the evolution of the TCIA technology stack into a new framework 
called PRISM. PRISM will incorporate tools and technologies from this QIN, Dr. Saltz’ 
ITCR (QuIP) and other funded projects as illustrated in Figure 5. This offers many new 
opportunities for cross-network collaboration particularly between QIN and ITCR 
researchers building on TCIA. 

The UAMS-Emory QIN team collaborated with a group of QIN and ITCR 
investigators to conduct the Crowds Cure Cancer event at RSNA 2017. Radiologists 
analyzed a large selection of TCIA data to identify malignant lesions and make 
quantitative measurements. This large sample allows statistical models to be used to 
define the most probable measurements to be used as truth for future research. 

Table 1 lists the publications and presentations produced by the UAMS-Emory 
team during the past year. Figure 6 summarizes the tools our team has produced thus 
far and how they are deployed in trials or other applications. 
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Figure 5: TCIA forms the basis of a cross-linked set of research initiatives all 
stemming from the UAMS-Emory QIN team’s research initiatives. 
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Figure 6: Status update on tools developed and deployed by UAMS-Emory QIN team. 
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Chennubhotla C, Clarke LP, Fedorov A, Foran D, Harris G, Helton E, Nordstrom R, Prior 
F, Rubin D, Saltz JH, Shalley E. An Assessment of Imaging Informatics for Precision 
Medicine in Cancer. Yearbook of Medical Informatics. 2017:26(01): 110-119. 
Prior F, Smith K, Sharma A, Kirby J, Tarbox L, Clark K, Bennett W, Nolan T, Freymann 
J, Cancer Imaging Data – the Public Collections of The Cancer Imaging Archive. 
Nature Scientific Data, 2017:4; doi:10.1038/sdata.2017.124 
Kathiravelu P, Chen Y, Sharma A, Galhardas H, Van Roy P, Veiga L. On-Demand 
Service-Based Big Data Integration: Optimized for Research Collaboration. InVLDB 
Workshop on Data Management and Analytics for Medicine and Healthcare 2017 Sep 
1 (pp. 9-28). Springer, Cham. 
Post AR, Ai M, Pai AK, Overcash M, Stephens DS. Architecting the Data Loading 
Process for an i2b2 Research Data Warehouse: Full Reload versus Incremental 
Updating. AMIA Annu Symp Proc 2017 

Iyer, G. R., Duttaduwarah, S., & Sharma, A. (2018). DataScope: Interactive visual 
exploratory dashboards for large multidimensional data. Presented at IEEE Visual 
Analytics in Healthcare Workshop 2017. (No. e26441v1). PeerJ Preprints. 

Causey J, Zhang J, Ma S, Jiang B, Qualls J, Politte DG, Prior F, Zhang S, Huang X, 
“Highly accurate model for prediction of lung nodule malignancy with CT scans”, 
Abstract and poster presentation, Quantitative Imaging Network (QIN) Annual Meeting, 
Rockville, MD, April 10, 2017. 

Post A, Sharma A, Prior F, “Eureka! Clinical Analytics,” Abstract and poster 
presentation, Quantitative Imaging Network (QIN) Annual Meeting, Rockville, MD, April 
Prior F, Tobias M, Nolan T, Moore S, “Data Acquisition and Management for 
Nanotherapeutics”, Abstract and poster presentation, 2017 NCI Alliance for 
Nanotechnology in Cancer, Bethesda, MD, October 3-5, 2017. 

Nolan T, Kirby J, Prior F, “Data Management, Sharing, and Citation Strategies in 
The Cancer Imaging Archive (TCIA),” Abstract and poster presentation, AMIA Annual 
Symposium, Washington DC, November, 2017. 

“Imaging Informatics and PMI,” Presented by F.W. Prior, Fourth Catholic 
University International Symposium on Medical Informatics, Seoul, South Korea, 
September 9, 2016 

“Overview of biomedical imaging and precision medicine, shared informatics 
challenges,” Presented by F.W. Prior, Keynote lecture, Quantitative Imaging and Imaging 
Informatics in the Era of Precision Medicine pre-Symposium, AMIA 2016, Chicago, Il, 
November 13, 2016. 
“Radiomics and Imaging Informatics to Track Response to Cancer Therapy,” 
Presented by F.W. Prior, MCBIOS XIV Session Featured Speaker, Little Rock, AR, 
March 24 2017 

Table 1: Publications and Presentations 
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PLANS FOR NEXT YEAR 

During the coming year we plan to complete the following work on each of our aims. 

§ AIM 1 

Complete the production deployment of DataScope as a new capability of TCIA. 
This will allow researchers to create cohorts and access images using clinical and imaging 
data. As described earlier, we are working with members of the BIDS WG to develop an 
information model for clinical data that accompanies all non-TCGA images in TCIA. We 
will begin work on making this accessible via an API as well as link the clinical data to 
the imaging data. This work is in preliminary stages and will be limited to a prototype in 
the coming year. We will continue to upgrade the API and add new APIs to meet user 
needs. A publication summarizing our work in APIs and data mashups has been submitted. 

We will continue to accumulate data from the PCORI funded RT clinical trial and 
refine our curation processes accordingly. Posda tools are continuously evolving to meet 
new TCIA curation demands and to improve automation. 

§ AIM 2 

We will continue work on yunpipe (a cloud based imaging pipeline system). In the 
coming year, we will add support to retrieve data from TCIA. We will also test yunpipe 
using existing image pipelines. 

Some of this work will be done as part of an ongoing BIDS WG cooperative project. 
A publication describing yunpipe and cloud based image pipelines is under preparation and 
will be submitted in late spring. 

During the coming year we will work to refine our automated lung radiomics 
pipelines and their integration with the other Galaxy tools that we are developing. We will 
also integrate tools for doing automated lung nodule characterization based on our 
preliminary experience with CNNs. A draft publication on this work is nearing completion. 

We plan to continue development of CNN based radiomic analysis of the NLST 
data set to learn how to identify patients who developed lung cancer from those who did 
not using the entire lung as input to the analysis. This work is based on our successful 
participation in the Data Science Challenge. 

§ AIM 3 

We will focus our efforts on advanced machine learning based imaging phenotypes 
that combine clinical data and imaging features. We are exploring alternate scoring criteria, 
in a retrospective study of NLST subjects that uses imaging features as well as clinical 
and demographic features, when recommending a screening protocol. 
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Over the coming year, we will implement data adapters for additional TCIA datasets. 
As part of this work, we expect to enhance Eureka to process non-clinical data in order to 
incorporate imaging features into graphs and support a wider range of studies that compare 
populations by imaging features in addition to clinical data. This will support our goal of 
making TCIA datasets broadly accessible to QIN investigators in graph form. 

§ AIM 4 

A short course on the advanced features added to TCIA has been proposed for 
presentation at RSNA 2018. Presentations are planned for the 2018 QIN annual meeting. 
Dr. Prior has been invited to give two lectures on big data in cancer research and the use 
of radiomics in lung cancer screening at the 2018 meeting of the International Cancer 
Imaging Society in Menton, France. Both talks are based on QIN funded research. 
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Thomas L. Chenevert, Ph.D.  
Brian D. Ross, Ph.D.  
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Dariya Malyarenko, Ph.D.  

INTRODUCTION  

The overarching goal of this U01 project is to provide for standardized implementation 
and clinical validation of advanced quantitative diffusion-weighted MRI (qDWI) analytical 
techniques for quantification of tumor diffusion values across multiple MRI systems thereby 
improve use in multi-site cancer imaging trials. Our QIN team research approach is based on 
development and integration of tools for the three specific aspects of the qDWI workflow 
from MR system characterization and DWI acquisition QC (toward removal of technical bias 
and improved measurement precision) to statistical analysis of qDWI biomarkers with 
quantitative software testing. We currently have several components of the outlined workflow 
developed in parallel and either undergoing validation through QIN CCPs or being used by 
ongoing clinical trials to fulfill the specific project Aims. 

PROGRESS OVER THE PAST YEAR  

§ Aim 1: To develop and evaluate a reproducible and robust computational environment  
for quantification of  diffusion-weighted MR images using data collected  from the ISPY-
2 breast cancer trial. 

Toward development of robust software solution for quantitative DWI analysis in 
clinical practice, we demonstrated integration of the semi-automated workflow including 
image co-registration, segmentation, and PRM classification of diffusion scans for glioma 
clinical trial data set [1]. The developed application provides connectivity to existing picture 
archive and communication system (PACS) and allows analysis of tumor response to therapy 
by volumetric changes post-treatment using local hardware or remotely in the cloud for 
generation of a clinical report document. The performed tests ensured that the developed 
platform can be seamlessly plugged into clinical decision workflow for any cancer therapy 
response trial utilizing parametric response mapping (PRM) of Apparent Diffusion 
Coefficient (ADC) functional diffusion metrics (fDM) from qDWI imaging end points. 

To further benchmark PRM fDM results with an alternative ADC metrics, we 
performed analysis of the 80-patient glioma qDWI data set, using lower ADC histogram 
portions (excluding necrotic values) to reflect solid tumor volume change. This histogram-
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based metrics was intrinsically less sensitive to image registration errors compared to 
conventional PRM analysis. Kaplan-Meier analysis results (Figure 1) indicated comparable 
predictive power of both metrics confirming common bio-physical interpretation of the PRM 
biomarker (increasing with shrinking dense tumor volume). In addition, we are currently 
awaiting data release from the ISPY-2 trial to allow for processing and evaluation of DW-MR 
scans of breast cancer patients undergoing therapy. 

§ Aim 2:  To devise the next generation DWI  phantom for  absolute  quantitation over 
tissue ADC range that  incorporates internal MR-thermometry; and to extend QA/QC  
metrics to include characterization of systematic bias for ongoing multi-center cancer  
trials.  

Our U01 team continued efforts toward sharing and improving QA/QC tools [URL1] 
that provide quantitative performance metrics (wCV, SNR, bias) for multi-center qDWI trials. 
The major improvements focused on interoperability for variable DICOM input formats 
supplied by an ongoing NRG-BN001 (brain) clinical trial. The Matlab-based (platform-
independent) p-code libraries are being shared [URL1a] with interested clinical trial 
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community (QIBA RSNA, NIST, ECOG-ACRIN,  QIN) for centralized qDWI QA based on 
ice-water and polyvinylpyrrolidone (PVP) quantitative diffusion phantoms that provide an 
array of calibrated ADC values. The QA SW tools were validated through the participation 
in QIN ADC mapping CCP [6]. 

A sample multi-vendor PVP phantom DWI DICOM were used by two QIN-wide 
CCPs [6,7] to evaluated the SW algorithms for the sources of bias and variability in multi-site 
trials starting with the common qDWI data set. This CCP analysis reconfirmed the limited 
DWI DICOM interoperability and multi-vendor GNL bias as major sources of discrepancy in 
the derived ADC metrics [6,7].  The consistency between different SW analysis was found to 
be higher than that between multi-vendor source data (e.g., different ROI locations and 
gradient systems, Figure 2). The detected absolute variations (< 1%) provided guidance for 
the desired precision and accuracy of the phantom ADC value calibration to better than 0.5%. 
To achieve such calibration precision, the temperature measurement accuracy of better than 
0.2˚C is desired. 

Substantial progress was made by our QIN team toward development of accurate in 
situ thermometers for ambient temperature diffusion phantoms. To increase chemical shift 
sensitivity to temperature, we explored paramagnetic systems doped with europium (Eu), 
thulium (Tm) and Dysprosium (Dy), and devised a novel in-situ thermometer based on bulk 
magnetic susceptibility (BMS). The designed BMS temperature probe consists of para- and 
diamagnetic (un-doped) solutions placed in the inside and outside compartments of a coaxial 
NMR tube (Fig.3a inset). Both temperature sensitivity and absolute chemical shift between 
probe targets can be tuned using different concentration of the paramagnetic ions. Our 
preliminary results (Figure 3) indicate 5-7-fold enhancement of ppm/˚C sensitivity (compared 
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§ AIM 3:  Enhancement of predictive power for quantitative diffusion metrics by  
retrospective correction of DW-MRI gradient nonlinearity errors in multi-center  
therapy-response trials.  
 

      
   

     
    

  
     

    
    

    
  

  
 

  
     

     
   

to baseline t-butanol probe) preserving moderate chemical shift range (< 20 ppm, practical for 
clinical MRI scanners) and allowing for improved accuracy (<0.2˚C) of the temperature probe. 
For independent verification of ADC calibration of qDWI phantom carried out by NIST, we 
designed and implemented the dynamic qDWI measurement protocol with optical probe to 
double ADC measurement accuracy compared to conventional methods (CI(ADC)>1%). 

To circumvent data sharing logistics issues, our team is developing vendor-agnostic 
correction tools to share with the UCSF central analysis lab that hosts data repository for the 
breast cancer therapy response trial. Since trace-only DWI DICOM was archived for this trial, 
the trace-DWI direction-average (isotropic) GNL correctors need to be constructed for direct 
application to the ADC maps [4, URL2]. Toward this aim, through our AIP collaboration 
with the MRI vendors and UCSF and JHU QIN academic partners, our QIN team started 
generating the GNL correction maps for the MRI scanner model inventory compiled for the 
ACRIN 6698 trial. These maps are based on vendor-provided gradient system design 
coefficients. As a result of this effort, the pre-developed Matlab p-code libraries for GNL map 
generation were pre-validated by the AIP participants and shared with the wider research 
community [URL3a]. 

To finalize and deploy the stand-alone tools for retrospective GNL correction “on-
site”, our team continued integration of the developed correction algorithms [2-4] using 
available multi-system, multi-vendor phantom and human volunteer DWI DICOM. The ADC 
ROI histogram statistics for phantom and healthy parenchyma compared before and after 
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correction confirms improved uniformity and reproducibility across scanners [3, 5, 10, 11].  
Major hurdle for implementation of vendor-agnostic retrospective “off-line” GNL bias 
correction was found to be in generalization for the vendor-specific DICOM conventions. 
ADC DICOM mapping QIN CCP led by our team in collaboration with UCSF and Brigham 
Women’s QIN centers supplied requirements for this critical component [7]. Our combined 
AIP and QIN efforts [2-7] have already encouraged two vendors to implement prototype 
prospective (on-line) correction tools on their scanner systems. 

For quantitative testing of multi-b diffusion model fit algorithms, a set of synthetic 
DWI digital reference object (DRO) DICOM was generated for several forward diffusion 
models including physical noise.  By providing the ground-truth diffusion parameters, these 
DROs allow evaluation of noise-induced biases and standard error in derived quantitative 
diffusion metrics (Figure 4) for the typical DWI acquisition protocols of ongoing clinical trials 
(e.g., ACRIN 6698, NRGBN001).  Several DRO DWI DICOM data sets were shared through 
ResearchGate [URL1c] and QIBA RSNA QIDW (https://goo.gl/yYPG0W), and offered for 
SW tool pre-screening by the ongoing multi-b qDWI QIN MRI CCP (led by MCW). 
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COLLABORATIONS WITHIN THE NETWORK  

Our team continued close collaboration with two other QIN sites (UCSF and JHU) on 
the AIP project with three dominant MRI vendors to implement the GNL correction of DWI 
bias on clinical MRI scanners. The tools and resources developed through this project are 
being shared with the QIN for validation and wider implementation [2-5, URL2, URL3]. 

With the MSKCC QIN site and NIST collaborators, our team continues to contribute 
to QIBA RSNA activities of the DWI Task Force (co-chaired by Dr. Chenevert) toward 
development of technical consensus profile (http://qibawiki.rsna.org/index.php/Profiles) for 
qDWI biomarkers in brain, liver and prostate, detailing standardized acquisition/processing 
procedures and system performance metrics (including GNL bias effects) for confident 
measurement of the quantitative ADC metrics in multi-center clinical trials. Through these 
collaborations, our team shares and improves QC/QA tools [URL1; QIBA QIDW: 
https://goo.gl/xjHc6G] for clinical trials utilizing quantitative DWI. Our QC tools are also 
used by several QIN teams (UWASH, ECOG-ACRIN, MSKCC, Moffit). 

In addition, our team has been an active member of the QIN MRI Subgroup and 
participated in multiple QIN-wide Challenges and Collaborative Projects (CCPs) that resulted 
in four publications this year [6-9]: 

1) “ADC Challenge” – led by David Newitt, UCSF (completed 2017, published JMI 2018 
[6]) 

2) “ADC DICOM Challenge” – led by Dariya Malyarenko, UMich – Team1 (completed, 
published JMI 2018 [7]) 

3) “DCE AIF Challenge Part 2” – led by Wei Huang, OHSU (completed 2017 [12,13], 
manuscript in prep) 

4) “DSC Challenge” – led by Kathleen Schmainda, MCW (completed 2017, accepted 
AJNR [8]) 

5) “T1-Mapping Challenge” led by Octavia Bane, Mount Sinai (completed, published 
MRM 2018 [9]) 

6) “DSC DRO” – led by Chad Quarles, Barrows Neurological Institute (ongoing) 

7) “Multi-b DWI Challenge” – led by Peter LaViolette, MCW (ongoing) 
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PLANS FOR NEXT YEAR  

Our future efforts will be focused on sharing and validating (through QIN CCPs) the 
newly developed qDWI analysis, QC and GNL bias correction tools, as well as, on testing 
local PRM SW application on the subset of ACRIN6698 breast cancer trial data, shared by 
the UCSF central analysis lab. The local SW evaluation will also utilize the pre-built DWI 
DRO data sets. We plan to deploy the first prototype tools for DWI DRO generation and bias 
analysis in the 2nd-3rd quarter of 2018. On a similar time scale, we plan to finalize p-code 
libraries for the GNL correction tools to share with the UCSF QIN team for retrospective 
application to multi-vendor ISPY-2 breast cancer DWI data on site. 

Temperature calibration and development of practical imaging protocol for BMS-
based in-situ thermometer on 3T and 1.5T is planned for the 3rd quarter of 2018. In 
collaboration with NIST and QIBA DWI, we will continue efforts for calibration of ADC 
values for qDWI PVP-based phantom with the target precision of CI < 0.5%. We also plan to 
expand our collaboration with MSKCC QIN team to develop new qDWI physical phantoms 
for non-Gaussian diffusion and optimization of multi-b DWI acquisition. Our QIN team will 
continue improvement of existing quantitative DWI QA/QC libraries and sharing validated 
tools with interested users through the ongoing AIP, QIBA RSNA, NIST, and ECOG-ACRIN 
collaborations. 
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§ URLs for shared tools and resources:  

URL1: Quantitative DWI QC resources on ResearchGate (to share pre-validated tools): 
https://www.researchgate.net/project/Quantitative-DWI-tools 
The project resource links: 
a. Quantitative DWI phantom QC analysis tool p-code and manual (1/2018): 

https://www.researchgate.net/publication/322405528 
b. Video tutorial for DWI phantom QC analysis for a clinical trial (5/2016): 
https://www.researchgate.net/publication/322405550 
c. Multi-b three-model DWI DRO DICOM and manual (1/2018): 

https://www.researchgate.net/publication/322404473 
URL2:  Empiric GNL tensors and isotropic corrector maps (MAT-structures) for six QIN 
DAWG CCP (MRI) systems (3/2017): 
https://umich.box.com/s/w0grq3p91l3dhv2f39d037dyagn7bked 
URL3: GNL correction resources on ResearchGate (to share validated protocols and 
tools): 

https://www.researchgate.net/project/Prospective-and-retrospective-correction-of-
gradient-nonlinearity-bias-in-diffusion-weighting-for-multi-center-trials-using-ADC 
The project resource links: 
a. Bz and GNL map generating p-code, manual and demo (12/2016): 
https://www.researchgate.net/publication/316933059 
b.  DWI scan instructions for GNL correction validation (Sup. Mat. PMC5241082): 
https://www.researchgate.net/publication/316930132 
c. DWI scan instructions for empiric GNL characterization (Sup. Mat. PMC4630210): 
https://www.researchgate.net/publication/312301728 
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INTRODUCTION  

Bladder cancer is a common type of cancer that can cause substantial morbidity and 
mortality among both men and women. Bladder cancer causes over 16,870 deaths per year 
in the United States [1]. It is estimated that 79,030 new bladder cancer cases will be 
diagnosed in 2017. Early diagnosis and treatment of these lesions is important to reduce 
the morbidity, mortality and their attendant costs compared to diagnosis at a later, more 
symptomatic stage that might involve deep invasion and/or metastasis. 

Correct staging of the bladder cancer is crucial for the decision of neoadjuvant 
chemotherapy treatment and minimizing the risk of under-treatment or over-treatment [2-8]. 
Only patients with stage T2 to T4 of muscle-invasive operable urothelial carcinoma of the 
bladder are recommended for treatment with neoadjuvant chemotherapy. If the response to 
chemotherapy can be estimated with sufficient accuracy and precision, it is possible to 
identify those patients that do not respond, stop the treatment early, and seek alternative 
treatment [8].  CT is an effective non-invasive modality for measuring primary site gross 
tumor volume (GTV) and the addition of MRI is on the rise. GTV has been used as a 
biomarker for predicting treatment outcome of bladder tumors [9]. Other pathological 
information and diagnostic test (bimanual evaluation, cystoscopy) results and 
immunohistochemical biomarkers are also useful for staging and treatment response 
monitoring. Although CT and MRI are promising methods for evaluation of a variety of 
bladder cancers, the time and costs required for the clinicians to outline cancer margins on a 
large number of CT and MRI slices for each case makes it difficult to advocate the use of 
this method for GTV estimation of every patient and of every pre- and post-treatment tumor 
evaluation. 

The goal of this project is to develop a novel multimodality quantitative image 
analysis tool for bladder cancer (QIBC) to assist radiologists in estimation of GTV and 
analysis of image characteristics, thereby improving the efficacy of image biomarkers. The 
QIBC will be designed to use either one or more than one modalities from CT and MRI. 

Another goal of this project is to develop novel decision support systems CDSS-S 
and CDSS-T for bladder cancer staging and for monitoring of bladder cancer treatment 
response based on multi-modality image-based, pathology-based and immunohistochemical 
biomarkers. The proposed QIBC, CDSS-S and CDSS-T have the potential to provide non-
invasive, objective, and reproducible decision support, thereby reducing the subjectivity and 
variability in these processes. In order to achieve these goals we are performing the following 
specific tasks: (1) to collect a database of multi-modality MR, CT exams of bladder cancers 
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for development, training and testing of the QIBC and CDSS algorithms; (2) to develop 
advanced computer vision techniques to quantitatively estimate bladder GTV and image 
characteristics; and (3) to develop predictive models using machine learning techniques to 
combine multimodality image based, pathological and immunohistochemical biomarkers for 
cancer staging and determination of non-responders. 

In addition, although we will focus on the specific application to the bladder tumors 
in this project, we plan to design the image analysis and decision support tools in a modular, 
expandable, and re-trainable framework. The software packages will be versatile and can be 
adapted to other tumor types or imaging modalities in the future by proper retraining with 
case samples of the tumor type of interest and expansion of the decision support tools as 
needed.  Therefore, the development of the QIBC, CDSS-S and CDSS-T will potentially 
benefit not only the bladder tumor patients but also patients with other types of tumors that 
require staging and monitoring of treatment response. 

PROGRESS OVER THE PAST YEAR  

§ Specific Aim 1:  Data Collection  
 

During the current time period of the project we have collected additionally 60 CTU 
bladder cancer cases from CTU examinations performed at University of Michigan. This 
includes 50 pre- and post- neoadjuvant chemotherapy treatment cases with clinical stage 
larger than T1, and 10 cases of which the clinical stage were called T1 and did not underwent 
neoadjuvant chemotherapy treatment. As a result, we have collected in total 286 CTU 
bladder cancer cases: 182 pre- and post- neoadjuvant chemotherapy treatment cases and 104 
cases of clinical stage T1. For each patient, the images are downloaded from the PACS 
system. The treatment records, pathology reports, and the clinically estimated treatment 
outcome after completion of the chemotherapy, are collected from patient files. All collected 
images and clinical information are stored into our CAD Lab information infrastructure 
(CADii). At present all patients undergo 3 cycles of chemotherapy. After completion of the 
chemotherapy treatment, the patients undergo radical cystectomy. The gold reference 
standard for the chemotherapy treatment outcome is determined by histopathology findings 
after radical cystectomy. Our clinical co-investigators marked each lesion and provided 
descriptors seen on the images. Two radiologists have manually drawn 3D outlines as gold 
standard for 191 cases. 

In addition, we are part of a team which has started prospective collection of 
pathological information, diagnostic test results, immunohistochemical biomarkers, and CT 
scans from bladder cancer patients after the first cycle of chemotherapy. The protocol for 
data collection is approved by IRB. We are continuing the data collection. We have full 
access to the collected data. So far we have collected 14 cases. This will be very valuable 
dataset allowing us to develop tools for very early prediction of response to treatment. 

In addition, with IRB approval we also are collecting molecular biomarker data for 
the above bladder cancers. The molecular biomarker data includes DNA alterations such as 
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somatic variants, copy number gains, copy number losses. So far we have collected 
molecular data for 25 cases. This also will be very valuable dataset allowing us to develop 
multimodality tools combining molecular, clinical and radiomics information for early 
prediction of response to treatment. 

§ Specific Aim 2:  Design of quantitative image analysis tool (QIBC) for evaluation of  
bladder GTV and image characteristics  

For both decision support systems CDSS-S and CDSS-T, an important component is 
to quantify the bladder gross tumor volume (GTV) and image characteristics. During the 
current time period of the project we have continued the development of a quantitative image 
analysis tool for bladder cancer, QIBC, specifically designed for these applications. We have 
been exploring further the use of a deep learning convolution neural network (DL-CNN) in 
QIBC. The details of the QIBC design and evaluation of the segmentation of the bladder 
lesions and bladder wall thickenings are presented in the following: 

Segmentation of Inner and Outer Bladder Wall using Deep-Learning  
Convolutional Neural Network in CT Urography  

We have continued exploring the use of a deep-learning convolutional neural network 
(DL-CNN) to segment the bladder wall. This task is challenging due to differences in the 
wall between the contrast and non-contrast-filled regions, significant variations in 
appearance, size, and shape of the wall among cases, overlap of the prostate with the bladder 
wall, and the wall being extremely thin and occasionally invisible compared to the overall 
size of the bladder. We have applied the method on the enlarged test set of 92 cases, which 
also were hand outlined for both the inner and outer wall and used as reference standard. The 
results are very similar to the one reported in the previous year report on a smaller test set of 
37 cases. This is a promising result demonstrating the robustness of the system. We are in 
the final stages of preparation for submission of a manuscript to Medical Physics. 
(Publications from QIN Efforts: #11)  

§ Specific Aim 3:  Design of CDSS-S and CDSS-T  decision support  systems to assist  
clinicians in staging and monitoring of treatment response of bladder cancer.  

During the current time period of the project we have continued the development of 
the decision support systems for bladder cancer staging and treatment response monitoring. 

Specific Aim 3.1:  Design of computer decision support system  (CDSS-S) for 
bladder cancer staging.  

Correct staging of bladder cancer is crucial for the decision of neoadjuvant 
chemotherapy treatment and minimizing the risk of under-treatment or over-treatment. At 
clinical staging, approximately 30% of patients are under-staged or over-staged. The 
inaccuracy in staging may be partly attributed to the subjectivity and variability of clinicians 
in utilizing available diagnostic information. The pathological staging after cystectomy (the 
removal of the bladder) is considered very reliable. An objective decision support system 
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trained with the correct staging information may be useful for assisting clinicians in making 
more accurate and consistent staging assessments. 

We have continued the design of CDSS-S. During the current time period of the 
project we have developed a CDSS-S to stage bladder cancer based on classifier trained with 
improved pathological stage labels obtained after cystectomy. The details of the CDSS-S 
design and evaluation are presented in the following: 

Methods:   We have used a data set of 84 bladder cancers from 76 CTU cases 
collected as described in Specific Aim 1, that were all clinically staged prior to treatment. 
The bladder lesions were segmented using our previously developed auto-initialized 
cascaded level sets (AI-CALS) method.  For each lesion, a bounding box provided by a 
radiologist was used as input for the AI-CALS segmentation system. Each lesion was 
categorized into to one of two classes: (1) pathologically staged below T2 or (2) 
pathologically staged at or above T2. Of the 84 bladder cancers, 43 of the lesions were below 
stage T2, and 41 were stage T2 or above. 

Ten of the 84 bladder cancers were upstaged to stage T2 or above after cystectomy 
(bladder removal) and pathological staging, which is considered to be the ground truth. We 
corrected the labels for these 10 understaged lesions. After correcting stage labels for the 
understaged lesions, 33 of the 84 lesions were below stage T2, and 51 were stage T2 or 
above. 

Eighty-nine radiomics features were extracted from each of the segmented lesions 
including 26 morphological [10] and 63 texture features [11, 12]. The morphological features 
included gray level, contrast, Fourier descriptor, gradient magnitude profile features, and the 
lesion volume. The texture features included filtered Disarthy East-West and Horizontal 
direction features, and the gray level radial gradient direction features. 

A leave-one-case-out cross-validation was conducted with the 76 cases. Feature 
selection was performed to identify key features within the data set. Three features were 
selected including the Fourier descriptor, texture, and gradient magnitude profile features. 
We trained a linear discriminant analysis (LDA) classifier to distinguish between bladder 
lesions that were diagnosed as stage T2 or above and those below stage T2. For each 
training/test leave-one-case-out partition the trained classifier outputted likelihood of stage 
T2 or above score for the lesions in the left-out test case. 

As a comparison to our computerized decision support system (CDSS-S) trained and 
tested with the corrected post-cystectomy labels, a second CDSS-S was trained with the 
understaged pre-treatment labels and tested on the lesions corrected for the understaged 
labels. Again, feature selection and leave-one-case-out cross-validation were performed for 
training and testing the LDA classifier. The selected features were texture, gradient 
magnitude, and gradient magnitude profile features. 

The CDSS-S performance was evaluated by the receiver operating characteristics 
(ROC) analysis, and the classification performance was quantified by the area under the ROC 
curve (AUC). 
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Results:   For the CDSS-S trained with the corrected stage labels, the test AUC was 
0.89 ± 0.04. For the CDSS-S that was trained with the understaged pre-treatment labels and 
tested on the data set corrected for the understaged lesions, the test AUC was 0.86 ± 0.04. 
The test ROC curves for the two CDSS-S are shown in Figure 1. The differences did not 
reach statistical significance (p > 0.05). When the CDSS-S was trained with the corrected 
stage labels, the CDSS-S produced correctly higher likelihood scores of stage T2 or above 
for 9 of the 10 understaged lesions. Examples of bladder cancers with stages ≥ T2 or < T2 
with the corresponding computer outlines and classifier scores are presented in Figure 2. 

Conclusions:  We demonstrate the promise of using radiomic features automatically 
extracted from CTU and correct staging information to build a statistical predictive model 
for staging of bladder cancer. The improvement of the AUC scores when the decision support 
system was trained with more accurate labels affirms the effect of correct labels on the 
statistical modeling. Further work includes improvement in the radiomic features and in the 
predictive model through the inclusion of clinical and molecular data and the collection of a 
larger data set. (Publications  from QIN Efforts: #14 and  #15)  

Figure 1: Test ROC curves for computerized decision support system 
(CDSS-S) that was trained with corrected stage labels (AUC = 0.89 ± 
0.04) and the CDSS-S trained with the understaged labels (AUC = 0.86 
± 0.04). 
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Figure 2: Here are examples of CTU scans of bladder cancers with stages ≥ T2 or < 
T2. The blue outlines are the AI-CALS segmentation. The following reported scores 
are the test scores. (a) and (b) show a T1 stage cancer that was properly classified 
with a score of -4.47. (c) and (d) show a T1 stage case that was properly classified 
with a score of -3.13. (e) and (f) show a T2 stage case that was properly classified 
with a score of 1.37. (g) and (h) show a T3 stage case that was properly classified 
with a score of 1.41. (k) and (l) show a case that was clinically identified as Ta (< T1) 
pre-treatment but was identified as a T2 stage cancer post-cystectomy. The classifier 
trained with understaged labels identified the cancer as <T2 with a score of -1.11 and 
the classifier trained with corrected labels identified the cancer correctly as ≥T2 with 
a  higher score of 0.094. 

Specific Aim 3.2:  Design of computer decision support system (CDSS-T) for 
bladder cancer treatment response monitoring.  

Early assessment of therapeutic efficacy and prediction of treatment failure would 
help clinicians decide whether to discontinue chemotherapy at an early phase before 
additional toxicity develops, and thus improve the quality of life of a patient and reduce 
unnecessary morbidity and cost. The ultimate goal is to improve survival for those with a 
high risk of recurrence while minimizing toxicity to those who will have minimal benefit. 
Therefore, development of an accurate and early predictive model of the effectiveness of 
neoadjuvant chemotherapy is important for patients with bladder cancer. In addition, if a 
patient can be reliably identified as having complete response to treatment, the treatment 
option of preserving the bladder may be considered, which would drastically reduce the 
morbidity of the patient and improve his/her quality of life as compared to the current 
standard treatment by cystectomy. 
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During the current time period of the project we have continued the development of 
the computer decision support system (CDSS-T) for bladder cancer treatment response 
monitoring. We have continued exploring further the use of a deep learning convolution 
neural network (DL-CNN) in CDSS-T. We also combined radiomic features and clinically 
estimated feature as input to CDSS-T. We have started a pilot observer performance study 
evaluating whether CDSS-T can assist radiologists in identifying patients who have complete 
response after neoadjuvant chemotherapy. The details of the CDSS-T design and evaluation 
are presented in the following: 

Bladder Cancer Treatment Response Assessment in CT Urography  using  Two-
Channel Deep-learning Network  

We have continued the design of CDSS-T by using a 2-Channel Deep-Learning 
Convolution Neural Network (2Ch-DCNN) to recognize the pattern changes indicative of 
treatment response. The 2Ch-DCNN may be useful as decision support for bladder cancer 
treatment response assessment, which is crucial for identifying non-responders and stopping 
treatment early to preserve their physical condition. 

Methods:   Pre- and post-neoadjuvant chemotherapy CTU scans of 82 patients (87 
lesions) were collected as described in Specific Aim 1. The cancer stage after treatment, as 
determined by cystectomy, was used as reference standard for treatment response. Bladder 
lesions in the CTU scans were segmented with our auto-initialized cascaded level sets (AI-
CALS). Paired ROIs were extracted from the segmented lesions in the pre- and post-
treatment scans and partitioned by case for 2-fold cross validation. Partition 1 contained 42 
cases (45 lesions, 13 stage T0) and 9,000 training ROI pairs after data augmentation. 
Partition 2 contained 40 cases (42 lesions, 11 stage T0) and 9,600 training ROI pairs. 
Examples of the ROI pairs are shown in Figure 3. The paired pre- and post- treatment ROIs 
were input to the two parallel channels, respectively, of the 2Ch-DCNN to distinguish 
between bladder lesions of stage T0 and >T0 after treatment. A flow chart of the 2Ch-DCNN 
is shown in Figure 4. During training, the number of ROIs between the 2 classes was 
balanced. During testing, the trained network was applied directly to the ROIs in the test set. 
We compared the 2Ch-DCNN with our hybrid pre-post-treatment ROI DCNN method, and 
the assessments by 2 experienced GU radiologists. The radiologist estimated the likelihood 
of stage T0 after viewing each pre-post-treatment CTU pair. Receiver operating 
characteristic (ROC) analysis was performed and the area under the curve (AUC) and AUC 
at sensitivity >90% (AUC0.9) were compared. 

Results: The test AUCs were 0.76±0.07 and 0.75±0.07 for the 2 partitions, 
respectively, for the 2Ch-DCNN, and were 0.75±0.08 and 0.75±0.07 for the hybrid ROI 
method. The AUCs for Radiologist 1 were 0.67±0.09 and 0.75±0.07 for the 2 partitions, 
respectively, and were 0.79±0.07 and 0.70±0.09 for Radiologist 2. For the 2Ch-DCNN, the 
AUC0.9s were 0.43 and 0.39 for the 2 partitions, respectively, and were 0.19 and 0.28 for the 
hybrid ROI method. For Radiologist 1, the AUC0.9s were 0.14 and 0.34 for partition 1 and 2, 
respectively, and were 0.33 and 0.23 for Radiologist 2. The differences in the performance 
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did not achieve statistical significance. Test ROC curves for prediction of T0 stage after 
neoadjuvant chemotherapy are presented in Figure 5. 

Figure 3: Subset of ROIs used to train the 2 channel DCNN. Each ROI is 
32x32 pixels. (a) Pre-treatment ROIs that were labeled as being stage T0 
after treatment. (b) Pre-treatment ROIs that were labeled as being greater 
than stage T0 after treatment. (c) Post-treatment ROIs that were labeled as 
being stage T0 after treatment. (d) Post-treatment ROIs that were labeled as 
being greater than stage T0 after treatment. 



 
 

 
 
 
 

 
    

   
   

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

    
    
   

  

 
 

Figure 4: Flow chart of the 2Ch-DCNN. ROIs from the pre- and post-treatment 
scans are inputted into two separate channels of the DCNN, which is trained to 
distinguish ROI channel pairs that have fully responded to treatment and those 
that have not. 

Figure 5: Test ROC curves for prediction of T0 stage after neoadjuvant 
chemotherapy using ROIs generated from pre- and post-treatment pairs for the 
test partitions using the 2Ch-DCNN, 1-channel hybrid ROI DCNN, and 
radiologists for the two partitions. 
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Conclusions: Our study demonstrated the feasibility of using 2Ch-DCNN for the 
estimation of bladder cancer treatment response in CT. The 2Ch-DCNN performed 
comparably to the 1-channel hybrid ROI DCNN, with higher AUC0.9. The 2Ch-DCNN also 
performed comparably to the two radiologists. 
(Publications from QIN Efforts: #17)  

We have continued the design of CDSS-T also by addition of clinically estimated 
feature to the automatically extracted radiomic features from CT scans as input to the CDSS-
T for treatment response assessment of bladder cancer. 

Methods:  Our Auto-Initialized Cascaded Level Set (AI-CALS) system is designed 
to extract 3D lesion boundary based on level sets. Forty-seven radiomic features (RF) based 
on pre- and post- treatment changes in volume (V), 5 gray level (GL) and 9 shape (S) 
descriptors and 32 texture features (RLS) were extracted from the segmented lesions. A 
clinically estimated feature, the bimanual exam under anesthesia (EUA), was also collected 
from the clinical reports. Linear discriminant analysis was used to generate two combined 
response indices: one by the radiomic features (RFs) alone (CRI-RF), and the other with both 
radiomic features and EUA (CRI-RF-EUA). Pre- and post-chemotherapy treatment CT scans 
of 98 patients with bladder cancers were collected as described in Specific Aim 1. Examples 
of CT slices of carcinoma on pre- and post-treatment CT scans with AI_CALS segmentation 
are presented in Figure 6. For all cases, cystectomy was performed after treatment and the 
disease outcome was available as reference standard of treatment response. Twenty-five 
percent of patients had pT0 disease (complete response) at cystectomy. A radiologist marked 
122 temporal pairs of primary site cancers. Stepwise feature selection and leave-one-case out 
cross-validation and receiver operating characteristic (ROC) analysis were performed. The 
area under the ROC curve (AUC) was calculated to estimate the accuracy for predicting pT0 
stage (complete response) at cystectomy by V, CRI-RF and CRI-RF-EUA methods. Two 
radiologists also provided the likelihood of pT0 stage of the tumor by reading the pre- and 
post-treatment paired CT scans. 

Results: For the 122 cancers, the AUC for prediction of pT0 disease at cystectomy 
was 0.70±0.05 for volume (V). The AUC for CRI-RF based on 2 Contrast and 2 RLS features 
was 0.74±0.05 and increased to 0.78±0.05 when EUA was added (CRI-RF-EUA). Prediction 
of pT0 disease by radiologists resulted in AUCs of 0.77±0.05 and 0.75±0.05, respectively. 
The differences did not reach statistical significance (p>0.05). The test ROC curves for 
prediction of T0 stage after neoadjuvant chemotherapy are presented in Figure 7. 

Conclusions: Both CRI-RF and CRI-RF-EUA performed similar to the radiologists 
and better than V for estimation of treatment response. The addition of EUA further 
improved the accuracy of treatment response assessment. The combined response index 
using both the radiomic features and clinically estimated EUA has the potential to provide 
accurate treatment response assessment and is superior to volume change alone. 
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Figure 6: CT slices of carcinoma on pre- and post-treatment CT scans with 
AI_CALS segmentation: (a) pre-treatment scan, (b) pre-treatment scan with 
AI_CALS segmentation, (c) post-treatment scan, (d) post-treatment scan with 
AI_CALS segmentation. The carcinoma (white arrow) is shown on the best 
slice marked by radiologist. 

Figure 7: ROC curves for prediction of pT0 disease at the time of cystectomy 
for AI-CALS estimated V (AUC=0.70±0.05), the combined response index 
(CRI-RF) based on 2 Contrast and 2 RLS features (AUC=0.74±0.05), the 
combined response index (CRI-RF-EUA) based on 2 Contrast, 2 RLS 
features and clinically estimated EUA (AUC=0.78±0.05), the Radiologist1 
estimation (AUC=0.77±0.05), and the Radiologist 2 estimation 
(AUC=0.75±0.05). 
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Observer Performance Study for Bladder Cancer Treatment  Response 
Assessment in CT Urography  with and without computerized decision support  

We have started evaluation of our computerized decision support system for bladder 
cancer treatment response assessment (CDSS-T) for whether it can assist radiologists in 
identifying patients who have complete response after neoadjuvant chemotherapy by a pilot 
observer performance study. If a patient can be reliably identified as having complete 
response to treatment, the treatment option of preserving the bladder may be considered, 
which would drastically reduce the morbidity of the patient and improve his/her quality of 
life as compared to the current standard treatment by cystectomy. More accurate estimation 
of response to treatment is also vital for identifying non-responders and allowing them to 
seek alternative therapy. 

Methods:  Pre- and post-chemotherapy CTU scans of 123 patients were collected 
as described in Specific Aim 1, resulting in 158 pre- and post-treatment lesion pairs. The 
pathological cancer stage after treatment, as determined by cystectomy, was collected as the 
reference standard of whether a patient fully responded to treatment. Twenty-five percent of 
the lesion pairs (40/158) had T0 cancer stage after chemotherapy, which corresponds to a 
complete response. We have developed a CDSS-T system that uses a combination of DL-
CNN and radiomics features to distinguish between cases that have fully responded to 
treatment and those that have not. Two abdominal radiologists and 4 residents trained in 
abdominal radiology estimated the likelihood of stage T0 disease after treatment by viewing 
each pre-post-treatment CTU pair displayed side by side on a specialized graphic user 
interface designed for CDSS-T (Figure 8). The observer provided an estimate without CDSS-
T first (Figure 8a) and then might revise the estimate, if preferred, after the CDSS-T score 
was displayed (Figure 8b). The cases were randomized differently for each observer. The 
observers’ estimates with and without CDSS-T were analyzed with multi-reader, multi-case 
(MRMC) receiver operating characteristic (ROC) methodology. The area under the curve 
(AUC) and the statistical significance of the difference were calculated. 

Results: The AUC for prediction of T0 disease after treatment was 0.80±0.04 for the 
CDSS-T alone. Each observer’s performance increased with the aid of CDSS-T. The average 
AUC for the observers were 0.75 (range: 0.70-0.79) without CDSS-T, and increased to 0.78 
(range: 0.73-0.81) with CDSS-T. The individual AUCs without and with CDSS-T are 
presented in Table 1 and Figure 9. The differences in the average AUC values between 
without CDSS-T and with CDSS-T were statistically significant (p < 0.01). 

Conclusions:  Our pilot study demonstrated that CDSS-T system for bladder cancer 
treatment response assessment in CTU has the potential to improve radiologists’ 
performance in identifying patients who fully responds to treatment. The improved 
radiologists’ accuracy in bladder cancer treatment response assessment is vital for identifying 
non-responders and allowing them to seek alternative therapy. It is also vital for identifying 
complete responders as candidates for organ preservation therapy. 
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Figure 8: The graphical user interface for reading with and without our computer-aided 
diagnosis (CAD) system designed for supporting treatment response assessment 
(CDSS-T). (a) The pre- and post-treatment scans are shown side-by-side, and the 
observer estimates the treatment response. (b) The observer is shown the CAD score. 
The score distribution of the two classes is displayed for reference. The observer may 
revise their treatment response assessment after considering the CAD score. 
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Table1. AUC of observers with and without CAD. 

Observers 
1 2 3 4 5 6 

No 0.77 ± 0.70 ± 0.74 ± 0.73 ± 0.76 ± 0.79 ± 
CAD 0.04 0.05 0.04 0.04 0.04 0.04 
With 0.81 ± 0.73 ± 0.78 ± 0.76 ± 0.80 ± 0.81 ± 
CAD 0.04 0.04 0.04 0.04 0.04 0.04 

Figure 9: AUC values for the 6 observers with and without 
CAD. The performance of the CAD system is shown with the 
dashed line. The performance of all observers increased with 
using CAD. 
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COLLABORATIONS  WITHIN  THE NETWORK  

We are actively involved in the collaboration activities within the QIN. 

§ QIN committees and working groups  

We participate in the QIN committees (the Executive Committee and the 
Coordinating Committee) and in the QIN working groups (PET-CT working subgroup, 
Image Analysis Performance Metrics working group, Bioinformatics/IT & Data Sharing 
working group, and Clinical Trial Design & Development working group). Dr. Hadjiyski 
served as a chair of PET-CT working subgroup. He serves as a co-chair of Image Analysis 
Performance Metrics working group. Dr. Hadjiyski is one of the Guest Editors of the Journal 
of Medical Imaging QIN special issue honoring Dr. Larry Clarke. 

QIN Grand Challenges  

We also have participated in two grand challenges organized within the PET-CT 
working subgroup: (1) Use of NLST as a dataset for assessing lung nodule interval change, 
and (2) CT Feature Comparison Study. We are very enthusiastic about this QIN opportunity, 
because it allows to test our tools on a different modality and different type of lesions (lung 
nodules) as well as to compare the tools to the systems of the other QIN participants in the 
challenges. We actively participated in the data analysis and the publications preparation 
related to the challenges, which resulted in joint publications in the QIN Special issue of 
Tomography and in the Medical Physics journal. (Publications from QIN Efforts: #18 and 
#19). We also participate in the Feature Ontology Project – The Community-based 
Terminology Standards. We also are members of the QIN team organizing the 2018 ISBI 
Challenge: Lung Nodule Malignancy Prediction based on Sequential CT Scans. 

Computer demonstrations  at the QIN  face to  face meeting  

We also have participated in the live computer demonstrations at the Face to Face 
meeting in April 2017 and have demonstrated our GUI, QIBC segmentation tool, and the 
CDSS-T decision support tool. We are also very enthusiastic about this QIN opportunity, 
because (1) it was possible to present our tool to the other members of QIN, (2) we got very 
useful feedback from the experts in the field and (3) it allowed discussions for potential 
collaboration for integration of our GUI in Slicer. 

PLANS FOR NEXT YEAR  

In the next year we will continue to collect CTU pre- and post- neoadjuvant 
chemotherapy treatment cases. We also will continue the prospective  collection of 
pathological information, diagnostic test results, immunohistochemical biomarkers, and CT 
scans from bladder cancer patients after the first cycle of chemotherapy. We also will 
continue collecting molecular biomarker data for our bladder cancer dataset. Our clinical 
collaborators will continue to annotate and outline the bladder lesions. We will concentrate 
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our efforts to continue the development of our segmentation bladder lesion system (QIBC) 
and the decision support systems for bladder cancer staging (CDSS-S) and treatment 
response monitoring (CDSS-T) with a larger data set. We also will continue to extract 
additional 3D morphological and texture radiomic descriptors, define new descriptors, 
include clinical and molecular biomarkers and use machine learning methods for the design 
of the predictive model to predict the cancer stage and to combine the descriptors in a 
“combined response index” as a predictor of the treatment response. We also will continue 
evaluating the performance of the CDSS-S and CDSS-T as decision support to the physicians 
for assessment of the stage and the treatment response of bladder cancer. 
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INTRODUCTION  

Current state-of-art therapy of poor prognosis, advanced head-and-neck cancers 
(HNC) (e.g., HPV-, and/or smoker), concurrent radiation therapy with chemotherapy and 
followed by adjuvant chemotherapy, still leads to 30-50% of local and regional failure. 
Physiological imaging based adaptive radiation boosting of the resistant subvolume of the 
tumor has the potential to improve outcomes.  However, clinical utilization of metabolic and 
physiological imaging is a challenge due to lack of technical validation, quantitative image 
analysis tools, individual patient-based quality control (QC), and understanding of tumor 
heterogeneity and image phenotypes. To address these challenges, we have implemented an 
individual patient-based QC procedure to assess reproducibility of quantitative image 
parameters during a clinical trial. Also, we investigated tumor heterogeneity and 
heterogeneous response by comparing tumor characteristics of FDG uptake, blood volume 
distribution, and restricted water diffusion.  We have two manuscripts accepted for 
publication.  In addition, we have two manuscripts, of which one will be submitted within a 
week and another will be submitted to the QIN Special Issue in June. Also, we have been 
participating multi-site collaborative projects. 

PROGRESS  OVER THE PAST YEAR  

We have acquired dynamic contrast enhanced (DCE) MRI, diffusion MRI and FDG 
PET from approximately 60 patients with poor prognosis head and neck cancers. Basic 
quantitative analysis of these images, producing parametric maps, is done when the patients 
are recruited into the clinical trial.  Further analysis is conducted to address scientific questions 
of interest. In this funding year, we focused on 1) developing metrics to assess individual 
patient-based QC for quantitative images, and 2) understanding tumor image phenotypes. 

§ Individual patient-based QC  
 

It is important to have an individual patient-based QC procedure for quantitative 
images during a clinical trial. Importance of validating quantitative image analysis tools using 
DROs and validating image acquisition using physical phantoms has been recognized in 
recent years. However, during a clinical trial, quality and reliability of quantitative images 
from individual patients need to be assessed quantitatively. We developed a procedure to 
assess reliability of quantitative image metrics of individual patients during the clinical trial, 
and investigate variables affecting reliability of quantitative metrics. 
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In the head and neck cancer clinical trial that we are acquiring dynamic contrast 
enhanced (DCE) and diffusion MRI before and after 2 weeks of chemoradiaiton therapy 
(CRT).  Blood volume (BV) maps are quantified from DCE MRI to guide clinical decision 
making.  BV in the tumor cannot be used for assessing reproducibility since the tumor is 
received radiation therapy. In general, we use a large field of view (FOV), from the base of 
scout to shoulder, to cover primary and nodal cancers.  Therefore, cerebellum is in the FOV 
and is not irradiated with doses > 5 Gy.  Therefore, we chose cerebellum as a reference region 
to assess reproducibility of BV. Volumes of interest in cerebellum were created to calculate 
percentage changes in BV for each individual patient from pre-CRT to after 2 weeks of CRT, 
see Figure 1. Then, a repeatability coefficient (RC) of BV was calculated.  We identified three 
patients who had less reproducibility in BV than other patients with 95% confidence using the 
RC.  This analysis creates a warning signal to us to re-check the data. Interesting, there was 
no obvious quality issue related to the three DCE datasets. In the clinical trial, the BV maps 
from the two patients who had percentage changes in BV far away from the reproducible 
range of BV defined by RC were re-scaled based upon the group mean of BV in the cerebellum 
VOI. 

Figure 1: Left: Percentage differences of BV between pre-RT and 2 weeks after starting 
RT in the reference regions from 31 patients.  Red lines represent the reproducibility 
range of BV defined by RC. Right: Plasma volume maps, Vp, (color coded) quantified 
from DCE MRI and two VOIs placed in the cerebellum for assessment of 
reproducibility.  Vp can be converted to BV by accounting for hematocrit. 

We further investigate whether reproducibility of arterial input function (AIF) peak is a 
major factor affecting reproducibility of BV.  We found that reproducibility of AIF peak is 
four times worse than reproducibility of BV, see Figure 2.  Two of the three patients who had 
percentage changes in BV beyond the reproducibility range had reproducible AIFs. 
Furthermore, one of the two patients who had worse reproducibility in AIF peak (orange 
circles) had reproducible BV.  These data suggest that reproducibility of AIF peak may not be 
the major factor affecting reproducibility of BV. 

122 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
   
   

 
 

    
   

 

 
      

  
    

   
 

 
 

 
 

   
  

 
 

 
   

     
     

 
  

  

Figure 2: Scatter plot of percentage changes in BV vs 
percentage changes in AIF peak.  Red line represents RC of 
Vp and orange lines depict RC of AIF peak. 

We will update these data to submit a manuscript to the QIN Special Issue in 
Tomography for publication. 

Spatial correspondence among quantitative high-risk image biomarkers  

FDG PET, DCE-MRI and diffusion MRI each identify unique risk factors for 
treatment outcomes in head-and-neck cancer (HNC).  Clinical trials in HNC largely rely on a 
single imaging modality to define targets for radiation boosting.   We investigated spatial 
correspondence of FDG uptake, perfusion and apparent diffusion coefficient (ADC) in HNC 
and their response to chemoradiation therapy (CRT), and to determine implication of this 
overlap or lack thereof for adaptive boosting. 

Forty patients with HNC enrolled in a clinical trial had FDG-PET/CT pre-CRT, and 
DCE and DW MRI scans pre and during CRT. Gross tumor volume (GTV) of primary tumor 
was contoured on post-Gd T1-weighted images. Tumor subvolumes with high FDG uptake, 
low BV, and low ADC were created by using previously established thresholds. Spatial 
correspondences between subvolumes were analyzed using Dice coefficient and between each 
pair of image parameters at voxel-level were analyzed by Spearman’s rank correlation 
coefficient. Prior to CRT, median subvolumes of high FDG, low BV and low ADC relative to 
primary GTV were 20%, 21% and 45%, respectively.  Voxel-by-voxel correlation analysis 
yielded Spearman’s correlation coefficients between BV and ADC from -0.47 to 0.22, 
between BV and FDG from -0.08 to 0.59, and between ADC and FDG from -0.68 to 0.25, see 
Figure 3. Dice coefficients between subvolumes of FDG and BV, FDG and ADC, and BV and 
ADC were 10%, 46%, and 15%, respectively.  The union of the three parameters was 64% of 
GTV.  The union of the subvolumes of BV and ADC was 56% of GTV pre-CRT, but reduced 
significantly by 57% after 10 fractions of RT.    
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This analysis indicates that high FDG uptake, low BV and low ADC as imaging risk 
biomarkers of HNC identify largely distinct tumor characteristics.  A single imaging modality 
may not define the boosting target adequately. 

Figure 3: Waterfall plots of Spearman’s rank correlation coefficients between 
BV and ADC (left), between BV and FDG uptake (middle), and between ADC 
and FDG uptake (right). 

This work was presented in ASTRO 2017.  A paper is accepted for publication in Int 
J Rad Onc Biol Phys. Also, this work is invited to be present in the NCI QIRT working group. 

§ Other Works  
 

Restricted diffusion model  

We developed a restricted diffusion model that explicitly considers restricted diffusion 
of intracellular water in cells. We combined this model with bi-polar diffusion gradients that 
reduces eddy current effects on diffusion weighted images. This model estimates four 
parameters, cell radius (R), diffusivities of intracellular (Din) and extracellular (Dex) water, 
and the fractional volume of intracellular water (Vin).  We applied this model to high b-values 
diffusion weighted images in 30 patients with glioblastoma (GBM) to assess whether this 
technique can differentiate GBM from surrounding edema and normal brain tissue. We found 
that three parameters (R, Vin and Dex) were significantly different between tumor, and edema, 
normal white matter and grey matter, see Figure 4. Also, for comparison, we implemented 
mono-exponential and bi-exponential diffusion models. However, both mono-exponential and 
bi-exponential diffusion models could not robustly differentiate GBM from edema and normal 
tissue. 

124 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
    

 
 
 

 
 

 
 

   
   

   
 

   
 

 
 

 
 

 
  

 
 

    

  
  

Figure 4: Bar graphs of estimated parameters of R (top left panel), Din (top right panel), 
Dex (bottom left panel), and Vin (bottom right panel) in all tissue types using the restricted 
diffusion model. **: 0.001<p < 0.01; ***: p < 0.001. Error bar is SEM. 

An abstract was submitted to ISMRM 2018. A manuscript will be submitted within a week. 

COLLABORATIONS WITHIN THE NETWORK  

We have participated in several collaborative projects, including DCE AIF challenges 
of part I and part II led by Huang, diffusion quantification changes led by Newitt, T1 
measurement challenges led by Bane and DSC challenges led by Schmainda. These 
collaborative projects have led to three papers and one manuscript under review. 

We are participating in a new prostate diffusion imaging challenge led by LaViolette. 

We are proposing a collaborative project with Buatti to evaluate our quantitative image 
analysis tool, called imFIAT. 

PLANS FOR NEXT YEAR  

1. Image data collection.  We will continue collecting DCE and diffusion MRI, and FDG 
PET from the patients with head and neck cancers who are enrolled into two clinical 
trials.  We have acquired image data from approximately 60 patients from the first 
trial. We will continue acquiring image data from this trial. There is a new trial that 
will start patient recruitment in March 2018.  This provides us an opportunity to 
acquire new data to validate what we developed quantitative image tools in the first 
clinical trial. 
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2. We will finish the analysis of individual patient QC of quantitative images during a 
clinical trial and complete a manuscript. 

3. We will explore a population based analysis of quantitative image parameters in head 
and neck tumors to assess whether we can learn patterns from the data to differentiate 
patients who have disease progression from those who have disease control. 

4. We will test the utility of quantitative images for assessing normal tissue toxicity after 
radiaiton, by analyzing whether early changes in quantitative BV in normal neck 
structures are correlated with dysphagia. 
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U01CA187947: Computing, Optimizing, and Evaluating Quantitative  
Cancer Imaging Biomarkers  

 
Stanford University Department of Radiology  (team 2)  

 
Sandy Napel, Ph.D.  

Daniel L. Rubin, M.D., M.S.  
 

INTRODUCTION  

The Quantitative Imaging Network (QIN) is a consortium of many centers where 
researchers are developing and evaluating many different quantitative imaging methods to 
assess cancer. Among them, quantitative image features that can be computed from medical 
images are proving to be valuable biomarkers of underlying cancer biology that can be used 
for assessing response to treatment and predicting clinical outcome. It is now important to 
discover the best quantitative imaging features for each cancer type and imaging modality that 
characterize cancers to detect response to new therapeutics, to identify subtypes of cancer, and 
to correlate with cancer genomics. However, progress is thwarted by the lack of shared 
software algorithms, architectures, and tools required to compute, compare, evaluate, and 
disseminate these quantitative imaging features within the QIN and the broader community. 
Our project will tackle these challenges by developing and evaluating a publicly available 
executable and open source software platform, the Quantitative Imaging Feature Pipeline 
(QIFP), which will give researchers these capabilities for characterizing images of tumors and 
surrounding tissues for use in multi-center clinical trials and patient monitoring in general. It 
will also allow researchers to add their own algorithms for computing novel quantitative 
image features for their own studies, and for the benefit of the community as appropriate. In 
this way, the QIFP will facilitate assessment of the incremental value of new vs. existing 
feature sets for these purposes. 

The QIFP will have the following key attributes that are needed to propel quantitative 
imaging research forward in the QIN and in the broader research community: 

• Web-based, graphical user interface for development of configurable quantitative 
image feature processing pipelines that will enable researchers to explore 
combinations of quantitative imaging features 

• Expandable and sharable library of quantitative image features algorithms 
• Support for a variety of languages for quantitative image feature algorithms, e.g., 

Matlab, Java, and C/C++, via Docker containers 
• Connectivity to images and other data stored in 

o the Cancer Imaging Archive (TCIA) 
o ePAD systems (another QIN project for image annotation/curation) 
o local data stores 
o PACS systems via DICOM 

• Cloud-based cache of data and software 
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• Machine learning algorithms that permit researchers to efficiently establish how well 
a quantitative image feature or combination of features predicts a clinical or molecular 
variable. 

The QIFP will fill a substantial gap in the science currently being carried out in the 
QIN by providing the tools and infrastructure to assess the value of novel quantitative imaging 
features of cancer, and thereby accelerate incorporation of new imaging biomarkers into 
single- and multi-center clinical trials. It will also have additional impact by providing a means 
to disseminate and to promote the use of the quantitative imaging methods being developed 
within QIN to the broader community. 

DISCUSSION OF PROGRESS  
 

§ Specific Aims  

Aim 1: Create  an expandable library  of quantitative imaging feature  
algorithms  capable of comprehensive  characterization of the imaging phenotype  of 
cancer.  QIFP will accept DICOM image sets linked to regions of interest (ROIs) specifying 
the locations of tumors and other tissues of interest in the image sets, and compute from them 
vectors of quantitative features of the objects. The QIFP will be applicable to several 
modalities (e.g., CT, MR, PET), and it will support algorithms developed using a variety of 
languages, including Matlab, IDL, C++, Python, and Java. We will initially populate the 
library with a broad set of algorithms, including those that provide volumetric and time-
varying assessment of lesion size, shape, edge sharpness, and pixel statistics, developed by 
our team and by QIN and other researchers. A plug-in architecture will allow the community 
to add and share novel algorithms developed for their own research. 

Aim 2: Build a cloud-based software architecture for creating and executing  
quantitative image feature-generating pipelines, and for  using and comparing image  
features to  predict clinical/molecular features.  The QIFP will allow researchers to  
configure workflows that extract a selection of quantitative features from regions of interest 
on images, to upload private imaging datasets with associated ROIs, or to utilize images and 
ROIs stored in our system or linked to public repositories such as The Cancer Imaging 
Archive. Researchers will use a web-based interface to configure image processing pipelines 
including algorithms in the library (Aim 1) and/or those supplied by themselves and/or others 
as plug-ins. Quantitative features extracted from images can then be integrated with other data 
(e.g., gene expression, RNA sequence data, clinical data, outcomes), thereby making imaging 
data accessible for modern biological study, including the discovery of image biomarkers of 
specific disease subtype (a.k.a. radiogenomics), outcome, or response to treatment. Two novel 
aspects of QIFP will be (a) a Predictive Model Generation Engine that uses machine learning 
to let the user specify a dependent variable (e.g., progression-free survival) that the 
quantitative image features can be used to predict, and (b) a Feature Evaluation Engine that 
determines the values of particular features for predicting the dependent variable. Users will 
be able store and share their pipelines, promoting dissemination and widespread use of the 
feature computation algorithms. 
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§ Progress against Specific Aims  
 

    
     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aim 3: Assess the QIFP’s ability to facilitate the development and evaluation of  
novel quantitative imaging biomarkers of cancer in  multi-center clinical trials  in four  
ways. First, we will apply the QIFP to the multi-center clinical trial data (ECOG: E2408) used 
in our existing QIN project, and assess its ability to reproduce the known result that SUVmax 
predicts survival in this cancer, while showing that using QIFP improves efficiency. Second, 
within this same trial, we will evaluate the ability of QIFP to facilitate investigations of novel 
quantitative imaging features by comparing linear measurement, metabolic tumor burden and 
novel combinations of the features in our library (Aim 1) for predicting one-year progression-
free survival. Though this evaluation will be in a specific cancer and will assess particular 
imaging biomarkers, QIFP will be generalizable and easily applied to image datasets in other 
cancers for assessment of many other quantitative imaging biomarkers. Third, we will utilize 
QIFP to merge imaging features with known host-, drug- and tumor-based follicular 
lymphoma biomarkers in order to develop the most robust and integrative predictive model 
for patient outcomes. Fourth, we will show benefit to the community by using the QIFP to 
combine image feature algorithms developed by another QIN team and our own NCI-funded 
team in the study of radiogenomics of non-small cell lung cancer. 

Our specific objectives and progress against these Aims for Years 1-3 were to: (labels 
C.n.m refer to our grant proposal and the Gantt Chart (Figure 1)): 
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AIM 1:  Library  of  quantitative  imaging  feature algorithms:  
 
C.1.2 Develop suite of configurable image feature characterization algorithms: Aims 

complete with additional algorithms and refinement ongoing. Examples: 
• We have finished the initial version of the “Quantitative Image Feature Engine 

(QIFE)” (published manuscript #13 below), packaged it in a Docker container, 
and deployed it to Dockerhub for use by others, and to the QIFP. It is fully 
configurable via a graphical user interface or via an unloadable configuration 
file. 

• We are in the process of adding additional features to the QIFE, including Laws 
texture features and a suite of 2D features for slice-by-slice analysis. 

• We have made another feature characterization package, Pyradiomics (van 
Griethuysen et al., Cancer Research, 77(21), 2017), available on the QIFP. 

• We have also built a SIFT feature extractor, packaged it in a Docker container, 
and made it available on the QIFP. 

• At least one additional feature engine from a Stanford lab is being ported, and 
additional feature engines may follow. 

C.1.2 Begin the development of new pre- and post-processing algorithms: Aims 
complete with additional algorithms and refinement ongoing. 
Examples: 

• We have completed and deployed a “delta-feature” post-processing module, 
which takes features computed from different scans at different times and 
computes difference and ratio features. 

• We have completed and deployed a post-processing module that integrates 
semantic features (stored as AIM files) with quantitative image features 
computed by any of our quantitative feature engines. 

• We have completed and deployed a pre-processing module for indexing 
DICOM files prior to processing with the Pyradiomics feature engine. 

• We have completed and deployed a pre-processing module that converts 
DICOM image and segmentation data to the NiFTI format, enabling use of 
Pyradiomics on the QIFP. 

C.1.3 Complete the specification of input/output and parameter block requirements; 
Done; further work possible but not expected at this time. 

C.1.4 Begin the development of a set of simulated DICOM objects with known 
features; in progress: We now have code that can generate these phantoms as 
DICOM data, we have visualized them using ePAD, and processed them using 
the QIFE on the QIFP (Fig. 2).  However, we want to make the code that 
produces these phantoms user-friendly and publicly available. 

AIM 2: Build a cloud-based software architecture:  As reported last year, 
the architecture specification and working framework is complete. 

C.2.2.1 Build QIFP cache of images, segmented regions, and clinical molecular data: 
reported last year complete; ahead of schedule 

C.2.2.2 Build a library of quantitative image feature algorithms: Complete: all 
algorithms described in AIM 1 are available on the QIFP. 
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C.2.2.3 Build a tool for selecting input data: reported last year, complete 
C.2.2.3 Build a tool for configuring processing pipelines; in process; this can now be 

done by our software developer, and we decided to defer implementation for 
users until it can be made available in the new web-based user interface (see 
C.2.2.4 below). 

C.2.2.3 Design/build provenance architecture: in process. The QIFE outputs a log file 
and a feature dictionary that can be used to reconstruct the process. But this 
is not yet implemented for other feature algorithms or in a user-friendly 
manner. 

C.2.2.3 Build predictive model engine; reported last year, LASSO algorithm, 
implemented as a Docker container, is complete ahead of schedule 

C.2.2.4 Build Web-based user interface; begun ahead of schedule, but then delayed 
due to staffing leave of absence. Many features are available, however, and 
all screenshots in the Figures were generated with the new interface. 

In addition to the above: 
• we have made a QIFP working prototype available and demonstrated it art RSNA 2017 
• we have worked with one commercial entity and other QIN users to get feedback on 

the operation and improvement of the QIFP. 

Current Prototype Functionality: 
The current QIFP prototype allows the user to upload data sets, consisting of a set of 

subjects’ DICOM Series Data (DSD) + DICOM Segmentation Objects (DSOs), as well as 
clinical data for the subjects, in a variety of ways: 

• Web services connection to TCIA 
• Web services connection to ePAD instances 
• DICOM connection to local and remote PACS systems 
• Direct upload from filesystem 

The currently preconfigured workflows support the following use cases (see Fig. 3 for 
example workflows): 

• Process DSD+DSOs using our 3D feature computation engine (QIFE), 
Pyradiomics, and/or SIFT, to produce quantitative features for each subject from 
volumes defined by the intersection of the DSOs with the DSDs. 

• Process stored DSD+DSOs together with clinical data as described above 
following with our LASSO machine learning engine to produce a predictive 
model for a clinical variable and evaluate its performance on the training cohort 
using cross-validation. 

• Process stored DSD+DSOs together with clinical data as described above and a 
previously computed and stored predictive model to predict a clinical variable for 
an uploaded cohort of DSD+DSOs and clinical data. 

• Process multi-phasic CT to produce delta-radiomic features, which can be 
followed by LASSO for model building or testing of an existing predictive model. 
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COLLABORATIONS WITHIN THE NETWORK  

• Participated in tool interoperability demonstration at the 2017 Face-to-Face meeting: 
shared QIFE Docker container and demonstrated interoperability with pipeline 
developed at Mayo (Bradley Erickson). 

• Active member of IAPM, PET-CT, and BIDS working groups. 
• Collaborated with other QIN PIs on several papers, e.g., published manuscripts #2, #5, 

and #21 and presentations #12 and #15, below. 
• Collaborating with Keyvan Farahani on QIN benchmarks project 
• Collaborating with Keyvan Farahani on QIN Challenge Task Force 
• Collaborating with QIN members McNitt-Gray, Kalpathy-Cramer, Hadjiyski et. al on 

Feature Ontology project 

PLANS FOR NEXT YEAR  

We will continue our software developments as follows (labels C.n.m refer to our grant 
proposal and the Gantt Chart (Fig. 1)): 

C.1.4 Finish the development of a set of simulated DICOM objects with known 
features. We will complete a set of digital phantoms and make them available 
on the QIFP and TCIA for testing and radiomics feature development. 

C.2.2.2 Build a library of quantitative image feature algorithms: We will continue to 
engage with the QIN community, specifically the BIDS Working Group, to test 
interoperability of our Dockerized processing modules, and deploy additional 
feature engines and machine learning engines as they become available. 

C.2.2.3 Complete and deploy on QIFP a tool for user-configuration of processing 
pipelines: We will complete the graphical use interface on our new web-based 
interface for user configuration of workflows 

C.2.2.3 Design/build provenance architecture: We will integrate the run-time 
parameters and other data we are already collecting into a user-friendly 
system for recording experimental provenance and re-running completed 
workflows. 

C.2.2.4 Build Web-based user interface: We will complete this design and a working 
prototype implementation. 

C.3 We will continue working with colleagues who are using QIFP in radiomics 
research. For example: 
• Drs. Kotharty and Gevaert (Stanford): Predicting microvascular invasion 

in HCC using quantitative image features 
• Dr. Patel (Stanford): Radiomics in pancreatic and liver cancer 
• Dr. Nair (Moffitt Cancer Center): Radiomics analysis of indeterminate 

pulmonary nodules using CT and PET-CT 
• Dr. Itakura (Stanford): Radiomics of pancreatic cancer 
• Dr. Evens (now at Rutgers):  Radiomics of follicular lymphoma 

(previously collected data, ECOG 2408) 
• Drs. Plevritis, Gevaert, Ann Leung (Stanford): Radiogenomics of NSCLC 
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• Dr. Rubin (Stanford, U01 CA190214, Qualification and Deployment of 
Imaging Biomarkers of Cancer Treatment Response): This project, while 
internal to Stanford, is another opportunity for QIFP synergy. It leverages 
SWOG 0518, (Prospective Randomized Comparison Trial of Depot 
Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus 
Bevacizumab in Patients with Advanced Carcinoid Tumors). 
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Figure 2: ePAD display of selection of DICOM images of cross-sections of 3D digital 
radiomics phantoms, exhibiting different shapes, textures, and edge sharpness. These and 
other images stored on an ePAD system are directly selectable from within the QIFP user 
interface, as are images from TCIA and any configured PACS system. 

Figure 3: Screenshots of new QIFP user interface, showing: upper left: cohort selection; 
upper right: workflow selection; lower left: workflow to compute 3D features and train a 
prediction engine using clinical data; (lower right) workflow to compute 3D features using 
externally-develop module (Pyradiomics) and train a precdiction engine using clinical data. 
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INTRODUCTION  

CT continues to be widely used for assessing response to therapy in many clinical 
trials settings. There have been significant developments that allow the reduction of radiation 
dose from CT, including advances in iterative reconstruction techniques, detector technologies 
and others that promise significant dose reductions (50-60%) to patients, while maintaining 
clinical image quality. 

While these technologies should be investigated wherever possible in a clinical 
environment, their effects on quantitative measures extracted from CT images and especially 
radiomics features, are unclear and need to be investigated before they are deployed in clinical 
trials. That is, while many radiomics features have been shown to be predictive or useful in 
assessing response to therapy, some features might be significantly affected by the acquisition 
and reconstruction conditions under which the images were acquired. For example, when 
reducing the dose in the CT acquisition can increase the image noise which may affect some 
radiomics feature values such as texture [1] while not having a tremendous effect on size 
related features (as shown previously in [2]. 

Therefore, this application proposes to systematically investigate the effects of 
radiation dose reduction methods on quantitative metrics used in clinical trials. The goal is to 
determine how far we can decrease dose under different conditions before we increase 
variance to unacceptable levels in the context of using quantitative measures to assess 
response to therapy. 

We have proposed two specific aims to carry out this research. In the first aim, we 
proposed to create a collection of cases that represent a range of low dose acquisition and 
reconstruction scenarios in specific quantitative imaging tasks. This is being accomplished 
using a calibrated dose reduction simulation method (noise insertion tool) and then 
reconstructing images under a variety of dose reduction levels and reconstruction methods. In 
the second specific aim, we are extracting quantitative Imaging measures from these 
reconstructed image data sets and analyzing the variance of quantitative measures across dose 
levels and reconstruction methods. The overall goal is to provide guidance to the QIN, and 
clinical trials in general, regarding the use of both standardized protocols and the use of dose 

143 



 
 

 
  

 

 
     

 
 

 
    

 
   

  
  

   
   

  
    

  
 

   
     

 
 

   
  

  
 

  
   

   
  

 
 

  
  
    

   
  

  
   

reduction methods, with the ultimate goal of determining the levels of dose reduction that 
yield acceptable levels of measurement variance in several assessment tasks/environments. 

PROGRESS OVER THE PAST YEAR  

Over the past year, we have made progress on a number of aspects of our project. These 
are reported below. 

§ Extended Infrastructure for Software and Data Collection Efforts  
 

Extension of Reconstruction Tools  

During the current project period, we have extended our toolsets and infrastructure 
capabilities in a few ways. The first is that we have developed some offline iterative 
reconstruction tools that are based on the Iterative Coordinate Descent (ICD) method that 
allows us to reconstruct raw projection data using a model-based iterative reconstruction 
method in a way that is similar to the methods the manufacturers use in their clinical scanners. 
This added step provides an strong complement to our previous capabilities of simulating 
reduced dose scans (described in [1] ) as well as being able to reconstruct offline using the 
(more conventional) weighted Filtered Backprojection (wFBP) tools that we have developed 
previously [3].  When taken as a whole, this suite of tools allow us to take raw projection data 
that has been collected (see below) and: 

(a) Simulate reduced dose conditions; and 
(b) Reconstruct original raw projection data and simulated reduced dose scan data 

under a variety of slice thickness and kernel conditions using conventional wFBP; 
and 

(c) Reconstruct original raw projection data and simulated reduced dose scan data 
under a variety of slice thickness and kernel conditions using an iterative 
reconstruction (ICD) method. 

The end result is that when we have raw projection data available, we now have 
tremendous flexibility to create image datasets that represent an extremely wide range of 
acquisition and reconstruction conditions. This is extremely useful in our assessments of the 
robustness of quantitative imaging features over a range of acquisition and reconstruction 
conditions and other investigations described below. 

Extension of the Pipeline Capabilities  
 
In addition to the extension of the simulated reduced dose scan tools and the 

reconstruction algorithm tools, we have extended our underlying infrastructure tools to create 
a pipeline that is capable of high throughput processes for our research. Specifically, the raw 
data reading modules, the noise addition (simulating reduced dose acquisitions) and wFBP 
and ICD reconstruction engines have been organized into a fully automated pipeline (Figure 
1) that takes the raw data files and creates the desired set of image datasets that represent a 
range of dose levels, slice thicknesses and reconstruction conditions (wFBP and ICD).  These 
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datasets have been used in large-scale investigations into the effects of acquisition and 
reconstruction parameters on quantitative imaging tasks. 

Figure 1: Diagram illustrating the components and data flow for the image 
acquisition/reconstruction pipeline, which takes raw projection (sinogram) data 
and creates image datasets that represent a range of image acquisition and 
reconstruction parameter settings. 

The operation and control of the Pipeline was designed to be fully automatic and 
provide a high-throughput system for the creation of a large number of image datasets 
representing a wide range of acquisition and reconstruction conditions. To accomplish this, 
the initial system uses an HT condor computation environment which allows the queuing of 
jobs (using HTCondor queuing) with python control script to initiate each job and execute 
each step. This past year we extended these capabilities by developing the ability to execute 
all steps in one system (linux-based machine with GPU capabilities). Initial performance 
benchmarks indicate that on a system with 4 GPUs (e.g. a “Deep Learning” system from 
NVIDIA), a performance of 1.25 minutes per case/condition. Based on our past experience, 
this new high throughput, batch mode processing allows us more than 2 orders of magnitude 
increase in throughput, which provide a much broader exploration of the acquisition and 
reconstruction parameter space than was previously achievable. 

Raw Data Collection Efforts  

During the past year we have also extended our collection of raw projection data. We are 
now collecting data from 7 different outpatient scanners (all from Siemens). The cases we are 
collecting are primarily focused on either oncology or screening cases. We have collected 
nearly 1000 low dose lung cancer screening studies now (956 at last count; we expect to 
exceed 1000 cases next month).  With this raw projection data inventory and the tools 
described above, we will be able to create image datasets that represent a wide range of 
acquisition and reconstruction conditions required for our studies into the robustness of 
quantitative imaging features. 
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§ Image DeNoising Software Efforts  
 
One of the primary effects of reducing the radiation dose in CT is to increase the noise 

in the resulting reconstructed image. While Iterative Reconstruction methods seek to reduce 
the noise while preserving the structural integrity (e.g. edges) of the image data, another 
approach to reducing noise is to apply algorithms that operate on the reconstructed image data 
itself.  While methods to reduce noise (such as Gaussian smoothing) are well known, the 
challenge for these methods is also to reduce noise while preserving the edge content of the 
image. In quantitative imaging, the additional challenge is to determine if these denoising 
software tools can preserve quantitative imaging features over a range of acquisition and 
reconstruction conditions. 

To begin investigations into the effects of these denoising methods, we have first added 
to our pipeline the capability of performing image denoising with several different methods 
including bilateral filtering [4]and BM3D denoising[5].  To date, the bilateral filtering 
approach has turned out to be more computationally efficient and so we have used that 
approach to date. We are still working on making the BM3D approach more computationally 
efficient so that it can be incorporated into our pipeline. 

§ Lung Nodule Detection for Reduced Dose CT Scanning   
 
Previously we have published work on the detection of lung nodules on original and 

simulated reduced dose scans from the NLST. In the work we have performed over the past 
year, we have now extended that work to cases collected as part of the UCLA clinical lung 
cancer screening program (as mentioned above, nearly 1000 cases to date).  These cases are 
different from the NLST cases in that they have: (a) a scanning protocol on current CT 
scanners with more modern radiation dose reduction capabilities such as tube current 
modulation and iterative reconstruction (SAFIRE or ADMIRE from Siemens); (b) results of 
the interpretation of the scan that are reported in a structured environment that allows easier 
identification of nodules identified clinically; and (c) as a result these cases can be classified 
into a LungRADS classification which did not exist when NLST was being performed. 

Therefore, the goal of this study was to assess the impact of dose reduction and various 
reconstruction parameters, on the detection of lung nodules by CAD software applied to low 
dose Lung Cancer Screening CT exams. 

Our dataset consisted of data from 59 subjects who underwent low dose CT for lung 
cancer screening at our institution. Scans were performed using a 64-slice MDCT with Tube 
Current Modulation (TCM) according to the AAPM lung cancer screening protocols, which 
yielded a CTDIvol of approximately 2 mGy. For each case, image data and raw projection 
data were collected. A total of 71 solid nodules larger than 4mm (30 in LungRad1, 25 in 
LungRAD2, 11 in LungRAD3, 5 in LungRAD4) were identified by radiologists (on original 
scans with 1mm slice thickness and B45 kernel). Noise was added to the raw projection data 
to simulate reduced dose scans at 3 dose levels of 10%, 25%, and 50% (corresponding to 
CTDIvol of 0.2, 0.5 and 1 mGy). All original and simulated raw data were reconstructed with 
slice thicknesses of 0.6, 1, and 2mm and at three reconstruction kernels (smooth, medium and 
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sharp). Lung regions were segmented using original image data and were mapped to all other 
image datasets. An in-house CAD software was used to detect nodules on simulated images. 
Subject level mean sensitivity (in LungRADS categories) and mean false-positive for each of 
acquisition conditions were calculated. 

Our results showed that subject level mean sensitivity values ranged between 40% to 
80% for LungRAD4, 27% to 55% for LungRAD3, 22% to 50% for LungRAD2, and 10% to 
53% for LungRAD1. Sensitivity was stable at all dose levels in LungRAD3 and LungRAD4 
categories (even down to 10% of screening dose), with a medium kernel and either 1mm or 
0.6 mm slice thickness. Mean false-positive was between 2-9 per patient with most conditions 
yielding < 4. 

Our study concluded that CAD detection sensitivity was reasonably robust to dose, slice 
thickness and kernel, though the sharper kernel yielded the most variable performance. False 
positives were also surprisingly stable except at very high noise (low dose, thin slice, sharp 
kernel) conditions.  This work was presented at both AAPM and RSNA conferences this past 
year [6], [7]. 

COLLABORATIONS WITHIN THE NETWORK  
 
§ QIN Feature Challenge  
 

The UCLA QIN team participated in the CT Image Feature Challenge (coordinated by 
Moffit QIN and executed with the PET-CT group). We submitted a limited set of feature data 
(15 features, one from several different categories) to participate in this challenge. The 
purpose of this study was to investigate the sensitivity of quantitative descriptors of pulmonary 
nodules to segmentations and to illustrate comparisons across different feature types and 
features computed by different implementations of feature extraction algorithms. The 
concordance correlation coefficients of the features was calculated as a measure of their 
stability with the underlying segmentation. 

This study showed that 68% of the 830 features in this study had a concordance CC of 
0.75. Pairwise correlation coefficients between pairs of features were used to uncover 
associations between features, particularly as measured by different participants. A graphical 
model approach was used to enumerate the number of uncorrelated feature groups at given 
thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, 
respectively, providing a measure for the features’ redundancy. This work resulted in a peer-
reviewed publication in the special issue of the journal Tomography 
(DOI:10.18383/j.tom.2016.00235).[8] 

§ QIN Semi-Automated Pulmonary Nodule Interval Segmentation using the NLST data.  

The UCLA QIN team also participated in the Nodule Interval Segmentation project 
that was again executed within the QIN by the PET-CT group. The purpose of this study was 
to investigate the variability in volume change estimates of pulmonary nodules due to 
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segmentation approaches used across several algorithms and to evaluate these effects on the 
ability to predict nodule malignancy. 

The study used 100 patient image datasets from the National Lung Screening Trial 
(NLST) that had a nodule detected on each of two consecutive low dose computed 
tomography (LDCT) scans, with an equal proportion of malignant and benign cases (50 
malignant, 50 benign). Information about the nodule location for the cases was provided by a 
screen capture with a bounding box and its axial location was indicated. Five participating 
Quantitative Imaging Network (QIN) institutions performed nodule segmentation using their 
preferred semi-automated algorithms with no manual correction; teams were allowed to 
provide additional manually corrected segmentations (analyzed separately). The teams were 
asked to provide segmentation masks for each nodule at both time points. From these masks, 
the volume was estimated for the nodule at each time point; the change in volume (absolute 
and percent change) across time points was estimated as well. We used the concordance 
correlation coefficient (CCC) to compare the similarity of computed nodule volumes (absolute 
and percent change) across algorithms. We used Logistic regression model on the change in 
volume (absolute change and percent change) of the nodules to predict the malignancy status, 
the area under the receiver operating characteristic curve (AUROC) and confidence intervals 
were reported. Because the size of nodules was expected to have a substantial effect on 
segmentation variability, analysis of change in volumes was stratified by lesion size, where 
lesions were grouped into those with a longest diameter of <8mm and those with longest 
diameter ≥ 8mm. 

The results showed that segmentation of the nodules shows substantial variability 
across algorithms, with the CCC ranging from 0.56 to 0.95 for change in volume (percent 
change in volume range was [0.15 to 0.86]) across the nodules. When examining nodules 
based on their longest diameter, we find the CCC had higher values for large nodules with a 
range of [0.54 to 0.93] among the algorithms, while percent change in volume was [0.3 to 
0.95]. Compared to that of smaller nodules which had a range of [-0.0038 to 0.69] and percent 
change in volume was [-0.039 to 0.92]. The malignancy prediction results showed consistent 
results across the institutions, the AUC using change in volume ranged from 0.65 to 0.89 
(Percent change in volume was 0.64 to 0.86) for entire nodule range. Prediction improves for 
large nodule range (≥ 8mm) with AUC range 0.75 to 0.90 (percent change in volume was 0.74 
to 0.92). Compared to smaller nodule range (<8mm) with AUC range 0.57 to 0.78 (percent 
change in volume was 0.59 to 0.77). 

The study concluded that there is a high concordance in the size measurements for larger 
nodules (≥8mm) than the lower sizes (<8mm) across algorithms. We find the change in nodule 
volume (absolute and percent change) were consistent predictors of malignancy across 
institutions, despite using different segmentation algorithms. Using volume change estimates 
without corrections shows slightly lower predictability (for two teams).  This work was 
recently published in Medical Physics (Med Phys. 2018 Jan 24. doi: 10.1002/mp.12766) [9] 
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PLANS FOR NEXT YEAR  

During the next year, we will extend our work in several different ways as described below. 

§ Extend Data Collection Efforts  

We will continue our data collection efforts for raw projection data from our outpatient 
CT scanners. In addition, we will be working with our Oncology Imaging team within the 
Department of Radiology along with Drs. Toni Ribas and Jonathan Goldman from the 
Department of Oncology to identify scans of patients who are under specific clinical trials, 
with an emphasis on immunotherapy trials (or those who are having immunotherapy 
treatments as part of their clinical management). 

§ Further Investigate the Effects  of Mitigation  Measures on Quantitative Imaging Tasks:  
Iterative Reconstruction and DeNoising  Methods  

In previous years, we have focused on investigations into the effects of acquisition and 
reconstruction parameters on quantitative features. In the coming year, we will extend these 
investigations into the effects of mitigation measures – such as limiting the imaging protocol 
space or image denoising – on these quantitative imaging features. More specifically, we will 
examine the effects on quantitative imaging features such as size (e.g. volume), density, shape 
and texture under several acquisition/reconstruction/denoising conditions (see table below). 
Using a reference imaging condition for the basis of comparison, we will examine the effects 
on features extracted from a lung lesion over this wide range of conditions and determine: (a) 
the range of conditions over which the feature value can be maintained within a specified 
value (say 5%) of the value obtained from the reference condition and then (b) determine the 
range of conditions this could be expanded to either by using iterative reconstruction 
techniques or other denoising methods. We fully expect this “range of acceptable conditions” 
to vary from feature to feature (as we have seen with results previously investigated). We 
believe this will inform clinical trials using quantitative endpoints (tumor volume or other 
radiomic features) of both: (a) the range of conditions that should be specified as “acceptable” 
for a clinical trial and (b) describe methods to extend that range by denoising (which could 
also serve as a “corrective method” if a study is performed out of protocol and the alternative 
is to remove the scan from consideration because it was not performed according to study 
protocol procedures.  We think this would be a substantial contribution to clinical trials using 
CT and quantitative endpoints to help assess treatment response. Please see the collection of 
images created for this purpose that are shown in the Appendix of this report. 

§ QIN Feature Ontology Effort  

This effort has been initiated by the PET-CT Group and has begun only very 
preliminary work to date. The motivation is that medical imaging is one of the largest sources 
of "Big Data" in the world. Yet most of the data is in the form of unstructured objects, making 
these data difficult to access in an organized manner and/or utilize in any subsequent 
computerized analysis. Radiomics, "the high-throughput extraction of large amounts of image 
features from radiographic images," has been used to provide quantitative characterizations 
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of regions of interest in images that are the basis for the classification and prediction tasks in 
radiology and oncology (e.g., tumor characterization for diagnostic purposes). However, there 
are substantial challenges to comparing and reproducing results across sites and studies for 
several reasons. The purpose of this work was to begin to address one of those issues by 
starting to standardize the terminology used to describe imaging features. This will facilitate 
the specific definitions of quantitative features, which will allow direct comparisons between 
features collected by different investigators or in different datasets or even domains and will 
ultimately increase the confidence in integrating these quantitative features into clinical 
practice in the future. 

Over the coming year, the group will investigate several key aspects, starting with: 

1. Identifying the mission of this effort. Specifically, this will involve performing a gap 
analysis to determine what other entities in our community have done and what 
activities are underway and to identify how we can interact with those communities 
and not duplicate efforts, but provide complementary activities that are within the 
QIN’s expertise. 

2. Define different types/definitions of Region of Interest (ROIs) that are widely used. 
This will be very helpful as a pre-requisite for many feature definitions (that is, many 
times the feature calculation depends heavily on the definition of the region being used 
to describe the object of interest) 

3. The group has also had preliminary discussions about possible Phantoms (Digital and 
Physical), Reference Datasets and a testing procedure (including possibly a suggested 
progression). These discussions have included possibly progressions where one can 
start with analytical phantoms, move to physical phantoms (or rather digital image 
representations of physical phantoms) and then to patient datasets. 

4. The group has even had preliminary discussions about providing reference 
implementations of features (not an exhaustive list of features, but “representative 
implementations” from different feature groups that could be shared publicly). 

Together, the possibility of a reference set of feature values from a reference dataset using 
a reference (and well described) reference implementation of quantitative features (e.g. 
annotated source code) could be a substantial resource for the radiomics community that could 
facilitate more direct comparisons of methods and results. 
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APPENDIX  
§ Representative Images from Different Acquisition/Reconstruction Conditions.   
 

The below images all originated from the same raw projection dataset. They represent 
a small section (with some emphysematous destruction in the lung) of a lung cancer screening 
exam. Raw projection data was used to first simulate 3 reduced dose level scans (100%, 50%, 
25% and 10% of original dose) which were then reconstructed with: (a) different slice 
thicknesses (0.6, 1.0 and 2.0 mm), (b) different kernels for wFPB and SAFIRE (Siemens’ 
iterative reconstruction); and then (c) applied bilateral filtering to each dataset. The reference 
condition is 100% dose, 1.0mm thickness, wFPB using the medium kernel (outlined in red). 

These images demonstrate the substantial variation in appearance due to acquisition 
(dose) and reconstruction conditions. These image datasets will be used to assess the effects 
of these acquisition/ reconstruction and mitigation measures (denoising) on quantitative 
imaging features. 

155 



 
 

 
 
                                    

                
            

 
                      

            

 
                                   

            

 
                       
 

   
   

 
   

 
 

 
 

  

 

 

 

 
 

    

   
   

 
   

 
 

 

   
   

 
   

 
 

   
   

 
   

 
 

Dose 

0.
0.

6 
1.

0 
   

2.
0m

m
 

SAFIRE 
(iterative) 

wFBP w/ 
Bilateral 
Filtering 

SAFIRE w/ 
Bilateral 
Filtering 

wFBP 
(conventional) 

Smooth kernel Medium Sharp kernel 

0.
6 

1.
0 

   
2.

0m
m

 

Dose Level 

6 
1.

0 
   

2.
0m

m
 

0.
6 

1.
0 

   
2.

0m
m

 

156 



 
 

 
 

   
  

    
  

 
 

     
 

 
   

 
 

 
  

  
 

 

 
 

    
  

 
 
 
 

 

U01 CA176110:  Quantitative Perfusion  and Diffusion MRI Biomarkers 
to Measure Glioma Response  

 
Medical College of  Wisconsin  

 
Kathleen M. Schmainda, Ph.D.  

 
INTRODUCTION  

The overall goal of this project is to develop and validate both standard and novel 
perfusion-weighted MRI (PWI) and diffusion-weighted MRI (DWI) biomarkers to monitor 
treatment response for both therapeutic clinical trials and standard of care treatment for 
patients with brain tumors. This goal addresses an urgent need for better ways to monitor 
targeted therapies, for which standard measures of enhancing tumor volumes are no longer 
sufficient. Also, in order to make the optimized PWI/DWI technology and workflow available 
in a robust and cost-effective manner for clinical trials and standard practice, we are working 
with industry partners to develop an integrated image analysis platform for use in large-scale 
multi-center clinical trials and daily clinical care. 

PROGRESS OVER THE PAST YEAR  
 

§ Specific Aim1  

Characterize the repeatability of DSC and DEGES PWI and DWI (fDM) parameters in 
primary brain tumors. 

We spearheaded a QIN collaborative project to assess the consistency of DSC-
MRI analysis methods across sites and platforms.  

The initial results from this study were presented at the 2017 International Society of Magnetic 
Resonance in Medicine Meeting [1], and recently submitted as a manuscript to the American 
Journal of Neuroradiology. The results showed excellent cross-site agreement for rCBV.  All 
metrics were capable of distinguishing low-grade from high-grade tumor.  Optimum 
thresholds were determined using pooled data of both normalized rCBV and CBF (Figure 1).  
This study demonstrates that both normalized relative cerebral blood volume (nRCBV) and 
cerebral blood flow (nCBF) can be used to distinguish low-grade from high-grade brain tumor, 
in a consistent fashion and using a single consensus nRCBV or nCBF threshold.  

Significance: This result should lend confidence and consistency for the use of nRCBV 
on a routine basis, potentially motivating its incorporation into an updated RANO criteria for 
the assessment of brain tumor response. 
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Figure 1: Box plots showing sum of sensitivity and 
specificity values for nRCBV (a) and nCBF (b) for all sites and 
metrics.  From these data, values that gave a maximum sum and 
minimal variance were chosen as the consensus threshold 
values. 

Optimization of DSC MRI Echo Times for CBV Measurements.   
 
Using a combination of simulations and DEGES data acquired for our U01 study an 

error analysis was performed to determine the TE that would minimize the variance in CBV 
measurements made with DSC MRI.  The results of this study, recently published [2], 
demonstrate that the optimal TE for a typical single-echo DSC MRI acquisition is a weighted 
average of T2* values that occur before and after the passage of contrast agent. 
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§  Specific Aim 3  
 

  
  

 
 
 
 

Significance:  The results confirm that the TE = 30ms, that we have been using in our 
studies is ideal for the analysis of brain tumor.  However, it is less ideal for other tissues, such 
as white matter, or when an arterial input function (AIF) is to be determined, an important 
factor to keep in mind for ongoing analyses. 

§ Specific Aim 2  

To prospectively determine the ability of pMRI and DWI to predict treatment response
in glioblastoma patients. 

Histologic validation of perfusion and diffusion metrics to distinguish tumor from 
treatment effect.    

The aim of this study was to determine the diagnostic accuracy of several MRI-derived 
diffusion and perfusion parameters to distinguish pure treatment effect (TE) from pure 
glioblastoma (GBM) using spatially-correlated biopsy samples.  Histopathologic diagnosis of 
pure TE (n=10) or pure GBM (n=34) was confirmed in tissue samples from 15 consecutive 
subjects with analyzable data.  Perfusion thresholds distinguished TE from GBM (P<0.05), 
whereas ADC, PSR, and PH could not (P>0.05). A manuscript describing this study was 
recently published [3]. 

Significance:  These validated thresholds can be used to determine the fractional tumor 
burden (FTB) within enhancing lesions.  This should prove useful for surgical guidance and 
increased confidence in the assessment of treatment response. 

MRI-derived fractional tumor burden (FTB) is  predictive of overall and  
progression free survival in newly diagnosed GBM following concomitant 
chemoradiation therapy and recurrent  GBM following bevacizumab therapy.    

These two studies were selected as oral presentations at the 25th Annual International 
Society of Magnetic Resonance in Medicine meeting [4, 5].  Using the deltaT1 method and 
the validated perfusion thresholds described above, FTB maps were created and demonstrated 
the ability to predict response to therapy using two different therapeutic strategies.  Example 
FTB maps are shown in Figure 2.  Additional patient data is being analyzed with the plans to 
submit two papers on this topic within the next three months. 

Significance:  This new imaging biomarker, fractional tumor burden (FTB), may 
provide the answer to the longstanding unmet need of being able to distinguish tumor from 
treatment effect. 

To develop a commercial integrated PWI/DWI image analysis platform for use in 
large-scale multi-center multi-platform clinical trials. 
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IB Rad  Tech development  
 
The DWI outputs added to the core processing library used by IB Rad Tech were 

revised in response to the feedback received from the diffusion MRI challenge led by Dr David 
Newitt [6, 7]. A base PWI/DWI comparison workflow was designed and added to IB Rad 
Tech, and workflow features continued to be added and enhanced. In addition, after extensive 
testing by QIN members and others, versions 2.0 of IB Rad Tech (workflow engine), IB Neuro 
(DSC-PWI processor), IB Diffusion (DWI processor), and IB DCE (DCE-PWI processor) 
were all released as FDA-cleared and CE-Marked products in November 2017. 

Significance: Having parallel development of an industrial platform ensures efficient 
and timely translation of the most proven technologies for widespread use in both the research 
and clinical communities. 

Figure 2: Example fractional tumor burden (FTB) maps in a 58-year-old 
female. The tissue histopathology of the region encircled in blue is treatment 
effect (TE) with sparse neoplastic astrocytes, and encircled in yellow 
contains sections of both TE and GBM. Using the respective thresholds, 
GBM (red) and TE (white) are shown in areas within enhancement on post-
contrast SPGR (A) using sRCBV thresholds (B). 

COLLABORATIONS WITHIN THE NETWORK  
 

§ We participated in a QIN collaborative project  to assess the concordance of DWI  
metrics  across sites.  

The initial results from this study were presented at the 2017 International Society of 
Magnetic Resonance in Medicine [6].  The manuscript describing the study was recently 
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published [7].  The conclusions of the study were that while agreement between the majority 
of ADC mapping implementations was good, the biases in in vivo ADC measures both 
between different offline implementations and between vendor-generated and offline maps 
are significant. Furthermore, these differences may, in some cases, be large enough to 
adversely affect the analysis of multi-site diffusion data. 

Significance:  The results of this study indicate that for any given longitudinal (e.g. 
treatment response) study all analyses should be performed on a common platform. 
Therefore, using DWI for our brain tumor response studies should not rely on each vendor’s 
calculated ADC maps.  Instead the raw data should be imported into a single platform and 
analyzed there. 

We led a QIN collaborative project to assess the consistency of DSC-MRI analysis  
methods for the evaluation of brain tumors.  This was performed across sites and  
platforms  as described above under Aim 1 results.  

We participated in a DICOM (Digital Imaging and Communication in Medicin)  
Challenge.   

The results are described in the recent publication [8] . The goal of the collaborative 
project was to assess the current capability and provide future guidelines for generating a 
standard parametric diffusion map Digital Imaging and Communication in Medicine 
(DICOM) in clinical trials that utilizes quantitative diffusion-weighted imaging (DWI). 
Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate 
parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The 
results were evaluated for numerical consistency among models and true phantom ADC 
values, as well as for consistency of metadata with attributes required by the DICOM 
standards. This analysis identified missing metadata descriptive of the sources for detected 
numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites 
stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded 
terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units 
and scale, deemed important for numerical consistency, were either missing or stored using 
nonstandard conventions. 

Significance: Guided by the identified limitations, the DICOM PM standard has been 
amended to include coded terms for the relevant diffusion models. Open-source software has 
been developed to support conversion of site-specific formats into the standard representation. 
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PLANS FOR NEXT YEAR  
 

§ Specific Aim1:  Characterize the repeatability of DSC and DEGES PWI and DWI  
(fDM) parameters in primary  brain tumors.  
 

Additional  SPICE data has been collected and undergoing analysis.  

This data will be combined with data previously collected (for this U01 study) at 
Barrow Neurological Institute.  Comparison of single-echo DSC-MRI data to dual-echo DSC 
MRI data, and the resulting rCBV maps is underway, with journal submission expected within 
the next 6 months. 

Implementation of an EPI-based multiple echo sequence.  

While we have made great progress with our dual-echo spiral-based sequence for 
perfusion imaging (ie SPICE), spiral-based methods are not currently well-supported.  
Therefore, we continue to search for EPI-based dual-echo options.  In this context, we have 
initiated a relationship with developers at GE Healthcare who have a prototype multi-echo 
EPI (MEPI), which they will make available within the next few months.  We plan to install 
this and test it with data collection in 2018. 

§ Specific Aim 2:  To  prospectively determine the ability of pMRI and DWI to  predict  
treatment response in glioblastoma patients.    
 

The creation and validation of dT1 maps  
 
This  is being written with plans  for journal submission  within the next six  months.  

 
Access has been granted to pre/post-contrast T1-weighted MR  images from  
RTOG 0625.  
 
We computed dT1 maps for this data, which will be compared to the central reader 

analysis previously published.  The goal is to determine if automated delineation of enhancing 
lesion, obtained with dT1 maps, is as good as central reader analysis.  If proven this would be 
a paradigm shift in how brain tumor clinical studies are performed.  Data analysis is underway. 

MRI-derived fractional tumor burden (FTB) is predictive of overall and  
progression free survival in newly diagnosed GBM following concomitant  
chemoradiation therapy and recurrent  GBM following bevacizumab therapy.   

Using the deltaT1 method and the validated perfusion thresholds, FTB maps were 
created and demonstrated the ability to predict response to therapy using two different 
therapeutic strategies. Patient data is being analyzed with the plans to submit two papers on 
this topic within the next three months. 
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Implementation of RSI (restriction spectrum imaging) data collection and  
processing.  
 
RSI is a promising new  way to collect and  analyze diffusion MRI data.   Initial results  

demonstrate its ability to  more directly detect tumor cellularity  without being confounded by  
other treatment related  changes such as edema.  We have recently implemented this sequence 
and have begun collecting data.  This advancement directly  addresses the original goal of this  
aim to assess the value of diffusion in treatment monitoring of patients with brain tumors.  
 
§  Specific Aim 3:  To develop a commercial integrated  PWI/DWI image  analysis platform  
for use in large-scale multi-center multi-platform clinical trials.   
 

Additional enhancements are planned for IB Rad Tech for year 5.  
 
These include direct calculation of DWI parameters; additional longitudinal statistical 

calculations, retention and reporting features; and automation of some currently manual  
processing activities.  
 

The IB Rad Tech 2.0 protocol will continue to be enhanced  
 
This will occur  during year  five to accommodate  IB  Rad Tech enhancements. Work 

has begun on the workflow designer/editor, and efforts on this will continue throughout  year  
five.  
 

For data sharing Imaging Biometrics putting resources into development of  
features   

This will address data access and processing needs as expressed in QIN discussions, 
teleconferences and collaborative projects. 
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Burden  (FTB) stratifies survival in recurrent glioblastoma following treatment with  
bevacizumab. in Proceedings of the  International Society  of Magnetic  Resonance in  
Medicine, 25th Annual  Meeting. 2017. Honolulu, Hawaii. P 708  

 
7.  Li  K, Chen Y, Yu Y,  Li  X, fedorov A, Jajamovich G, Malyarenko D, Aryal M, LaViolette  

P, Oborski M, O’Sullivan F, Abramson R, Jafari-Khouzani K, Afzal A, Tudorica  A,  
Moloney  B, Gupta S, Besa C, Kalpathy-Cramer  J, Mountz J, Laymon  C, Muzi M, Kinahan  
P, Schmainda K, Cao Y, Chenevert T, Taouli B, Fennessy  F, Yankeelov T, Li X, Huang 
W.  The effects of  AIF quantification variations  on DCE-MRI prediction of soft tissue  
sarcoma response to preoperative therapy:  a preliminary multicenter  study. in Proceedings  
of the  International Society of Magnetic Resonance in Medicine, 25th Annual Meeting.  
2017. Honolulu, Hawaii. P 4375.  

 
8.  Schmainda KM, Prah MA, Rand SD, Muzi M, Rane SD, Da X, Yen YF, Kalpathy-

Cramer J, Chenevert TL, Malyarenko D, Hoff  B, Ross B, Cao Y, Aryal MP, Erickson B,  
Korfiatis P, Bell L, Hu  L, Quarles CC.  “Multi-site concordance of DSC-MRI analysis for  
brain tumors: Results of  a NCI Quantitative  Imaging Network DSC-MRI Collaborative  
Project”. in Proceedings of the  International Society of Magnetic Resonance in Medicine,  
25th Annual Meeting. 2017. Honolulu, Hawaii. P 261.  

 

 
    

  
 

 

Society of Magnetic Resonance in Medicine, 25th Annual Meeting. 2017. Honolulu, 
Hawaii. P 625. 

§ Papers  

1. Bell LC, Does MD, Stokes AM, Baxter LC, Schmainda KM, Dueck AC, Quarles CC. 
“Optimization of dSC MRI Echo Times for CBV measurements using error analysis in a 
pilot study of high-grade gliomas”  Am J NeuroRadiology 38:1710-15 (2017). 

2.  Malyarenko D, Fedorov A, Bell  L, Prah M, Hectors S, Arlinghaus  L, Muzi M, Solaiyappan  
M, Jacobs M, Fung M, Shukla-Dave A, McManus K, Boss M, Taouli  B, Yankeelov TE,  
Quarles CC,  Schmainda K, Chenevert TL, Newitt DC.  Toward uniform implementation 
of parametric map  Digital Imaging  and Communication in Medicine standard in multisite  
quantitative diffusion imaging studies.  J  Med Imaging (Bellingham), 2018 5(1): Epub 
2017 Oct 30.  

 
3.  Newitt  DC, Malyarenko D, chenevert TL, Quarles CC, Bell L, Fedorov A, Fennessy F,  

Jacobs MA, Solaiyappan M, Hectors S, Taouli B, Muzi M, Kinahan PE, Schmainda KM, 
Prah MA, Taber EN, Kroenke C, Huang  W, Arlinghaus  LR, Yankeelov TE, Cao Y, Aryal  
M, Yen  YF, Kalpathy-Cramer J, Shukla-Dave  A, Fung M,  Liang J, Boss  M, Hylton N.  
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4.  Prah MA, Al-Gizawiy  MM, Mueller WM, Cochran EJ, Hoffmann RG, Connelly JM, 

Schmainda KM.  Spatial discrimination of glioblastoma and treatment effect with  
histologically-validated  perfusion and diffusion magnetic resonance imaging metrics. J  
Neurooncol, 136:13-21 (2018).  

 
5.  Schmainda KM, Prah MA, Rand SD, Liu Y, Logan B, Muzi M, Rane  SD, Da X, Yen  

YF, Kalpathy-Cramer J, Chenevert TL, Hoff  B, Ross B, Cao Y, Aryal MP, Erickson B,  
Korfiatis, Dondlinger T,  P, Bell L, Hu L, Kinahan P, Quarles CC. “Multi-site concordance 
of DSC-MRI  analysis for brain tumors: Results of a NCI Quantitative  Imaging Network  
DSC-MRI Collaborative  Project”. Am J Neurorad (In Press).  

Multisite concordance of apparent diffusion coefficient measurements across the NCI 
Quantitative Imaging Network. J Med Imaging (Bellingham), 2018. 5(1): p. 011003. 
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DISCUSSION OF PROGRESS  
 
§ Development of Web-based spectroscopic MRI-dedicated  Clinical Interface  for Brain 
Tumor  Imaging  (BrICS:  Brain Imaging Collaboration Suite)  
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Peter Barker, Ph.D.  

 
INTRODUCTION  

 
A major impediment to the development of new therapies for glioblastoma (GBM) is 

a lack of biomarkers to quantitatively monitor response. Standard of care diagnostic images 
(contrast-enhanced T1 weighted MRI and T2-weighted/FLAIR) are used to guide surgical 
resection and radiation therapy planning, While these images are excellent images to 
differentiate higher grade gliomas from lower grade gliomas, they do not show the entirety 
of infiltration of GBMs. Proton magnetic resonance spectroscopic imaging (MRSI), which 
can characterize regions of brain based on levels of various metabolites and other 
substances, is a candidate imaging modality for defining high risk regions that are not 
identified by standard MRI.  Metabolites that can be evaluated include: choline (Cho), a 
metabolite reflecting cell membrane synthesis that is elevated in highly proliferating, non-
necrotic gliomas; creatine (Cr), an energy metabolite; and N-acetyl aspartate (NAA), a 
healthy neuronal biomarker that is decreased as healthy tissue is displaced. Early studies 
established that the MR spectra of GBMs differ significantly from normal brain, with 
increased levels of Cho, and decreased levels of NAA. 

There is widespread agreement that MR spectroscopy can provide valuable 
information without the need for exogenous contrast agents, however the infrastructure 
needed to incorporate MRSI into the clinical workflow is lacking. We have been developing 
a web-based application, the Brain Imaging Collaboration Suite to facilitate use of MRSI in 
the clinical workflow for radiation therapy planning. This “scanner-to-clinician” platform is 
designed to provide quantitative, expedient, and objective analysis to integrate spectroscopic 
MRI (sMRI) into routine clinical usage, including diagnosis and therapy planning (radiation 
or surgery). It also includes editing tools to modify the treatment volume and automatic 
segmentation tool for defining residual contrast enhanced tumor volume. In addition, this 
user-friendly tool can be highly valuable in the sMRI-based diagnosis and evaluation of 
numerous other neuropathologies aside from cancer, including hypoxic-ischemic injury, 
multiple sclerosis (and other demyelinating diseases), inborn errors of metabolism, and 
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§ Tumor response to HDAC inhibitor  
 

    
    

     
 

    
  

 
  

 
  

  
   

   
     

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

neurodegenerative diseases, such as Alzheimer’s. A video clip briefly introducing its 
capabilities is enclosed. 

Patients with GBM enrolled in NCT02137759 were given intravenous belinostat 
(Spectrum Pharmaceuticals) at a dose of either 750mg/kg/m2 or 500mg/kg/m2 (3 cycles, 5 
days, every third week). Patients underwent maximal safe tumor resection followed by daily 
75mg/m2 temozolomide plus 60 Gy radiation to residual contrast-enhancing tissue. Tissue 
samples collected during resection were stained with anti-acetylated histone H4 antibody 
(Acetyl H4, #Ab15823, Abcam). sMRI scans were performed at baseline and one-month 
post-radiation, specifically looking at the choline-to-NAA ratio (CHO/NAA). The volume of 
metabolically active tissue (2x abnormal in Cho/NAA compared to contralateral 
metabolism) was calculated for quantitative assessment of tumor response. The Cho/NAA 
ratio is shown for two patients assessed at baseline and 4 weeks’ post-chemoradiation. 
Patient #1 is a 51-year-old female with poor therapeutic response (Figure a). Her tissue 
stained weakly for acetyl H4; her metabolically-active tumor volume increased 64.8cm3 to 
80.5cm3. Patient #2 is a 28-year-old female (Figure b) whose tissue stained strongly for 
acetyl H4, and whose metabolically-active tumor decreased 81.6cm3 to 50.1cm3. These 
responses are consistent with progression-free survival, as patient #1 progressed while 
patient #2 has not (9 months post-chemoradiation).  These cases suggest that acetyl H4 may 
be a good biomarker for predicting HDACi treatment efficacy, and that metabolic response 
can be monitored non-invasively using sMRI. So far, we have enrolled 13 patients in HDAC 
inhibitor treatment cohort while 15 matching control (standard care) subjects. We anticipate 
to enroll 20 more patients in HDAC inhibitor treatment cohort in next 6 months at two sites. 

a) 

b) 

Baseline 4wks post-RT Acetyl H4 staining 
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PUBLICATIONS AND  PRESENTATIONS FROM QIN INVOLVEMENT  
 
§ Manuscripts published directly as a result of this grant:  
 

 
  

 
 

 
  

 
 

 
 

 
 
 
 
 

COLLABORATIONS WITHIN  THE NETWORK  

current  project is  a two-site  clinical study, with  the Emory team collabOur orating 
with Johns Hopkins. BrICS has been shared between these sites, and is expanding to the 
University of Miami. We have a plan to expand to include Cedars Sinai, Mount Sinai, 
Memorial Sloan Kettering, and New York University late this year. We hope to deploy this 
technology with several QIN sites later in 2018/2019. Hui-Kuo Shu, MD, PhD has been 
serving as the chair of CTDD Working Group and involved in many activities to promote 
QIN to various national clinical trial consortiums. He also serves as a co-chair of NCI 
Quantitative Imaging for Radiation Therapy (QIRT) Working Group. 

PLANS FOR NEXT YEAR  

We plan to continue with patient enrollment for our clinical study at two sites for 6 
more months and collect follow-up data. We will compile the data and present the results at 
the national meetings. We are preparing a manuscript to be submitted to Cancer Research. 

Our sMRI resolution is 108 microliters and the scan time for 3D whole brain sMRI 
for 6 different metabolite maps takes 15 mins. We have purchased two new Siemens Prisma 
3T scanners with 32 channel head coil array that are well-calibrated. We installed the same 
advanced sequence on two Prisma scanners with help from Dr. Maudsley at University of 
Miami (consultant) and Siemens. 

Hopefully, we can get funding (BRP U01 CA225462) for further developing our 
sequence and analysis program plus hardware to transform sMRI a standard imaging. 

Cordova, J.S., Kandula, S., Gurbani, S. S., Zhong, J., Tejani, M., Kayode, O., Patel, K., 
Prabhu, R., Schreibmann, E., Crocker, I., Holder, C.A., Shim, H., Shu, H.G. The impact of 
integrating volumetric whole-brain spectroscopic MRI into radiation treatment planning for 
glioblastoma. Tomography, 2(4): 366-373. PMC5241103 

Gurbani, S., Schreibmann, E., Maudsley, A., Cordova, J.S., Soher, B.J., Poptani, H., Verma, 
G., Barker, P.B., Shim, H, Cooper LAD  A convolutional neuronal network to filter artifacts 
in spectroscopic MRI.  Final revision, Magnetic Resonance in Medicine. 

Gurbani, S., Olson, J., Shu, H., Shim, H.  Assessing treatment response of glioblastoma to 
an HDAC inhibitor belinostat. Will be submitted to Cancer Research 
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NATIONAL  PRESENTATIONS  DIRECTLY AS A RESULT OF THIS GRANT  
 
§ Invited Lectures at the National Meetings:  
 
Shim et al. “spectroscopic MRI for the management of brain tumor patient” – Siemens 
Healthcare Webinar, Feb 2017. 

Shim et al. “spectroscopic MRI to guide radiation therapy dose escalation in GBM patients” 
– Eastern Cooperative Oncology Group – American College of Radiology Imaging network 
(ECOG-ACRIN) meeting, Invited lecture “future technology in pipeline” Washington DC, 
May 2017 

Shim et al. “Lead compound discovery and optimization, on the example of CXCR4” – 
International Society of Radiopharmaceutical Sciences, Plenary Lecture, Dresden, Germany, 
May 2017. 

Shim et al. “Spectroscopic MRI guided dose escalation for GBM” in CE session, “MRI-
Guided Adaptation: From Anatomy To Biology”, ASTRO, San Diego, Sept 2017 

Weinberg et al. “spectroscopic MRI to guide radiation therapy dose escalation in GBM 
patients” – Eastern Cooperative Oncology Group – American College of Radiology Imaging 
network (ECOG-ACRIN) meeting, Invited lecture “future technology in pipeline” Orlando, 
FL, October 2017 

Shim et al. “Molecular Imaging mini-course: Clinical application of molecular imaging – 
Neuro MRS & PET” RSNA Refresher Course, Chicago, December 2017 

Shu et al. “Implementing Quantitative Imaging Network (QIN) Tools in NCTN trials: QIN 
Clinical Trials Design & Development working group,“ presentation at the Imaging 
Working Group, NRG Oncology Semi-Annual Meeting, Philadelphia, PA, July 2017  

Shu et al. Discussant for Oral Scientific Session SS 5 Biology 1 - Innovative Biologic 
Approaches to Improve Risk Stratification and Treatment Outcomes, 59th Annual Meeting 
of the American Society for Therapeutic Radiology and Oncology (ASTRO), San Diego, 
CA, September 2017 

Shu et al. Keynote speaker for the CNS—Science Session with Keynote, 103rd Annual 
Meeting of the Radiological Society of North America, Chicago, IL, November 2017 

Shu et al. “Velocity for Radiosurgery and Radiotherapy Multimodality Tracking and 
Response Assessment,” Invited presentation at Varian Australasian Oncology Summit, 
Grand Hyatt Hotel, Melbourne, Victoria, Australia, February 2017 
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INVITED LECTURES  AT THE ACADEMIC CENTERS:  

Shim et al. “The use of high resolution 3D whole brain MR spectroscopic imaging in the 
management of brain tumor patients”, BIRI Seminar, Cedars Sinai Hospital, September 
2017 

Shim et al. “Use of whole brain spectroscopic MRI for the management of GBM patients”, 
Spectrum Pharmaceuticals, February 2016 

Shim et al. “Improved whole brain spectroscopic MRI to guide radiation dose escalation for 
glioblastomas”, Memorial Sloan Kettering Cancer Center, October, 2017 

Shim et al. “The significant potential of CXCR4 as an imaging/therapeutic target” Seoul 
National University Hospital, Seoul, Korea, December 2017 

Shu et al. “Brain tumor patients: Critical unmet needs for treatment planning imaging and 
spectroscopic MRI,” Invited seminar, Radiation Therapy Section, Peter MacCallum Cancer 
Center, Melbourne, Victoria, Australia, February 2017 

NATIONAL MEETING ABSTRACTS SELECTED FOR  
PRESENTATIONS  

Schreibmann E, Gurbani S., and Shim H. (2017) Integrating 3D whole brain sMRI into 
GBM treatment planning, Varian Conference, May 2017, Chicago, IL 

Gurbani S, Schreibmann S, Sheriff S, Holder, CA, Cooper L, Maudsley A, Shim H. (2017) 
Rapid internal normalization of spectroscopic MRI maps using a Gaussian mixture 
model. American Association of Physicists in Medicine (AAPM) Annual Meeting, 
Denver, CO. 

Schreibmann E, Gurbani S., and Shim H. (2017) Building an anatomical filter to facilitate 
3D whole brain spectroscopic MRI into GBM treatment planning. American 
Association of Physicists in Medicine (AAPM) Annual Meeting, Denver, CO. 

Gurbani S, Schreibmann S, Sheriff S, Cooper L, Maudsley A, Shim H. (2017) A software 
platform for collaborative radiation therapy planning using spectroscopic MRI. 
American Society for Radiation Oncology Annual Meeting, San Diego, CA. 

Gurbani S, Sengupta S, Voloschine A, Liang Z, Yoon Y, Olson J, Shu H, Shim H (2017) 
Assessing treatment response of glioblastoma to an HDAC inhibitor Belinostat. 
Society of Neuro-Oncology Annual Meeting, San Francisco, CA. 

Gurbani S, Kleinberg L, Zhong J, Olson J, Mellon E., Maudsley A, Shu H, Shim H (2017) 
Spectroscopic MRI predicts recurrence patterns in glioblastoma. Society of Neuro-
Oncology Annual Meeting, San Francisco, CA. 
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Special Note:  
 
Hyunsuk Shim, Ph.D. has taken a role as the senior/deputy editor of Cancer Research (the 

major AACR journal) who is in charge of Cancer Imaging. 

Hui-Kuo Shu, M.D., Ph.D. was selected as the Top Atlanta Doctor in 2017 
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INTRODUCTION  

 
  

 
 

 
 

 
 

   

 
  

  
  

  
 

  
  

 
 

  
 

 
  

  
  

  
  

  
 

 
  

  
 
 
 

In this proposal, we have developed a multiparametric MRI (mpMRI) protocol 
(Specific Aim 1)  quanti
biology and pathology,
hypoxia. The multiparam

fying different features of hepatocellular carcinoma (HCC) tumor 
 including tumor cellularity, grade, angiogenesis and degree of 
etric MRI (mpMRI) approach includes intravoxel incoherent motion 

(IVIM) DWI, DCE-MRI, T2* and T1 mapping using oxygen and carbogen challenge. 

This protocol has been performed in patients with HCC, including patients undergoing 
hepatic resection. Routine and advanced histopathologic methods have been performed in a 
subset of patients (Specific Aim 2).  

In the 30 initial patients, our team has showed that the R1 and R2* parameters in HCC 
are reproducible, and that there is a statistically significant decrease in R2* values in HCC 
before and after O2 and increase in R1 after O2. No significant effect was observed with 
carbogen. 

In addition, our team assessed the correlation between IVIM-DWI and DCE-MRI in 
HCC tumors and liver parenchyma. DCE-MRI derived arterial fraction and arterial flow were 
significantly negatively correlated with IVIM-DWI-derived perfusion fraction and 
pseudodiffusion in the liver, while IVIM-DWI parameters did not correlate with DCE-MRI 
parameters in HCC. These results indicate that IVIM-DWI and DCE-MRI provide non-
redundant information in HCC.  

Recently, our group assessed intratumor heterogeneity in HCC using mpMRI and 
histogram quantification (central tendency parameters mean and median and heterogeneity 
parameters standard deviation, kurtosis and skewness) in HCC lesions. The imaging findings 
were correlated with histopathology and gene expression levels. We observed that central 
tendency and heterogeneity parameters were largely complementary in terms of the assessed 
correlations. The proposed histogram analysis is therefore promising for noninvasive HCC 
characterization on the functional, immunohistochemical and genomics level. 

Finally, we are currently acquiring data assessing the prediction of H
(Specific Aim 3).  

CC response to 
yttrium 90 radioembolization in unresectable HCC 
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§ Discussion and Results of Progress  made over the previous year  
 

During this grant period, we have assessed HCC response to Yttrium 90 
radioembolization (one of the most efficient locoregional therapy currently available), where 
patients were assessed pre- and post-treatment to assess changes in MRI parameters and test 
the predictive value of MRI for HCC response at 6 months. We have preliminary data, and 
the final data analysis is still in progress. For this aim, we have also added HCC stiffness 
quantification using MR elastography. 

The use of these techniques will eventually result in a better assessment of HCC tumor 
biology, that could be used to orient treatment and predict response to new therapies, such as 
immune check-point inhibitors. 

SIGNIFICANT RESULTS  

• In HCC lesions, for DWI parameters: test-retest repeatability was good to excellent except 
for D* (pseudodiffusion coefficient). R2* measurements in HCC and liver parenchyma are 
more reproducible at 1.5T than at 3.0T, and with oxygen than with carbogen challenge. 
R1 measurement was highly repeatable. Repeatability of DCE-MRI parameters was 
variable ranging from poor to excellent, depending on the parameter studied. 

• Our preliminary experience with BOLD and TOLD MRI demonstrates variable response 
of HCC to O2 and CB challenges, with a proportion of tumors with O2 uptake that may 
possibly be considered hypoxic, depending on their perfusion pattern. 

• IVIM-DWI and DCE-MRI provide non-redundant information in HCC, while they 
correlate in liver parenchyma. These findings may be secondary to the predominant portal 
inflow in the liver and tortuous vasculature and tissue heterogeneity in tumors. 

• HCCs exhibit high tumor heterogeneity as assessed with histogram quantification in 
comparison with liver parenchyma. 

• Central tendency MRI parameters (mean/median) show significant correlations between 
MRI methods and with histopathology and gene expression; while heterogeneity 
parameters (histogram derived) exhibit additional complementary correlations between 
BOLD and DCE-MRI and with histopathologic hypoxia marker HIF1α and gene 
expression of Wnt target GLUL, pharmacological target FGFR4, stemness markers 
EPCAM and KRT19 and immune checkpoint PDCD1. Thus, histogram analysis 
combining central tendency and heterogeneity mpMRI features is promising for non-
invasive HCC characterization on the imaging, histologic and genomics levels. 

• Preliminary results suggest that HCC tumor stiffness measured with MR elastography 
increase early after radioembolization, while there is a significant drop in tumor perfusion 
(measured with DCE-MRI and IVIM blood-flow related parameter D*) and an increase in 
tumor ADC. 

COLLABORATIONS  WITHIN THE NETWORK  

We have performed a multicenter QIN study assessing T1 quantification variability 
across sites using a dedicated phantom. This has been the subject of a recent publication in 
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MRM (Bane et al, see below). We have also contributed to several MRI projects, which have 
been now published (see below). 

PLANS  FOR NEXT YEAR  

NA (the grant period has ended on 1/31/18) 

PUBLICATIONS AND PRESENTATIONS FROM QIN INVOLVEMENT  
 

1. Huang W, Li X, Li X, Chang M, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, 
Fedorov A, Chen Y, Tudorica A, Gupta SN, Laymon CM, Marro KI, Dyvorne HA, Miller 
JV, Chenevert TL, Yankeelov TE, Mountz J, Kinahan PE, Kikinis R, Taouli B, Fennessy 
F, Kalpathy-Cramer J. Variations of dynamic contrast-enhanced magnetic resonance 
imaging in evaluation of breast cancer therapy response: a multicenter data analysis 
challenge. Translational Oncology 2014 Feb 1;7(1):153-166. PMID 24772219 

2. Malyarenko D, Newitt D, Wilmes L, Tudorica A, Helmer KG, Arlinghaus LR, Jacobs 
MA, Jajamovich G, Taouli B, Yankeelov TE, Huang W, Chenevert TL. Demonstration of 
Nonlinearity Bias in the Measurement of the Apparent Diffusion Coefficient in 
Multicenter Trials. Magn Reson Med. 2016 Mar;75(3):1312-23. PMID 25940607  

3. Malyarenko D, Wilmes LJ, Arlinghaus LR, Jacobs MA, Huang W, Helmer KG, Taouli B, 
Yankeelov TE, Newitt D, Chenevert TL. QIN DAWG Validation of Gradient Nonlinearity 
Bias Correction Workflow for Quantitative Diffusion-Weighted Imaging in Multicenter 
Trials. Tomography. 2016;2(4):396-405. PMID: 28105469 

4. Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, 
LaViolette PS, Oborski MJ, Muz M, Jafari-Khouzani K, Afzal A, Tudorica A, Moloney 
B, Gupta SN, Abramson RG, Besa C, Kalpathy-Cramer J, Laymon CM, Schmainda K, 
Cao Y, Chenevert TL, Taouli B, Yankeelov TE, Fennessy F, Li X. The Impact of Arterial 
Input Function Determination Variation on Prostate Dynamic Contrast-Enhanced 
Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis 
Challenge. Tomography. 2016 Mar;2(1):56-66. PMID: 27200418 

5. Bane O, Hectors S, Wagner M, Arlinghaus, Madhava Aryal, Yue Cao, Thomas Chenevert, 
Fiona Fennessy, Wei Huang, Nola Hylton, Jayashree Kalpathy-Cramer, Kathryn Keenan, 
Dariya Malyarenko, Robert Mulkern, David Newitt, Stephen Russek, Karl Stupic, Alina 
Tudorica, Lisa Wilmes, Thomas Yankeelov, Yi-Fei Yen, Michael Boss, Bachir Taouli. 
Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods 
used for DCE-MRI: Results from a multicenter phantom study. Magnetic Resonance in 
Medicine 2017. doi: 10.1002/mrm.26903. Pubmed PMID: 28913930 

6. Newitt DC, Malyarenko D, Chenevert TL, Quarles CC, Bell L, Fedorov A, Fennessy F, 
Jacobs MA, Solaiyappan M, Hectors S, Taouli B, Muzi M, Kinahan P, Schmainda KM, 
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Prah MA, Taber EN, Kroenke C, Huang W, Arlinghaus LR, Yankeelov TE, Cao Y, Aryal 
M, Yen Y, Kalpathy-Cramer J, Shukla-Dave A, Fung M, Liang J, Boss M, Hylton N. 
Multi-site concordance of apparent diffusion coefficient measurements across the NCI 
Quantitative Imaging Network. J Med Imaging. 2018;5(1):011003. 

7. Malyarenko D, Fedorov A, Bell L, Prah M, Hectors S, Arlinghaus L, Muzi M, Solaiyappan 
M, Jacobs M, Fung M, Shukla-Dave A, McManus K, Boss M, Taouli B, Yankeelov T, 
Quarles CC, Schmainda K, Chenevert T, Newitt D. Toward uniform implementation of 
parametric map DICOM in multi-site quantitative diffusion imaging studies. Journal of 
Medical Imaging (Bellingham). 2018 Jan;5(1):011006). PMID: 29021993 

LIST OF REFERENCES  

1. Bane O, Besa C, Wagner M, Oesingmann N, Zhu H, Fiel MI, Taouli B. Feasibility and 
reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen 
gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn 
Reson Imaging. 2016;43(4):866-76. doi: 10.1002/jmri.25051. PubMed PMID: 26417669; 
PubMed Central PMCID: PMC4803537. 

2. Hectors SJ, Wagner M, Besa C, Bane O, Dyvorne HA, Fiel MI, Zhu H, Donovan M, 
Taouli B. Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular 
carcinoma: Is there a correlation with flow and perfusion metrics obtained with dynamic 
contrast-enhanced MRI? J Magn Reson Imaging. 2016. doi: 10.1002/jmri.25194. PubMed 
PMID: 26919327. 

3. Jajamovich GH, Huang W, Besa C, Li X, Afzal A, Dyvorne HA, Taouli B. DCE-MRI of 
hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed 
model--initial experience. MAGMA. 2016;29(1):49-58. doi: 10.1007/s10334-015-0513-
4. PubMed PMID: 26646522. 

4. Hectors S, Wagner M, Corcuera-Solano I, Kang M, Boss M, Taouli B. Comparison 
between three-scan-trace and diagonal body DWI acquisitions: a phantom and volunteer 
study. Tomography. 2016;2:411-420. PMID: 28480331 

5. Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, Chen N, Fiel MI, Zhu H, 
Merad M, Hoshida Y, Taouli B. Characterization of hepatocellular carcinoma 
heterogeneity with multiparametric MRI. Scientific Reports. 2017 26;7(1):2452. PMID: 
28550313 

6. Bane O, Hectors S, Wagner M, Arlinghaus, Madhava Aryal, Yue Cao, Thomas Chenevert, 
Fiona Fennessy, Wei Huang, Nola Hylton, Jayashree Kalpathy-Cramer, Kathryn Keenan, 
Dariya Malyarenko, Robert Mulkern, David Newitt, Stephen Russek, Karl Stupic, Alina 
Tudorica, Lisa Wilmes, Thomas Yankeelov, Yi-Fei Yen, Michael Boss, Bachir Taouli. 
Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods 
used for DCE-MRI: Results from a multicenter phantom study. Magnetic Resonance in 
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INTRODUCTION  

The goal of this project is to accelerate the development and deployment of 
quantitative imaging methods that improve the effectiveness and efficiency of clinical trials 
by using the combined resources of the NCI-sponsored cooperative group ECOG-ACRIN and 
the Quantitative Imaging Network (QIN). To achieve this goal, and in accord with NOT-CA-
13-011 (PAR-11-150), this project, outlined in Figure 1, will create QIN-wide research 
resources. 

ptimize the efficiency of the qualification and QA/QC processes to reduce 
costs and improve the quantitative accuracy of multi-center trials using advanced imaging. 

Develop the ECOG-ACRIN QIN Resource to support retrospective testing for 
single- or multi-site QIN projects that seek to develop effective and efficient metrics and 
analysis methods for trials using advanced imaging. 

Develop the ECOG-ACRIN QIN Resource to support prospective testing of 
novel quantitative imaging methods developed in the QIN. 

Figure 1: Progression through the specific aims of the project. 

As part of the QIN, ECOG-ACRIN QIN Resource will act as a scientific site for 
evaluating methodologies and metrics for quality assurance of imaging and associated data, 
focusing on understanding the costs of efficient and effective site qualifications that result in 
high-quality imaging studies and the metrics required to appropriately define the number of 
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participants required for adequate analysis. The relationship between QIN anad the various 
components of ECOG-ARIN are shown in Figure 2. 

This project will evaluate quality control at participating QIN laboratories, comparing 
practices currently applied by the NCI (e.g., CQIE) and ACR Imaging Core Laboratory (Aim 
1) at each participating QIN site.  The ECOG-ACRIN QIN Resource will further act as a 
resource development platform (Aims 2 and 3). ECOG-ACRIN, in league with the Brown 
Statistical Center, proposes to develop datasets for method testing and validation using 
completed ACRIN research for assessment of QIN metrics and validation purposes (Aim 2). 
In the Resource, outcomes and progression data will be made available for correlation with 
computational findings. 

Finally, the ECOG-ACRIN QIN Resource will bring  expertise across QIN Working 
Group platforms—in PET, MRI, CT, imaging statistical design, and informatics—to clinical 
trials by integrating quality assurance and QIN quantitative tools into prospective National 
Clinical Trial Network research (Aim 3). The ECOG-ACRIN QIN Resource PIs stand at the 
front lines within the ECOG-ACRIN clinical trials development structure as leaders of the 
Experimental Imaging Science Committee (EISC) and Biomarker Group and Imaging Science 
Advisory Committees (ISAC), which review imaging studies prior to submission to NCI for 
consideration, and thus open the door to identifying appropriate opportunities for prospective 
evaluation of QIN laboratory projects (Aim 3). 

Figure 2: The relationship between the QIN and various components of ECOG-ACRIN. 
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PROGRESS  OVER THE PREVIOUS YEAR  

Major Activities: The scientific team has implemented monthly conference calls of the 
project team and weekly calls of the project team leadership in order to manage the activities 
funded through the grant and to ensure consistent progress with respect to all of the goals. 
This mechanism has proven to be an effective way to aggregate the unique expertise of the 
PIs and stakeholders who are associated with institutions across the country. Details 
associated with progress achieved within each of the 3 aims follows. 

§ Aim 1:    
A modified version of the Centers of Quantitative Imaging Excellence (CQIE) 

database for QIN sites was used to create a site profile in the Qualification Utility for Imaging 
Clinical Trials (QUIC) of qualified QIN sites. This allows for dynamic updating as QIN sites 
change. This is being used to feed automated data quality evaluation methods running 
Dokerized versions of software tools for phantom analysis that have been developed by 
several QIN members. These are intended to test respectively CT, MRI-DWI, and PET-SUV 
metrics of QIN sites. All three sub-aims (CT, MRI-DWI, and PET-SUV) have validated 
software tools and are being tested with the phantom data from QIN sites that is already 
contained in QUIC utility. 

§ Aim 2:   

Continued collaboration with the QIN leadership and the TCIA technical staff to 
transfer datasets that are intended to provide a resource for method testing and validation from 
completed ACRIN research for assessment of QIN metrics, validation methods, and challenge 
projects. The previously established list of prioritized datasets was refined based on the time-
lines for availability of each data set, ownership, and discussions with NCI-CIP program staff 
on appropriateness and broadest applicability. Transfer of the 6688 dataset was completed and 
6684 is near completion. The remaining datasets are in queue to be transferred. 

In addition, outcomes and progression data are being be made available for correlation 
with computational findings. 

Formalized a process to leverage the clinical trial development structure to enable 
prospective testing for methods developed by the QIN. Formal discussions between NCTN 
oncology leaders and QIN members were initiated in the form of a highly successful QIN-
NCTN planning meeting in December 2016. This meeting was directed to both the NCTN 
leaders as well as the QIN investigators.  This effort has been expanded, with the help of other 
QIN investigators who also hold NCTN leadership positions, with the goal to include QIN 
sessions and disease-site discussions in the NCTN groups on a rotating basis.  

At the fall, 2017 Alliance meeting, the EA U01 worked closely with Dr. Larry 
Schwartz and others in the planning and execution of a QIN plenary session and presentations 
in key disease site committees that were highly successfully and very well received. Planning 
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for the summer NRG meeting is in progress. We have advanced concepts for new trials that 
include exploratory objectives focused on QIN tool testing.   Developing concepts include a 
study (EA1172) of FDG PET/CT in metastatic breast cancer imaging response assessment 
and developing concept in EA8171 trial “Multiparametric MRI (mpMRI) for Preoperative 
Staging and Treatment Planning for Newly-diagnosed Prostate Cancer” will have an 
exploratory objective focused on QIN tools that are designed to lead to prospective multi-
center testing of QIN tools for scanner calibration and image analysis for this task. 

COLLABORATIONS  WITHIN THE NETWORK  

We successfully navigated numerous logistical issues related to data transfer and 
prepared several datasets to be transferred to the TCIA. We continued efforts focused on 
building the infrastructure for sharing imaging datasets and refined the previously developed 
prioritized dataset transfer list based on the timelines for availability of each dataset, 
ownership, and discussions with NCI-CIP program staff on appropriateness and broadest 
applicability. 

With the help of other QIN investigators who also hold NCTN leadership positions 
within the NCTN and NCI leadership, the EA U01 played a key role in the planning and 
executing QIN presentations and discussions at the fall Alliance group meeting. Planning for 
the summer NRG meeting is already well underway. 

PLANS  FOR NEXT YEAR  

Our plans for the coming year are as follows: 

We will establish a timeline for testing the validated software tools for all 
three sub-aims (CT, MRI-DWI, and PET-SUV) with phantom data from QIN sites that are 
already in the QUIC utility with expectation that will lead to QIN multi-center results suitable 
for presentation at the next QIN annual meeting. 

: The EA QIN Resource Center will continue to interact with QIN leadership 
to establish prioritized datasets to be made available to QIN researchers as a resource for 
method testing and validation from completed ACRIN research for assessment of QIN 
metrics, validation methods, and challenge projects. Outcomes and progression data are being 
be made available for correlation with computational findings. 

he EA QIN Resource Center along with other QIN investigators who also 
hold NCTN leadership positions will hold QIN sessions and disease-site discussions in the 
NCTN groups on a rotating basis.  A formal session and specific disease site participation is 
planned at the summer 2018 NRG Meeting. 

PUBLICATIONS AND PRESENTATIONS FROM QIN INVOLVEMENT  

The team wrote a white paper summarizing the December 2016 planning meeting was written 
and. The possibility of further developing this document into a manuscript is being explored. 
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INTRODUCTION  

In this third annual report on our research, we continue to pursue the goal of our 
research, which is to develop quantitative image-based surrogate markers of breast cancer 
tumors for use in predicting response to therapy and ultimately aiding in patient management. 
There is a large variation in the clinical presentation of breast cancer in women, and it has 
been shown that in many instances, biological characteristics, i.e., features, of the primary 
tumor correlate with outcome. Methods to assess such biological features for the prediction 
of outcome, however, may be invasive, expensive or not widely available. Our hypothesis is 
that MRI-based features obtained through quantitative image analysis will prove useful as 
non-invasive biomarkers for the assessment of, and prediction of, the response of breast cancer 
to neoadjuvant therapy. 

We are investigating the relationship of breast cancer therapy outcome and MR image-
based tumor characteristics (features), and changes in these features over time, using a 
University of Chicago database and the ACRIN 6657 I-SPY clinical trial dataset of breast 
cancer tumors from patients who have undergone neoadjuvant treatment.  We have modified 
our quantitative MRI analysis software to automatically and objectively calculate pre-, during-
, and post-treatment breast cancer tumor characteristics (features) including volumetric, 
morphological, textural, and kinetic features, as well as those from deep learning with 
convolutional neural networks (CNN).  Also, we evaluated one of our specific radiomic 
feature – the most-enhancing tumor volume -- to predict recurrence-free survival “early on” 
in neoadjuvant treatment of breast cancer. The C-statistics for the association of METV with 
recurrence-free survival were 0.69 with 95% confidence interval of [0.58; 0.80] at pre-
treatment and 0.72 [0.60; 0.84] at early treatment. In conclusion, we showed that the 
performance of the automatically-calculated METV rivaled that of a semi-manual model 
described for the ACRIN 6657 study (published C-statistic 0.72 [0.60; 0.84]), which involved 
the same dataset but required semi-manual delineation of the functional tumor volume (FTV) 
and knowledge of the pre-surgical residual cancer burden. We also investigated the robustness 
of our radiomic features across MRI magnet strength (1.5 T and 3 T), continued our 
radiogenomics investigation, and further developed deep learning techniques for breast MRI. 

187 



 
 

  
  

  
   

 

    
 

   

 
 

  
   

  
 

  
   

   
  

   

 
   

 
  

  
 

  
  

     
  

  
  

 
 

DISCUSSION OF PROGRESS DURING PAST YEAR  
 

§ Relationship of breast cancer therapy outcome and MR image-based tumor  
characteristics  (features), and  changes  in these features over time  from patients  who  
have undergone neoadjuvant treatment.  

 
We had modified our current quantitative MRI analysis software to automatically and 

objectively calculate pre-, during-, and post-treatment breast cancer tumor characteristics 
(features) including volumetric, morphological, textural, and kinetic features, as well as now, 
those from deep learning with convolutional neural networks (CNN). 

We conducted further investigations on radiomics, specifically the most-enhancing 
tumor volume by MRI radiomics to predict recurrence-free survival “early on” in neoadjuvant 
treatment of breast cancer. The hypothesis of this study was that MRI-based radiomics has the 
ability to predict recurrence-free survival “early on” in breast cancer neoadjuvant 
chemotherapy.  A subset, based on availability, of the ACRIN 6657 dynamic contrast-
enhanced MR images was used in which we analyzed images of all women imaged at pre-
treatment baseline (141 women: 40 with a recurrence, 101 without) and all those imaged after 
completion of the first cycle of chemotherapy, i.e., at early treatment (143 women: 37 with a 
recurrence vs. 105 without). Our method was completely automated apart from manual 
localization of the approximate tumor center. The most enhancing tumor volume (METV) 
was automatically calculated for the pre-treatment and early treatment exams. Performance of 
METV in the task of predicting a recurrence was evaluated using ROC analysis. The 
association of recurrence-free survival with METV was assessed using a Cox regression 
model controlling for patient age, race, and hormone receptor status and evaluated by C-
statistics. Kaplan-Meier analysis was used to estimate survival functions.  The C-statistics for 
the association of METV with recurrence-free survival were 0.69 with 95% confidence 
interval of [0.58; 0.80] at pre-treatment and 0.72 [0.60; 0.84] at early treatment. The hazard 
ratios calculated from Kaplan-Meier curves were 2.28 [1.08; 4.61], 3.43 [1.83; 6.75], and 4.81 
[2.16; 10.72] for the lowest quartile, median quartile, and upper quartile cut-points for METV, 
respectively.  In conclusion, we showed that the performance of the automatically-calculated 
METV rivaled that of a semi-manual model described for the ACRIN 6657 study (published 
C-statistic 0.72 [0.60; 0.84]), which involved the same dataset but required semi-manual 
delineation of the functional tumor volume (FTV) and knowledge of the pre-surgical residual 
cancer burden.  This work is currently under review for publication. 

§ Relationship of MRI phenotypes to genomics  
 

We have  extended our previously-reported  research, which involved the Breast 
Phenotype Group and cases from The Cancer Genome Atlas (TCGA) and The Cancer Imaging 
Archive (TCIA), cancer research resources supported by the National Cancer Institute (NCI) 
of the U. S. National Institutes of Health. Through an extensive investigation, we identified 
statistically significant associations between quantitative MRI radiomic features and various 
clinical, molecular, and genomic features in breast invasive carcinoma.  Among the many 
novel findings, we discovered some highly specific imaging-genomic associations, which may 
be potentially useful in (a) imaging-based diagnoses that can inform the genetic progress of 
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tumor and (b) discovery of genetic mechanisms that regulate the development of tumor 
phenotypes. 

We report here, our research now with UChicago cases on radiogemonics of breast 
cancer using DCE-MRI and gene expression profiling.  Imaging techniques can provide 
information about the tumor non-invasively and have been shown to provide information 
about the underlying genetic makeup.  Correlating image-based phenotypes (radiomics) with 
genomic analyses is an emerging area of research commonly referred to as “radiogenomics” 
or “imaging-genomics”.  The purpose of this study was to assess the potential for using our 
automated, quantitative radiomics platform on magnetic resonance (MR) breast imaging for 
inferring underlying activity of clinically relevant gene pathways derived from RNA 
sequencing of invasive breast cancers prior to therapy.   We performed quantitative radiomic 
analysis on 47 invasive breast cancers based on dynamic contrast enhanced 3 Tesla MR 
images acquired within three months of surgery and obtained gene expression data by 
performing total RNA sequencing on corresponding fresh frozen tissue samples.  We used 
gene set enrichment analysis to identify significant associations between the 186 gene 
pathways and the 38 image-based features that have previously been validated. All radiomic 
size features were positively associated with multiple replication and proliferation pathways 
and were negatively associated with the apoptosis pathway.  Gene pathways related to immune 
system regulation and extracellular signaling had the highest number of significant radiomic 
feature associations, with an average of 18.9 and 16 features per pathway, respectively. 
Tumors with upregulation of immune signaling pathways such as T-cell receptor signaling 
and chemokine signaling as well as extracellular signaling pathways such as cell adhesion 
molecule and cytokine-cytokine interactions were smaller, more spherical, and had a more 
heterogeneous texture upon contrast enhancement.  Tumors with higher expression levels of 
JAK/STAT and VEGF pathways of had more intratumor heterogeneity in image enhancement 
texture.  Other pathways with robust associations to image-based features include metabolic 
and catabolic pathways.  We provide further evidence that MR imaging of breast tumors can 
infer underlying gene expression by using RNA sequencing.  Size and shape features were 
appropriately correlated with proliferative and apoptotic pathways.  Given the high number of 
radiomic feature associations with immune pathways, our results raise the possibility of using 
MR imaging to distinguish tumors that are more immunologically active, although further 
studies are necessary to confirm this observation.  We are currently submitting this work for 
publication. 

§ Robustness of MRI phenotypes  
 

This past year, we focused on MRI magnet strength as we continued to investigate the 
robustness of our computer-extracted MRI lesion phenotypes. Radiomics features extracted 
from breast lesion images have shown potential in diagnosis and prognosis of breast cancer. 
As clinical institutions transition from 1.5 T to 3.0 T magnetic resonance imaging (MRI), it is 
helpful to identify robust features across these field strengths. In this study, dynamic contrast-
enhanced MR images were acquired retrospectively under IRB/HIPAA compliance, yielding 
738 cases: 241 and 124 benign lesions imaged at 1.5 T and 3.0 T and 231 and 142 luminal A 
cancers imaged at 1.5 T and 3.0 T, respectively. Lesions were segmented using a fuzzy C-
means method. Extracted radiomic values for each group of lesions by cancer status and field 
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strength of acquisition were compared using a Kolmogorov-Smirnov test for the null 
hypothesis that two groups being compared came from the same distribution, with p-values 
being corrected for multiple comparisons by the Holm-Bonferroni method. Two shape 
features, one texture feature, and three enhancement variance kinetics features were found to 
be potentially robust. All potentially robust features had areas under the receiver operating 
characteristic curve (AUC) statistically greater than 0.5 in the task of distinguishing between 
lesion types (range of means 0.57-0.78). The significant difference in voxel size between field 
strength of acquisition limits the ability to affirm more features as robust or not robust 
according to field strength alone, and inhomogeneities in static field strength and 
radiofrequency field could also have affected the assessment of kinetic curve features as robust 
or not. Vendor-specific image scaling could have also been a factor. These findings will 
contribute to the development of radiomic signatures that use features identified as robust 
across field strength.  This work is currently under review for publication. 

§ Role of deep learning  in assessing response to  therapy  

We are investigating the role of different CNN structures along with methods to extract 
features from CNN image analysis pipelines. Deep learning methods for radiomics/computer-
aided diagnosis (CADx) are often prohibited by small datasets, long computation time, and 
the need for extensive image preprocessing. We reported on a methodology that extracts and 
pools low- to mid-level features using a pre-trained convolutional neural network and fuses 
them with handcrafted radiomic features computed using conventional CADx methods. Our 
fusion-based method demonstrates significant improvements to previous breast cancer CADx 
methods across three clinical imaging modalities (dynamic contrast-enhanced MRI, full-field 
digital mammography, and ultrasound) in terms of predictive performance in the task of 
estimating lesion malignancy. This work was published in MEDICAL PHYSICS. 

PLANS FOR NEXT YEAR  

We will continue evaluating our MRI radiomic features relative to pathologic response 
to treatment on the I-SPY 1 dataset, a UChicago dataset, and potentially the I-SPY 2 dataset 
(for which we have requested access). We will evaluate the image-based tumor features, 
calculated on the pre-treatment images, in terms of their ability to predict patient pathological 
response (pCR).  Performance for the predictive task of distinguishing between patients that 
responded to the treatment and those that did not will be assessed quantitatively through ROC 
analysis with the area under the ROC curve (AUC) as the performance metric. 

We will evaluate the predictive value of the pre-treatment MRI-based tumor features, 
the post-treatment MRI-based tumor features, and the changes in the pre- and post-treatment 
MR image-based tumor features in terms of “monitoring treatment response”. We will 
calculate the change in tumor characteristics obtained from the ratio of the tumor characteristic 
feature from before neoadjuvant therapy to that after therapy. 

We will continue translating our findings from the TCGA Breast Phenotype Group to 
predicting response to therapy.  Our research with the Breast Phenotype Group was conducted 
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for “discovery” of relationships, so that we can then assess which ones are complimentary and 
thus could potentially be merged to yield an improved predictive imaging-genomics signature. 
In this study, we will determine optimal dimensional reduction methods for use with deep 
learning to yield these signatures using both CAD-extracted features and CNN-extracted 
features using multiple breast MRI datasets. Within all our efforts, we use rigorous statistical 
techniques such leave-one-out-by-case jacknifing and boot strapping to assess performance 
levels. 

Through this QIN grant, our participation in the QIN community will yield 
deliverables including an open-platform system that will provide tools for linking 
segmentation with feature extraction and classification and for comparing performance 
metrics across acquisition systems and/or image analysis systems. 
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INTRODUCTION  

The long-term vision of this program is to significantly improve patient care by 
optimizing, validating, and then extending quantitative MRI methods for the early prediction 
of breast cancer response to neoadjuvant therapy. During the first period of support we 
incorporated quantitative dynamic contrast enhanced MRI (DCE-MRI) and diffusion 
weighted MRI (DW-MRI) into a predictive statistical model to achieve an area under of the 
receiver operator characteristic curve of 0.87 for predicting the eventual response of breast 
tumors after the first cycle of neoadjuvant therapy (NAT). We seek to validate and then extend 
these results in two multi-site clinical trials. Success would contribute to the development of 
personalized, adaptive treatment strategies for breast cancer patients undergoing NAT. 

The ability to predict—early in the course of therapy—patients who will eventually 
achieve a pathological complete response remains a highly relevant clinical objective. 
Accurate and early response assessment would provide the opportunity to replace an 
ineffective treatment with an alternative regimen, and in so doing potentially avoid or curtail 
debilitating side effects or toxicities. With the numerous options for NAT that have become 
available, development of a method to predict response early in the course of therapy is 
especially needed. Furthermore, knowing the optimal timing for image acquisition during 
NAT would help maximize the predictive ability of quantitative MRI. 

We have developed several experimental and computational tools for improving DCE-
MRI and DW-MRI of the breast, and we have successfully applied these tools in clinical trials 
at Vanderbilt University. More recently we have deployed these techniques in a multi-site 
clinical trial executed between Vanderbilt University (R. Abramson) and The University of 
Chicago (G. Karczmar and R. Nanda), with data analytics provided by The University of 
Texas at Austin (T. Yankeelov) and are currently accruing patients at both institutions. 
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PROGRESS OVER THE PAST YEAR  

The data acquisition methods for this application require scanning patients up to four 
times before and early during the course of neoadjuvant therapy. At the time of this study, we 
have acquired data on 20 cases (13 at Vanderbilt University and seven at The University of 
Chicago). The data acquired during these imaging sessions include: 1) quantitative T1 maps, 
2) quantitative DCE-MRI data appropriate for pharmacokinetic modeling, 3) ADC maps, and 
4) quantitative  magnetization transfer data. Please see Figure 1  (next page)  for illustrative  
examples of these data in a responder and non-responder. Analysis of these data is ongoing. 
Our first step is focused on updating the population based AIF given the higher temporal 
resolution data that we are now collecting. 

We performed a meta-analysis to assess the prognostic value of quantitative DCE-
MRI and DW-MRI performed during neoadjuvant therapy (NAT) of locally advanced breast 
cancer. A systematic literature search was conducted to identity studies of quantitative DCE-
MRI and DW-MRI performed during breast cancer NAT that report the sensitivity and 
specificity for predicting pathological complete response. Across ten studies which met the 
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inclusion criteria for this meta-analysis (out of 325 initially identified studies), we find that 
MRI had a pooled sensitivity of 0.86 (95% CI, 0.71-0.94) and specificity of 0.82 (95% CI, 
0.68-0.91) when adjusted for covariates. Quantitative DCE-MRI exhibits greater specificity 
for predicting pathological complete response than semi-quantitative DCE-MRI (p < 0.001). 
However, there is a high degree of heterogeneity in published studies highlighting the lack of 
standardization in the field. This effort was published in the Journal of Medical Imaging. 
We have recently completed an effort to combine multi-parametric MRI with tumor cell 
receptor information to predict pathologic complete response. In particular, we employed 
ADC and kep, along with the status of three hormonal receptors (i.e., ER, PR, and HER2) in 
our predictive model. The overfitting-corrected area under the curve (AUC) and Brier score 
of our proposed logistic ridge model was 0.92 (95% CI: 0. 67, 0.99) and 0.11 (95% CI: 0.049, 
0.19), respectively. Also, the same statistics computed via 10-fold cross-validation were 0.98 
(95% CI: 0.69, 0.99) and 0.076 (95% CI: 0.054, 0.17), respectively. This effort was published 
in the Journal of Medical Imaging. 

We published our effort on using a Block-Siegert B1 mapping technique to improve 
the accuracy and precision of T1 measurements of the breast at 3T. This was published in 
Tomography and is implemented in all of our ongoing patient studies. We tested the 
reproducibility and repeatability of quantitative magnetization transfer MRI in healthy 
volunteers. 

In addition to the above studies, we have also begun applying the experience and 
expertise we have gained in the breast studies to implement these techniques in other disease 
sites.  We are pleased to note that this was done in a Phase 1 clinical trial involving vorinostat 
and chemoradiation and capecitabine in pancreatic cancer. It was published in Radiotherapy 
and Oncology.  We also participated in a Phase 1 clinical trial involving Dual SRC and EGFR 
inhibition in pancreatic cancer that was published in Investigational New Drugs.  Furthermore, 
we have leveraged the resources and techniques from this program to assist in the quantitative 
imaging of brain tumor patients working with an affiliate member QIN team form the Barrow 
Neurological Research Institute which resulted in two abstracts presented at the 2017 ISMRM 
conference. 

We take the notion of data sharing very seriously and towards this end have always 
made it a priority to upload our data to The Cancer Imaging Archive (TCIA). At the time of 
this submission, we have uploaded 67 data sets and are waiting to upload an additional 13 data 
sets once we received the new CTP software from TCIA. 

COLLABORATION WITH OTHER NETWORK SITES  

We continue to have extensive interactions with our sister QIN sites. We now 
summarize those efforts. 
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1) We have submitted a manuscript for publication in collaboration with Oregon 
Health Sciences University and the University of Washington (led by our team). The 
manuscript is a comparative analysis of high temporal resolution dynamic contrast-enhanced 
MRI (DCE-MRI) data collected in the International Breast MR Consortium (IBMC) 6883 
multicenter trial was performed to distinguish benign and malignant breast tumors. We found 
that both quantitative pharmacokinetic (Ktrans and kep) and semi-quantitative signal intensity 
(SERmean) metrics discriminated benign and malignant suspicious lesions, with receiver 
operating characteristic (ROC) area under the curve (AUC) values of 0.71, 0.70, and 0.82 for 
Ktrans, kep, and SERmean, respectively (p < 0.05). At equal 94% sensitivity, the specificity and 
positive predictive value (PPV) of SERmean (53% and 63%, respectively) were higher than 
clinical MRI interpretation (32% and 54%). 

2) We contributed to the impact of arterial input function determination on the analysis 
of DCE-MRI data from prostate cancer (led by Dr. Huang of OHSU). This was published in 
Tomography. 

3) We contributed to developing multi-site concordance of DW-MRI metrics (led by 
Dr. Newitt from UCSF). This was presented at the 2017 ISMRM conference and the 
manuscript is currently being composed. 

4) We contributed to an assessment of the inter-platform reproducibility of T1 
quantification methods for DCEMRI (led by Dr. Bain from Mt. Sinai). This was presented at 
the 2017 ISMRM conference and the manuscript is in revision at Magnetic Resonance in 
Medicine following a favorable review. 

5) We contributed to an assessment of the effects of AIF quantification variations in 
DCE-MRI for predicting soft tissue sarcoma response (led by Dr. Huang of OHSU). This was 
presented at the 2017 ISMRM conference. 

6) We contributed to an assessment of AIF estimation on shutter-speed analysis (a 
model which Dr. Yankeelov developed during his Ph.D. thesis) in kinetic modeling of DCE-
MRI data from prostate cancer (led by Dr. Huang of OHSU). This was presented at the 2017 
ISMRM conference. 

7) We contributed to an effort focused on a retrospective system-specific correction of 
gradient nonlinearity bias for quantitative DW-MRI data obtained across diverse scanners (led 
by Dr. Chenevert from the University of Michigan). This was published in Tomography. 

8) Members of our Vanderbilt team currently hold a subaward site for Stanford's QIN 
U01 award (U01CA190214; PI: Daniel Rubin) 

We have also implemented, as exploratory methods, related to 1) imaging cell size, 
and 2) ultra-fast DCE-MRI. We now provide brief updates on both of these techniques. 
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§ ECOG-ACRIN study  

The ECOG-ACRIN 1141 trial is a national trial comparing abbreviated breast MRI 
and digital breast tomosynthesis in breast cancer screening in women with dense breasts. This 
trial offers the option of including high-temporal-resolution imaging during the early post-
contrast phase of the abbreviated MR. Because of our expertise with quantitative DCE-MRI 
and specifically ultrafast breast DCE-MRI at the University of Chicago, we were asked to 
coordinate between the advanced imaging sites, and standardize protocols this portion of the 
abbreviated MRI. We worked with sites across the country to develop imaging protocols for 
each of the major vendors, and reviewed the images from these sites to ensure their quality. 
After the trial is completed we will coordinate the analysis of the high-temporal-resolution 
images across the advanced imaging sites, with the goal of determining the value that ultrafast 
imaging may add to breast cancer screening with Ab-MRI, and use of DCE-MRI to evaluate 
response to therapy. Our leadership role in this national trial was made possible by the U01 
funding to develop and test quantitative MRI methods. 

It is well established that DCE-MRI provides important information on tissue vascular 
properties and lesion morphology. Our team has been investigating the advantages of ultrafast 
(temporal resolution of 1-3 sec) DCE-MRI to 1) segment the vascular tree within the breast, 
2) identify the direction of flow in the vessels feeding and draining the tumor, 3) employ 
computational fluid dynamics to model flow within the tumor. Figure 2 (next page) shows an 
illustrative example of segmenting the vascular tree within the breast (left panel) and a color 
coding to indicate the direction of flow within each segment of the vascular tree. Next steps 
are to quantify the flow within each section of the vascular tree. We respectfully note that this 
is an entirely new approach to analyzing DCE-MRI data and that changes in the major vessels 
feeding and draining cancers may prove to be an early marker for response to therapy. 

§ Additional Collaborations  

Our team has been an extremely active participant in the QIN from its earliest days. 
In particular, Dr. Yankeelov served as co-Chair of the Executive Committee from 2012-2013, 
Chair from 2013- 2014, and co-Chair again from 2014-2015. He has led the organization and 
execution of two special issues of journals dedicated to QIN efforts (1,2), and facilitated the 
QIN’s emphasis on inter-site collaborations leading to joint publications focused on building 
consensus standards; we are particularly proud of this latter achievement as it substantially 
accelerated the degree of interaction amongst QIN members. (Please note we are not, in any 
way, suggesting that our efforts were solely responsible for this development, but we do feel 
that we significantly enhanced those efforts.) In addition to our leadership role, our team has 
been actively engaged with the QIN working-groups and data analysis challenges. We have 
previously collaborated with QIN teams from the University of Washington (3-5), Oregon 
Health Sciences University (5-7), Stanford University (8), University of Michigan (9-12), 
UCSF (13), Mt. Sinai (14), and Brigham and Women’s Hospital (15). More specifically, we 
have contributed to consensus efforts related to imaging and communication standards in 
medicine (16), multi-site concordance of ADC measurements (10-13), accuracy, repeatability, 
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and interplatform reproducibility of T1 quantification (14), multi-site DCE-MRI quantification 
efforts (6,7), patient accrual patterns in imaging trials (4), as well as several other efforts in 
quantitative imaging in clinical trials (3-5,8,15). Though not a QIN-effort, we were also 
involved in the larger field’s effort at building an imaging biomarker roadmap (15). 
We also have an strong history of sharing our data. Our current QIN data set is located at 
https://wiki.cancerimagingarchive.net/display/Public/QIN-Breast and includes PET, MRI, 
and PET+MRI data sets. In fact, through The Cancer Imaging Archive (TCIA), our data has 
been shared with > 40 unique users from eight countries (Canada, China, Egypt, France, 
Germany, Spain, Taiwan, and the United States). 

PLANS FOR NEXT YEAR  

In the coming year, we will pursue the following studies: 

1) We will complete the data analysis of the first 14 patients we currently have in our 
database. We will apply the logistic ridge regression model we developed (in the proposal) 
using parameter values from the training data set obtained in the first period of funding. 

2) We will continue to enroll patients into our study. In particular, we have a plan to 
increase our accrual from The University of Chicago we are doing outreach to other hospitals 
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in the UC system (e.g., Silvercross and Ingalls) and have added effort for a clinical trials 
coordinator specifically targeted for recruitment. 

3) We are currently working out the logistics of sending five healthy subjects between 
Vanderbilt University and The University of Chicago. The goal is to perform quantitative T1 
and ADC mapping so as to quantify the variances in these measurements that are included in 
the logistic ridge regression predictive model. 

4) We will also have each institution analyze the patient data sets separately to 
determine if our software is robust enough to be shared with multiple sites. 

5) We will begin collecting the imaging microstructural parameters using limited 
spectrally edited diffusion (IMPUSLED) data developed by the Vanderbilt team as part of our 
acquisition protocol. These data promise to provide us with new and uncorrelated potential 
biomarkers to work into the predictive framework. 

6) We will compare T1 maps obtained with two different methods based on variable 
flip angle spoiled gradient echo sequences. First T1 maps will be obtained by fitting the VFA 
data corrected with B1 maps measured using the Bloch-Siegert shift method. The second 
method we will use is a reference tissue method, using fat as the reference tissue. In this 
method, flip angle correction factors (proportional to B1) are calculated for each fat voxel, by 
comparing the uncorrected T1 value from fitting to the VFA data to a population average value 
of the T1 of fat in the breast. Previous results have shown low inter- and intra-patient variability 
in the T1 of fat, making it an ideal tissue to use as a reference for these measurements. A 
whole-breast B1 map is then generated by interpolating from the values measured in the fat 
voxels. The VFA data are then fit again for the entire breast, this time using the correct flip 
angle for each voxel. The accuracy of both methods will be evaluated by comparison to the 
gold-standard values obtained from a single slice inversion recovery. 
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INTRODUCTION  

Hypoxia in solid tumors correlates strongly with the presence of metastases and leads 
to enhanced resistance to radiation and chemo therapies [1, 2]. There is a strong clinical need 
to reliably determine the location and extent of hypoxia in order to provide targeted therapies. 
We seek to develop quantitative, multi-parametric approaches to hypoxia imaging to increase 
the predictive capacity of the hypoxia markers and improve the stratification of patients for 
hypoxia-targeted treatment strategies. This work includes several aims, including the 
development of standardized acquisition methodology, integrating perfusion imaging 
methods to create a more robust tracer kinetic model for hypoxia imaging, and developing a 
software application to solve these models and produce quantitative metrics of hypoxia. 

Over the last year we have advanced methods and models for hypoxia quantification 
with static and dynamic PET imaging. Our model is able to quantify the presence of slow-
equilibrating regions and also the hypoxia-sensitive FAZA binding rate, potentially enhancing 
the sensitivity of hypoxia-PET imaging. Future work will aim to validate this model against 
immunohistochemical staining of resected tumors. We believe the ancillary information about 
tumor transport properties provided by dynamic PET imaging may prove to be clinically 
relevant in its own right, and we are seeking to develop MRI and CT biomarkers for tissue 
transport. Also we have developed a dynamic CT scanning with contrast injection method 
(CT Perfusion) to image all three functions – lung ventilation and perfusion plus myocardial 
perfusion simultaneously from one contrast injection and one ECG gated scanning session of 
40 s duration without breath-hold. These results show that our new scanning and analysis 
method has the potential to image lung perfusion and ventilation together with myocardial 
perfusion conveniently in a single study. Monte-Carlo simulation for Aim 1 were modified 
and advanced with additional capabilities. This will guide a validation protocol. Further 
physics validation experiments will be performed to ensure the quantitative accuracy of the 
MC simulation platform. Our team has developed a phantom which can be used to improve 
standardization of hypoxia measurements across institutions and plans on initiating a QIN 
challenge where a phantom is imaged at participating sites in the QIN CT/PET subgroup. This 
phantom will be sent around to sites across North America to compare results obtained with 
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different PET scanners. Finally, we have continued the impact assessment of progressively 
more quantitative hypoxia imaging methods on the predictive capacity of hypoxia biomarkers 
in 4 clinical trials. 

PROGRESS OVER THE PAST YEAR  
 
§ Specific aim 1. Establish a robust and reliable methodology for PET hypoxia imaging  

 
 Sub-aim 1.1:  Quantifying hypoxia using static  PET imaging  

A compartmental model based on a reaction-diffusion equation was used to study 
fluoroazomycin (FAZA) pharmacokinetics (binding and transport) and in turn, to assess the 
challenges in using a single static PET scan to quantify hypoxia [3]. Assuming that local 
diffusive equilibrium is achieved rapidly within the region of interest (ROI), a simple 
expression was derived for the tracer activity in terms of the arterial input function (AIF), the 
area under the curve (AUC) for the diffusive (unbound) compartment, and a quantity K3 
which is argued to be proportional to the volume fraction of space in which the local oxygen 
tension is below ~ 10 mmHg; i.e., hypoxic. This expression was used to study PET data from 
twenty patients with pancreatic cancer who were injected with FAZA. Comparing activities 
in tumor ROIs with values taken from two choices of reference tissue, spinal muscle and 
blood, information about the sensitivity of PET imaging to transport inhomogeneities was 
quantified within the framework of our transport model. 

Because it is poorly perfused, spinal muscle exhibits significant variability in the 
uptake of FAZA. In contrast, using blood as a reference leads to a substantial reduction in the 
sensitivity to transport inhomogeneities, as shown in the middle panel of Figure 1, where the 
AUC divided by the AIF —directly related to the hypoxic proportion – exhibits a reduced 
variance as compared to the AUC (left) and the AUC divided by the activity in the spinal 
muscle (right). 

Figure 1: Normalized AUC for nineteen pancreas tumors. 
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Sub-aim 1.2:  Quantifying hypoxia using dynamic  PET  imaging  

While normalizing static PET-hypoxia images by uptake in blood can enhance 
sensitivity to hypoxia by removing inter-patient transport inhomogeneities, intra-patient 
variances remain. Over the past two years, we have developed a novel compartmental model 
to quantify the impact of such variances [4]. The goal of this research program was to develop 
a reliable analysis method to quantify hypoxia from dynamic PET imaging and to compare 
the results to values obtained from static PET imaging [5] and immunohistochemical staining 
of resected pancreas tumors. Our major results so far are: 

Static PET imaging of FAZA at two hours after injection reliably quantifies hypoxia 
as long as the imaged tissue is devoid of substantial mucous deposits, micro-necrosis, or fat, 
and the metric used for hypoxia quantification is the tumor-to-blood FAZA uptake ratio and 
not the tumor-to-muscle value [3].  

For tumors exhibiting substantial mucous deposits, micro-necrosis, or fat, slow 
diffusive tracer equilibration reduces the sensitivity of static PET imaging to hypoxia and a 
suitably-interpreted dynamic PET scan (i.e., using our novel compartmental model) improves 
upon this sensitivity. 

The effect of having regions in which tracer equilibrates slowly can be understood 
from Figure 2. The left panel shows the FAZA tumor-to-blood uptake ratio at two hours (static 
PET image) versus the FAZA “trapping rate” K3 derived from a standard three-tissue (blood, 
unbound and bound in cells) compartment model analysis of voxel-scale dynamic PET data 
for a single tumor. Figures analogous to this one constitutes a standard figure-of-merit for 
static PET imaging: assuming that the trapping rate is a sensitive metric for the biological 
process of interest, static PET imaging is sensitive to this biology when correlations between 
uptake and K3 are strong. As evident in the left panel of Figure 2, correlations for FAZA are 
weak. Within our model, this is attributed to regions of slow-equilibration, as quantified by a 
small distribution volume. Correcting for this quantity, correlations become strong (right 
panel). 

Our model is able to quantify the presence of slow-equilibrating (likely mucous-filled) 
regions and also the hypoxia-sensitive FAZA binding rate, potentially enhancing the 
sensitivity of hypoxia-PET imaging. Future work will aim to validate this model against 
immunohistochemical staining of resected tumors (see below). At the same time, we believe 
the ancillary information about tumor transport properties provided by dynamic PET imaging 
may prove to be clinically relevant in its own right, and we are seeking to develop MRI and 
CT biomarkers for tissue transport (see Figure 3). 
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Figure 2: Left: FAZA tumor-to-blood uptake ratio (T/B) versus the 
net trapping rate K3 for all voxels in a representative tumor. Right: 

Uptake ratio corrected for partitioning. 

Figure 3: Partition coefficient versus CT number (Hounsfield units) for ROIs 
in pancreatic tumors. 

Sub-aim 1.3:  Tracer kinetic  models for dynamic PET imaging analysis  

Last year we extended the conventional closed three-compartment model (Figure 
4 (A)) to include the perfusion through the vasculature of the tissue (Figure 4 (B)). Unlike the 
conventional closed three-compartment (C-3C) model, the modification with the Johnson-
Wilson-Lee (JWL) model allows for the effect of tracer delivery by blood flow on the target 
binding rate constant to be included in the modelling. This is achieved by replacing the blood 
compartment with the JWL model and retaining the two tissue compartments to give the JWL-
2TC model as shown in Figure 4 (B). 

We continued to improve the stability of estimated parameters from fitting the JWL-
2TC model to dynamic PET time-activity curves.  We used computer simulation in this 
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investigation wherein theoretical time-activity curves (TACs) were generated with known 
JWL-2TC model parameters and Gaussian noise at the level typically observed in dynamic 
PET studies was added, noisy simulated TACs, up to 50 different curves, were fitted with the 
JWL-2TC model, to define bias (deviation from truth) and coefficient of coefficient (COV, 
ratio of standard deviation to mean parameter estimate) of estimated parameters.  The same 
TACs were also fitted with C-3C model (Figure 4 (A)) to define the effect on the model 
parameters by leaving out the blood flow delivery effect.  This latter fitting was performed 
with a commercially available tracer kinetics modeling software (PMOD Technologies LLC). 
Table 1 compares the bias and COV of the estimated parameters using the PMOD software 
and our in-house software based on the JWL-2TC model (Figure 4 (B)).  Ignoring the blood 
flow delivery effect in fitting TACs generated with JWL-2TC model would lead to bias in the 
estimated model parameters of the order of 10% and higher. Therefore, in order to have 
accurate estimates of target binding (k3) and washout (k4) rate constant, the blood flow 
delivery effect has to be modeled in the fitting method.  On the other hand, the COV of 
estimated parameters is less dependent on the blood flow delivery effect as fitting with either 
C-3C or JWL-2TC model gave the same COV. 

Figure 4: Kinetic models to describe the transport of tracer from blood to uptake in tissue. (A) 
conventional closed three compartment model where the transport through the vasculature is 
not modeled. (B) the modified closed three compartment model by using the Johnson-Wilson-
Lee model to replace the blood compartment. K1 is the transfer rate of tracer from blood to 
tissue, k2 is the backflux rate constant from tissue to blood, k3 is binding rate constant of tracer 
to target in the tissue, and k4 is the dissociation rate constant from the target, F is blood 
perfusion and Vb is the tissue blood volume. 
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F K1 k2 k3 k4 

SOFTWARE Bias 
(%) 

COV 
(%) 

Bias 
(%) 

COV 
(%) 

Bias 
(%) 

COV 
(%) 

Bias 
(%) 

COV 
(%) 

Bias 
(%) 

COV 
(%) 

PMOD - - 21.8 2.4 25.6 9.1 -8.0 10.0 -12.5 3.2 
In-house 0.28 3.9 0.16 2.6 1.1 9.1 1.2 9.8 0.17 3.9 

Table 1: Bias and COV of parameters estimated from simulated TACs generated with theJWL-
2TC model shown in Figure 4 (B). 

One cancer site of interest to the London (Ontario) node is NSCLC and its treatment 
with external beam radiation therapy. In this application, besides the need of accounting for 
blood flow delivery effect, the definition of treatment target and monitoring of treatment 
response would require imaging of lung perfusion and ventilation as well as myocardial 
perfusion.  The last functional assessment monitors for radiation induced cardiotoxicity which 
can manifest as myocardial ischemia at rest and/or decrease in myocardial perfusion reserve 
at stress.  For this purpose, in the last year we have developed a dynamic CT scanning with 
contrast injection method (CT Perfusion) to image all three functions – lung ventilation and 
perfusion plus myocardial perfusion simultaneously from one contrast injection and one ECG 
gated scanning session of 40 s duration without breath-hold.  Figure 5 shows representative 
myocardial perfusion and lung perfusion and ventilation maps from a pig study.  The pig was 
rendered ischemic in the mid-septal region of the heart to simulate that from radiation induced 
cardiotoxicity. Figure 5 (A) shows the expected ischemia in the mid-septal region and Figure 
5 (B) & (C) show the expected gravity dependence of perfusion and ventilation in normal 
lungs. These results show that our new scanning and analysis method has the potential to 
image lung perfusion and ventilation together with myocardial perfusion conveniently in a 
single study.  Another significant consideration from the above results is that with a PET/CT 
scanner, a CT Perfusion study can be used to estimate F and Vb of the JWL-2TC model to 
reduce the number of parameters to be estimated from dynamic PET TAC from 6 to 4. This 
would further enhance the stability of the estimated parameters including the binding rate 
constant (k3) to hypoxic targets. 

Figure 5: Functional mapping in the thorax.  (A) Myocardial perfusion. (B) Lung 
perfusion. (C) Lung ventilation. 
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Sub-aim  1.4:  Measurement of the  AIF  with kinetic analysis of dynamic  PET 
imaging  

The resolution of PET imaging is limited, as beta-particles annihilate with electrons at 
a certain distance (up to 2 mm) from the original vertex. In addition partial volume averaging 
and spill-over effects should be taken into account in order to recover the true radioactivity 
concentration in the blood flowing through the artery selected. To this end, a controllable 
multi-modal flow phantom has been built to calibrate and standardize functional imaging 
protocols. 

Preliminary studies to investigate the accuracy and robustness of magnitude and 
phase-derived arterial input function (AIF) in PET-MR were performed. The results were 
compared to “gold standard” AIF measurements using Gadolinium in volumetric DCE-CT 
where signal to concentration relationships are linear. 

The impact of individualized magnitude and phase signal AIF measurements on 
resulting perfusion parameter maps was assessed using a validated 4D temporal dynamic 
analysis (TDA) method in metastatic brain cancer patients treated with stereotactic 
radiosurgery. This data highlights the stability of DCE-CT calculations as well as 
susceptibility of DCE-MRI Ktrans measurements to various imaging factors, including AIF 
selection and T10 values used in the model. Using the same voxel-based analysis platform for 
both DCE-CT and MR significantly improved correlation values confirming the need to take 
into account tumor heterogeneity when assessing functional data. 

First FAZA measurements are planned to be carried out in February 2018 on both our 
PET-MRI and PET-CT scanner. 

Sub-aim 1.5:  Monte Carlo models of  PET  
 
Monte Carlo simulations are used to evaluate scatter correction for quantitative PET 

imaging of hypoxia. Photon scattering contributes significantly to the imaging degrading 
effects in 3D PET imaging. It results in a loss of contrast and overall image quality which 
makes accurate tracer quantification challenging. The effects of scatter are particularly 
important in regions where two adjacent tissues have vastly different tracer concentrations. 
Scattered events from photons originating from the intense uptake region contaminate the low 
uptake region. This “cross-talk” changes the linearity, noise level and reconstruction accuracy 
of PET. The objective is to develop a physics-based model to simulate and correct the scatter 
contamination using a Monte Carlo (MC) method. 

Previously established workflows based on the Monte Carlo (MC) simulation tool 
GEANT4 Application for Tomographic Emission (GATE) v.7.2 have been extended and 
upgraded to the most recent version of GATE (v.8.0) see Figure 6. This enables the integration 
of new workflow elements such as the Insight Toolkit as well as List Mode Data output. The 
ITK is a cross-platform software which performs image registration and segmentation. In 
combination with GATE, it will be mainly used to process DICOM images in order to set up 
voxelized phantoms. Previously, regions of interest (ROIs) were defined on CTAC images to 
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achieve correct slice spacing, essential for the image reconstruction in STIR. This module of 
the workflow has been extended to propose the usage of clinical contours and CT images. 
Also, the List Mode Data output library has been compiled against GATE and the cluster tool 
Condor. This enables a more general data output without loss in overall simulation time. 

Figure 6: Overview of the Monte Carlo (MC) simulation platform integrated with 
the image reconstruction. Clinically reconstructed images are used to set up the 
voxelized phantom and source geometry in the MC simulation program GATE. The 
GATE platform is built upon Geant4 (physics modelling), Root (Data analysis 
Framework), Condor (Running GATE on a Cluster), Cuda (Parallel computing 
platform, GPU computing), ITK lib (Insight Toolkit-Image registration and 
segmentation) and LMF lib (List Mode Data). For the image reconstruction the 
software STIR or the GE PET toolbox can be used. 

The MC model allows the scatter distribution component of the signal to be isolated 
and the image reconstruction process is integrated into the standardized dhPET method. The 
current image reconstruction programs are STIR and the GE PET toolbox. The GE PET 
toolbox is provided by GE Healthcare and offers the opportunity to be as close as possible to 
the clinical scanner reconstruction while evaluating the quantitative performance of an 
accurate concentration recovery. First water cylinder phantom validation experiments 
confirmed the high quantitative accuracy between the clinical reconstruction and the offline 
reconstruction with the PET toolbox. The GE water cylinder offline reconstruction (Ordered 
subset expectation maximization -2-iterations, 32subsets, post-filter-6.4mm, z-filter 4mm) 
was performed in 10 minutes on a Linux machine with 3.5 GHz Core and 7.86 GB RAM and 
showed a concentration recovery within 0.1% with the injected activity on the first slice. 
Future steps in the research will be to develop further post-processing protocols for the List 
Mode Data output. This will enable the isolations of scattered events and image reconstruction 
in STIR as well as the GE PET toolbox. This will guide a validation protocol proposed in 
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Figure 7. Further physics validation experiments will be performed to ensure the quantitative 
accuracy of the MC simulation platform. 

Figure 7: Validation of MC simulation after image reconstruction. MC 
simulation output will be compared with results obtained with the clinical 
scanner as well as different reconstruction software (e.g. PET toolbox). 

Sub-aim 1.6:  Standardization  of imaging technique and characterization of  
scanner performance  

The quantification of tumor hypoxia typically relies on a count of the number of voxels 
above a predetermined threshold activity over the uptake distribution in a region of interest 
(ROI) known as the hypoxic fraction (HF).  There is currently no consensus as to how the 
threshold is chosen and variation in scanner characteristics will affect the uptake distribution 
which will directly affect HF calculation. In order to simulate various levels of tumor hypoxia 
as well as reference regions for comparison (i.e. blood, muscle) a phantom was developed 
consisting of a set of two plates separated by 2mm diameter nylon rods of different spacing 
densities to create negative space inside a phantom filled with F18 and water. 

Two prototype phantoms were created, the first simulated a hypoxic tumor geometry 
while the second phantom had four different spatial densities of rod ranging from 10 to 40% 
fill. In the final version of the phantom the four regions consist of a normoxic surrogate region 
(40% filled with rods) and 3 regions representing various hypoxic tumor geometries. 

The final version of the phantom (Figure 8) was constructed and imaged using a variety 
of different reconstruction parameters and scan durations. Depending on scan threshold an 
increase in noise can increase or decrease the hypoxic fraction even when using non- noise-
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Sub-aim 1.7:  Advanced metrics of hypoxia  
 

 
  

 
 

     
   

 
 

     
 

 

dependent thresholds. This phantom will now be used as part of a QIN challenge in the 
CT/PET subgroup where it is sent around to sites across North America to compare results 
obtained with different CT scanners. The design, fabrication and validation of a hypoxia 
standardization phantom is a necessary first step towards developing a standardized imaging 
and analysis methodology for hypoxia imaging worldwide.  The phantom created is 
quantitative and simulates hypoxic tumors from clinical imaging.  This new phantom will be 
able to help quantify differences in hypoxia measurements between sites as well as 
investigate in a more robust method of quantifying hypoxia with PET. 

Figure 8: The hypoxic fraction standardization phantom. 

Over the last year we continued work towards standardizing of hypoxia quantification. 
For FAZA-Metformin trial a subsample of patients (9 out of a targeted 20) have volunteered 
for a blood draw to complement their FAZA-PET imaging results that include thorax PET 
scans. Preliminary analysis of this additional data has begun [6]. We learned that the gluteus 
maximus muscle from cervix cancer patients could mimic the FAZA uptake in blood draws 
or the left ventricle in the heart. Since blood is typically the gold standard from a kinetic 
perfusion analysis standpoint, a surrogate such as the gluteus maximus muscle can serve as a 
vehicle towards standardizing hypoxia quantification. This finding is currently part of a 
publication under review by IJROBP [7]. There will be biopsied tissue samples to complement 
hypoxic fraction calculations for all enrolled patients after the trial concludes. 
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Sub-aim 2.2: FAZA  PET/MR imaging as a biomarker of hypoxia in rectal cancer  
 

 
 

  
 

    
    

    
 
 

 
 

 
  

   
 

   
  

   
  

 
      

  
    

  
 

 
  

  
 

 
 

§ Specific aim 2. Validation of FAZA-PET imaging  
 

Sub-aim 2.1:  Pimonidazole correlation in pancreatic cancer  
 
Accrual of pancreas cancer patients suitable for curative-intent surgery to our study of 

pre-operative FAZA-PET plus pimonidazole staining has continued. Current accrual is 10 
patients out of 30. 

The data from a pilot FAZA-rectum trial will be used to measure FAZA uptake against 
a standard reference and study the correlation of FAZA-PET and blood oxygen level-
dependent MRI to pimonidazole staining in locally advanced rectal cancer. The ability to 
preoperatively predict the patient subpopulation that will respond best to chemoradiotherapy 
will help to identify the “complete pathological” responders and avoid unnecessary surgery. 
The primary goal of this pilot trial is to validate FAZA-PET as a biomarker of hypoxia by 
correlating its uptake in rectal tumors to pimonidazole staining in histopathology specimens. 
The pilot study has started last year with current accrual 4 patient out of 10. There was a delay 
in patient accrual, however the PI has manage to add another site, so renewal of accrual is 
expected soon. Validation analysis with pimonidazole staining is planned to be done after 
accrual is completed. 

§ Specific aim 3. Quantitative  methods on image-based biomarkers  to predict and assess  
response  
 

Sub-aim 3.1: Data handling and informatics  team  

Quantitative Imaging for Personalized Cancer Medicine program has evolved to an 
Imaging Core Lab with a robust infrastructure to help clinical investigators achieve systematic 
image collection and improved collaboration. Currently we have 32 trials on our platform, 43 
sites globally transferring images to our servers behind UHN firewall. These represents 
accrual of over 2.63 million images for approximately 600 patients in 1791 studies. QIPCM 
is continuously engaged in clinical imaging research and standardization initiatives in the 
Quantitative Imaging Network. 

QIPCM, partly supported by the National Cancer Institute’s QIN grant, participated in 
three QIN challenges; (1) kinetic modeling of head and neck patient images as well as digital 
reference objects, (2) comparison of radiomics analysis of lung tumors by 9 research groups 
and (3) comparison of dynamic FMISO-PET analysis on a set of lung tumor patient data by 4 
research groups. 

Also QIPCM team has developed a phantom which can be used to improve 
standardization of hypoxia measurements across institutions and plans on initiating a QIN 
challenge where the phantom is imaged at participating QIN sites. 
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Sub-aim 3.2:  Conventional hypoxia i maging analysis  

We plan to assess the impact of progressively more quantitative hypoxia imaging 
methods on the predictive capacity of hypoxia biomarkers in four clinical trials: 

1. A Feasibility Study of Hypoxia Imaging in Patients With Cervix Cancer Using Positron 
Emission Tomography (PET) With 18F-Fluoroazomycin Arabinoside (18F-FAZA) – 
current accrual 29 patients out of 30. The hypoxic volume (HV) was defined as all voxels 
within a tumor (T) with standardized uptake values (SUVs) greater than 3 standard 
deviations from the mean gluteus maximus muscle SUV value (M), or SUVs greater 
than 1–1.4 times the mean SUV value of the left ventricle, a blood (B) surrogate. The 
hypoxic fraction (HF) was defined as the ratio of the number of hypoxic voxels to the 
total number of tumor voxels. A 18F-FAZA PET HV could be identified in the majority 
of cervical tumors (89% when using T/M or T/B >1.2 as threshold) on the 2-hour static 
scan. The HF ranged from 0-99% (median 31%) when defined using the T/M threshold, 
and 0-78% (median 32%) with the T/B >1.2 threshold. HVs derived from the different 
thresholds were highly correlated (Spearman’s correlation coefficient ρ between T/M 
and T/B >1–1.4 were 0.82-0.91), as were HFs (0.75-0.85). Compartmental analysis of 
the dynamic scans showed k3, the FAZA accumulation constant, to be strongly 
correlated with HF defined using the T/M (Spearman’s ρ=0.72) and T/B >1.2 thresholds 
(0.76). 

2. The Potential for Metformin to Improve Tumor Oxygenation in Locally Advanced 
Cervix Cancer: A Phase II Randomized Trial – current accrual 12 patients out of 48; 

3. 18F-Fluoroazomycin Arabinoside (FAZA) Positron Emission Tomography/Magnetic 
Imaging Resonance (PET/MRI) as a Biomarker of Hypoxia in Rectal Cancer: A Pilot 
Study – current accrual 4 patient out of 10; 

4. A Feasibility Study of Hypoxia Imaging in Patients With Prostate Cancer Using Positron 
Emission Tomography (PET) With 18F-Fluoroazomycin Arabinoside (18F-FAZA) – 
current accrual 12 patients out of 20. 

COLLABORATIONS WITHIN THE NETWORK  

• New challenge participation is related to DCE-MRI metrics in brain immunology trials. 
Collaborative with MD Anderson [Dr Caroline Chung]. 

• Our team has developed a phantom, which can be used to improve standardization of 
hypoxia measurements across institutions. We plan to initiate a QIN challenge in the 
CT/PET subgroup where the phantom will be imaged at participating QIN sites. 
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PLANS FOR THE NEXT YEAR  
§ Specific aim 1   

• Our results from dynamic PET imaging of hypoxia in pancreatic tumors emphasized that 
tracer uptake must be corrected for transport—quantified by the FAZA distribution 
volume – in order to reliably quantify hypoxia. Dynamic PET imaging is resource-
intensive, however, and it would be extremely useful if transport could be quantified 
using static, non-contrast CT or MRI imaging. Figure 3 shows correlations between the 
FAZA distribution volume and CT number in a pancreatic tumor. Future work will aim 
to further quantify these correlations by developing transport models for pancreatic and 
non-small cell lung tumors. In doing so, we can improve hypoxia quantification using 
only static PET images and also test and improve CT-only radiomics biomarkers of 
hypoxia recently proposed by the group of Philippe Lambin at Maastricht University. 
Currently a joint research collaboration is currently being set up. Figure 3 shows our aim 
to extend their work by combining CT-based radiomics analyses with static PET data 
sets to improve hypoxia quantification. 

• Accurate measurements of AIF for dynamic PET imaging analysis will be investigated 
in both PET-MRI and PET-CT systems. This will allow translation of previously 
established CT and MRI validation data to the assessment of hypoxia accuracy in 
combined modality (or even PET only) imaging systems. 

• Although the JWL-2TC model accounts for the blood flow delivery effect, the current 
implementation of this model in the fitting algorithm has a long processing time, i.e. 
about 30 seconds per fitting.  In the coming year, we will investigate other 
implementations that could decrease the processing time to about 5-10 seconds per 
fitting. 

• Our team has developed a phantom which can be used to improve standardization of 
hypoxia measurements across institutions and plans on initiating a QIN challenge where 
the phantom is imaged at participating QIN sites. This phantom will be sent around to 
sites across North America to compare results obtained with different CT scanners. 

§  Specific aim 2.   
 
•  London site will participate  in a Phase  II randomize trial of “the Potential for Metformin  

to Improve Tumor Oxygenation in Locally  Advanced Cervix Cancer”. The recruited  
patients will undergo dynamic PET imaging  with 18F-FAZA and CT Perfusion 
scanning.  As discussed in progress report  for Sub-aim 1.3, the CT Perfusion study will  
be used to  estimate F  and Vb  of the JWL-2TC model and then the tumor TAC from the  
dynamic PET study  will be analyzed to determine  if the binding rate constant to hypoxic  
targets decreases with metformin treatment.  
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§ Specific aim 3.   

• Having developed the capability to measure lung perfusion and ventilation with CT 
Perfusion, London site will be also investigating imaging NSCLC with 18F-FAZA 
dynamic PET and correlate the PET findings with pimonidazole staining of explanted 
tumor. 

• We will continue analyzing the images from 4 clinical trials for validation studies. Our 
group is planning to propose a QIN challenge to the network. 
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We propose to develop, optimize and validate  novel DW-MRI  acquisition and  

modeling methods, which address non-Gaussian water diffusion and perfusion effects through  
diffusion kurtosis imaging and non-Gaussian intravoxel incoherent motion imaging and  
provide more specific measures of tissue structure and biology. Additionally, we will develop 
and implement advanced image processing tools to maximize  the biologic information from 
the tumor/tissue provided by  the imaging data. The essence of our timely proposal lies in it 
being the first multi-center, imaging trial to identify  quantitative imaging biomarkers as early  
response to therapy indicators, which interrogate tumor biology in accordance with the central  
mission of the NCI Quantitative  Imaging Network  (QIN). It will address an urgent, unmet  
need in  clinical trials for recurrent/metastatic (R/M) head  and neck cancers.  This UO1  
proposal is in response to PAR-14-116 and the specific aims outlined in the proposal are as  
follows: Aim 1: To develop and standardize a multi b-value reduced field of view (rFOV)  
DW-MRI acquisition method and non-mono exponential modeling DW-MRI for oncology  
applications; Aim 2: To develop and implement optimal model methodology with advanced 
image segmentation and image feature analysis in patients with R/M malignancies in the HN  
region for oncology applications; and  Aim 3:  To establish the next generation DW-MRI 
biomarkers as  early response to therapy indicators in experimental therapies using R/M HN  
squamous cell carcinoma (SCC) as  a proof of principle model. We hypothesize that imaging  
metrics derived from newer methods  can be used as quantitative imaging biomarkers  for  
assessing early therapeutic efficacy in R/M HNSCC. The principles of identifying robust,  
reliable and quantitative imaging biomarkers derived from DW-MRI and image feature  
analysis  remain similar and such imaging protocols, after  appropriate adaptation, can have a  
wider clinical application, including their use in treating other solid tumors  

 

 
   

 
 

   
  

  
 

 

U01 CA211205:  Quantitative imaging tools to derive DW-MRI oncologic  
biomarkers  
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Amita Schukla-Dave Ph.D., MSKCC  
Lawrence Schwartz, CUMC  

 
INTRODUCTION  

RESULTS  

Our study has completed nearly six months and is in its first year. Our preliminary 
data demonstrate the feasibility of DW-MRI across sites (Memorial Sloan Kettering Cancer 
Center [MSKCC] and Columbia University Medical Center [CUMC]) in a reproducible 
manner using the same methods of MRI data acquisition. This is a prospective study of 
patients identified in the clinic with head and neck cancer who will undergo MRI and 
thereafter be treated at the respective institutions. MSKCC and CUMC have processed new 
institutional review board (IRB) protocols. 
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§ Diffusion-weighted MRI  (DW-MRI) on phantom  
  
   

   
 
 

    
 

  
  
   

  
    

    
 

   
    

   
 
 

 
   

  
  

  
 

 
 

 

 
 

   
    

     

One of the prerequisites for a multi-site study is to show that both clinical sites can 
acquire data using the new National Institute of Standards and Technology (NIST) and RSNA-
QIBA phantom and perform multi b-value DW-MRI studies on both 1.5 and 3T GE MRI 
scanners. The phantom is constructed using varying concentrations of polyvinylpyrrolidone 
(PVP) in an aqueous solution to generate physiologically relevant ADC values. The imaging 
protocol was performed 4 times for repeatability, based on the guidelines provided by QIBA, 
and b-values of 0, 500, 900 and 2000 sec/mm2 were used to obtain the composite ADC. Drs. 
Shukla-Dave (MSKCC, PI), and Jambawalikar (Chief Medical Physicist, CUMC, Co-
investigator), are members of the QIBA MRI committee and have access to QIBA phantoms. 
The repeatability and reproducibility studies were performed on both 1.5 and 3T MRI 
platforms by Drs. Shukla-Dave and Jambawalikar at MSKCC and CUMC. Figure 1 shows 
representative repeatability results from 3T GE MRI scanners at both sites MSKCC and 
CUMC. The variance in ADC values within and across sites was less than 2% (at both 3T and 
1.5T) and ADC mean values for the central vial in the phantom was 1.11×10-3 mm2/sec at 
MSKCC, and 1.16×10-3 mm2/sec at CUMC for 3T MRI and 1.14×10-3 mm2/sec at MSKCC, 
and 1.10×10-3 mm2/sec at CUMC for 1.5T MRI. 

Figure 1: Repeatability results obtained using NIST/RSNA QIBA DW-MRI phantom 
containing vials with varying concentrations of PVP (0-50%) to generate physiologically 
relevant ADC values and different vial positions (c=central; o=outer; i=inner). The phantom, 
and ADC image are shown as inserts in the graph. (A) Graph showing ADC (mean±sd) values 
for each vial in 4 experiments performed at MSKCC. (B) Graph showing ADC (mean±sd) 
values for each vial in 4 experiments performed at CUMC. 

PLAN FOR THE YEAR 2018  

In collaboration with Dr Chenevert (University of Michigan [UM], Co-Investigator), 
we are designing new phantom for Kurtosis. The first generation phantoms to accurately 
assess the Kurtosis phenomenon were developed in-house and they were not robust enough 
to be shipped for testing in multi-site trials (1). The group used dairy cream which is shown 
to be a simple, inexpensive, isotropic phantom useful for testing diffusional kurtosis imaging 
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data acquisition and postprocessing. The MR-visible protons of cream exhibit slow and fast 
diffusion components, attributed to the fat and water protons, respectively, which give rise to 
a diffusion coefficient of 1.1 μm2/ms and a diffusional kurtosis of 1.2. These parameter values 
were similar to those observed in vivo for human brain. Heating the cream was found to 
increase the T2-relaxation time of the fat protons, which facilitates the evaluation of typical 
diffusional kurtosis imaging protocols used in clinical settings.  However, this was not a robust 
phantom. 

Thus, there is still an unmet need worldwide and we plan to design and construct robust 
novel Kurtosis phantom for multi-site trials. 

For each of our aims in the proposal, we plan to continue data analysis and start patient 
volunteer accrual in the upcoming project period. We anticipate being able to prospectively 
enroll patient volunteer that meet our current study eligibility criteria. The novel analysis 
tools have been developed individually by the participating PIs group (Dr Schwartz, PI CUMC 
and Dr Shukla-Dave, PI MSKCC) and will be exchanged within the groups and to the QIN 
community.  

STRENGTHS AT THE INSTITUTIONS [MSKCC, CUMC, UM]  

Both groups (MSKCC and CUMC) have extensive experience in performing DW-
MRI studies in cancer patients. MSKCC team led by Dr Shukla-Dave has been designated as 
Clinical Site I as they have published key papers in the field from testing and implementing 
the reduced field view of DW-MRI acquisition protocol to developing novel models for non-
Gaussian modeling of the DW-MRI data for head and neck cancers. CUMC team lead by Dr 
Schwartz has been designated as clinical site II and will test and validate the imaging protocols 
developed at MSKCC and perform reproducibility and repeatability studies both in phantoms 
and patient volunteers. MSKCC and CUMC will also study patients going on experimental 
therapies. Both MSKCC and CUMC will perform MRI patient studies each as described in 
the proposal. 

Dr. Shukla-Dave will work closely with Dr Chenevert in developing a new Kurtosis 
phantom that reflects properties the metrics derived from multi b-value DW-MRI acquisition 
and identify the best b-values selection and range for appropriate balance between SNR, scan 
time, and sensitivity to non-mono-exponential characteristics. 

It is important to ensure that quantitative imaging biomarkers are established 
independent of individual site expertise, and using the same or similar data acquisition and 
analysis protocols for its clinical application worldwide. This proposal adheres to the vision 
of QIN as mentioned in PAR 14-116. As detailed in the application, the proposed study not 
only leverages the expertise of the laboratories of both PIs, but will also help the clinical 
community manage patients with (R/M) head and neck cancer by providing non-invasive, 
quantitative, imaging biomarkers to predict or assess early treatment response in patients 
being treated with experimental therapy. 
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INTRODUCTION  

The University of Texas Southwestern (UTSW) Medical Center has recently joined 
the quantitative imaging network (QIN), as of Sep. 2017. The primary focus of the UTSW 
QIN team is to validate arterial spin labeled (ASL) MR imaging as a quantitative imaging 
biomarker to measure non-contrast perfusion for assessment of cancer therapy response. 

Tumors exhibit neo-angiogenesis, a key pathophysiological process for delivering 
oxygen and other essential nutrients for proliferation and metastasis (1). Cancer therapies are 
targeted at disrupting these vascular supplies either directly using antiangiogenic treatments 
or indirectly using cytotoxic chemoradiation. A significant number of these therapies have 
entered clinical trials in a variety of tumors. However, the radiological assessment of treatment 
outcomes still predominantly relies on morphological changes (e.g. RECIST), which is a 
limiting factor (2). An imaging technique to quantitate tumor vascular supply (or perfusion) 
and its response to therapy will have great importance in evaluating clinical trials by providing 
early, physiologically based indicators of response to therapy. 

ASL-MRI has recently emerged as a quantitative imaging method to measure 
perfusion without the administration of exogenous contrast agents (3). ASL has the potential 
to not only assess therapy response (4, 5) but also to predict tumor aggressiveness based on 
the pre-treatment tumor vascularity (6, 7). ASL also has a number of advantages compared to 
dynamic contrast enhanced (DCE) and dynamic susceptibility contrast (DSC) based MRI 
perfusion measurements. Specifically, ASL does not require exogenous contrast 
administration and, unlike DCE/DSC, ASL measures absolute perfusion. In spite of these 
advantages, ASL has not undergone a robust and rigorous validation process to be established 
as a quantitative imaging method for evaluating response to therapy in oncological 
applications. 

As part of the QIN grant, we will fulfill this goal by evaluating the ASL measurement 
in two known highly vascularized cancers, glioblastoma (GBM) and metastatic renal cell 
carcinoma (mRCC). Furthermore, we will also establish quality control protocols using a 
custom-built 3D printed perfusion phantom that can be used to validate the reliability of ASL 
measured flow. The specific aims of our proposal are: 

Aim1: To demonstrate the reliability and precision of ASL based quantitative non-contrast 
perfusion in the brain and kidneys. 
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Aim2: To predict clinical outcomes based on baseline (pre-treatment) perfusion and early 
changes in post-treatment perfusion in patients with newly diagnosed GBM 
undergoing chemoradiation therapy. 

Aim3: To predict long-term outcomes using baseline (pre-treatment) perfusion and early 
changes in post-treatment perfusion in patients with metastatic RCC undergoing 
antiangiogenic therapies.   

 
DISCUSSION OF PROGRESS   

 
 In this  section, we will list the methods and  preliminary  results acquired  during  the  
past year  for each of the specific aims.  
 
§ Aim 1:  To demonstrate the reliability and precision of ASL based quantitative non-
contrast perfusion in the brain and kidneys.  
 

A1.1 Reliability of ASL  Measured  Flow in Phantoms:   

The first goal of this aim is to develop a quality assurance (QA) protocol using our 3D 
printed perfusion phantom (Figure 1), that can be used across different scanners and platforms 
for consistent reproducibility of the quantitative ASL measured flow (8). Towards this goal, 
we are optimizing the imaging protocol with varying labeling durations and post-label delay 
with both pseudo-continuous ASL (pCASL), the primary sequence, compared against the 
pulsed ASL using flow alternating inversion recovery (FAIR) (Figure 2). 

Figure 1: 3D printed perfusion phantom. Schematic (a) and the final printed 
perfusion phantom (b). 

A1.2 Reliability of ASL  Measured  Perfusion in  Brain:   

The second goal of this aim is to measure reproducibility of ASL measured perfusion 
in brains of 30 normal volunteers. Initially, we proposed to use spiral based acquisitions for 
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ASL measurement. While the spiral acquisitions have provided high signal to noise ratio 
(SNR) and robust images in normal volunteers, they are prone to distortions with increased 
B0 inhomogeneities. 

Figure 2: ASL measured flow in perfusion phantom. Top row: Images 
acquired with a pulsed ASL approach, FAIR at different post-label delays. 
Bottom row: Same images acquired with the pCASL approach using a 500 
ms labeling duration and at different post-label delays. Both techniques 
show similar signal evolutions at different post-label delays. 

In anticipation of evaluating this sequence on GBM patients, who often have 
craniotomy that induces increased B0 inhomogeneities, we also developed Cartesian based 
acquisitions for improved robustness in the presence of metal implants. Specifically, we 
designed a Cartesian acquisition with spiral reordering (CASPR), which has the robustness of 
acquiring images using Cartesian trajectory, while also increasing the robustness of ASL 
measured signal by using a spiral trajectory (Figure 3) (9). Using CASPR, we achieved robust 
image quality throughout the brain compared to the product EPI based ASL measurement 
(Figure 4). We have initiated the recruitment of normal volunteers to test the reproducibility 
of this approach in brain in both intra-session and inter-session. 
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Figure 3: Cartesian Acquisition with SPiral 
Reordering (CASPR) samples the center of k-
space during the early echoes of the turbo spin 
echo readout (blue dots), and the periphery of 
k-space towards the later part of the turbo spin 
echo readout (red dots) in a spiral order (black 
line), while still maintaining samples on the 
Cartesian view ordering. 

Figure 4: Brain perfusion images of a normal volunteer. Compared to standard pCASL 
with 2D EPI acquisition (A), the newly developed CASPR acquisition (B) generates robust 
perfusion images throughout out the brain with uniform signal intensity, higher SNR and 
robust to B0 inhomogeneities. This will generate robust images without significant 
artifacts due to B0 inhomogeneities in GBM patients, with craniotomy. 
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§ Aim 2:  To predict clinical outcomes based on baseline (pre-treatment) perfusion and  
early changes in post-treatment perfusion in patients with newly diagnosed GBM  
undergoing chemoradiation therapy.  
 
      

   
 

 
 

   
  

 
   

 
 

   
  

 
     

   
  

 

A1.3 Reliability of ASL  Measured  Perfusion in  Kidneys:   

The third goal of this aim is to measure reproducibility of ASL measured perfusion in 
kidneys of 30 normal volunteers, similar to the above sub-aim. Compared to brain perfusion 
imaging, which has become a standard imaging technique on most commercially available 
scanners, the ASL acquisitions in the body are significantly lacking. Using our newly designed 
CASPR approach (Figure 3), we are able to achieve robust kidney perfusion images 
throughout the volume (Figure 5) (9). We have initiated the recruitment of normal volunteers 
to test the reproducibility of this approach in kidneys in both intra-session and inter-session. 

Figure 5: Kidney perfusion images of a normal 
volunteer. CASPR view ordering (fig. 3) generates robust 
images in the body that shows uniform perfusion 
throughout the kidneys, without being sensitive to B0 
inhomogeneities. The images were acquired in the coronal 
orientation and reformatted into sagittal and axial 
orientations. 

We have submitted our IRB protocol for the recruitment of GBM patients undergoing 
chemoradiation. We anticipate the IRB approval in the early part of the upcoming year. 
Following that, we will open the recruitment of GBM patients to evaluate ASL measured 
perfusion. Meanwhile, we have been working on the following: 

- Established standard protocol that includes the following quantitative imaging 
techniques in addition to ASL – DCE-MRI, DSC-MRI, and DWI. 

- Evaluating several tumor segmentation algorithms for automated segmentation of the 
tumors. 

- Established contact with ECOG-ACRIN EAF151 trial for possible evaluation of ASL 
in addition to the standard clinical imaging for evaluating treatment response. 
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§Aim 3:  To predict long-term outcomes using baseline (pre-treatment) perfusion and  
early changes in post-treatment perfusion in patients with metastatic RCC undergoing  
antiangiogenic therapies.  

We have also submitted another IRB protocol for the recruitment of mRCC patients 
undergoing anti-angiogenic therapy. We anticipate the IRB approval in the early part of the 
upcoming year. Following that, we will open the recruitment of mRCC patients to evaluate 
ASL measured perfusion. Meanwhile, we have been working on the following: 

- Established standard protocol that also includes the quantitative DWI along with the 
ASL for evaluating treatment response. 

- Evaluating ASL in small renal mass protocol, who are under active surveillance, under 
the kidney cancer SPORE grant. Although, this is not measuring cancer therapy 
response, it provides valuable information in identifying the stable disease against 
progressing disease, that can be measured with ASL, without the administration of 
exogenous contrast agent. 

COLLABORATIONS WITHIN THE NETWORK  

We have begun collaborations with other QIN sites. Specifically, we are participating 
in two challenges – DSC/DRO organized by Barrow’s Neurological Institute and Prostate 
DWI challenge, organized by Medical College of Wisconsin. 

PLANS FOR NEXT YEAR  
Aim 1  

a. Establish QA protocol with the perfusion phantom. Once established, the perfusion 
phantom will be scanned every other week for the entire year to evaluate 
reproducibility of ASL measured flow. 

b. Continue the recruitment of at least 15 normal volunteers for brain imaging. 
c. Continue the recruitment of at least 15 normal volunteers for kidney imaging. 

Aim 2  
a. Start recruitment of GBM patients with a possible target of at least 10 patients for 

this year. 
b. Refine and finalize the automated tumor segmentation tools for brain tumors. 
c. Establish automated processing pipelines for image analysis including registration 

of multiple contrasts and feature extraction. 
Aim 3  

a. Start recruitment of mRCC patients with a possible target of at least 10 patients for 
this year. 

b. Optimize the automated brain tumor segmentation tools from Aim 2 for tumor 
segmentation in the body. 

We will also continue to participate in QIN collaborative projects. 

240 



 
 

 
   

 
 
 

 
  

 
   

 
 

   
  

 
  

 
   

 
   

 
    

   
 

  
 

  
 

   
 

 
  

 
  

   
   

   
  

PUBLICATIONS AND PRESENTATIONS   

We are currently drafting two manuscripts, one on the perfusion phantom and the other 
on robust perfusion imaging using our newly designed CASPR approach. 
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ACCOMPLISHMENTS/ACTIVITIES  FOR THE  YEAR (2017-2018)  

 
§ Manuscripts  

 
Standard  in Reporting Quantitative Imaging (STIRQI)    
 

       
 

    
     

    
  

    
 

   
 

   
    

Clinical  Trials  Design and  Development Working  Group  

Hui-Kuo  Shu,  MD,  PhD, Chair  
Elizabeth  Gerstner, MD, Co-chair  

MISSION  

Develop, validate and harmonize methods and tools of quantitative imaging for use 
in cancer clinical trials to predict outcome and tumor response to therapy.  

GOALS  

1. Identify challenges and opportunities in clinical trial design and development particularly 
in trials using quantitative imaging (QI).  

2. Identify best practices for clinical trial design, analysis and reporting. 

3. Facilitate and introduce QIN-developed methods into cancer imaging trials through 
collaboration with other QIN working groups. 

4. Disseminate the best clinical trial design and development method through 
publications and guidelines. 

5. Outreach to cooperative groups and organizations to apply QIN methods in multicenter 
trials through cross-membership and presentations. 

6. Translate relevant and mature QIN methods into clinical practice settings as appropriate.  

QI methods are increasingly used in clinical trials both as primary and secondary, or 
correlative endpoints. With increasing sophistication of QI methodologies, a minimum 
standard of basic information regarding the acquisition and analysis of QI data must be 
provided in publications so that reader can determine the validity and reliability of these results 
and findings can be generalized.  This initiative seeks to define a set of criteria that should be 
presented in QI-related peer-reviewed papers to ensure that quantitative data extracted from 
images are reported in a meaningful, consistent, and repeatable manner.  

Richard Wahl has led this effort basing STIRQI on the STAndards for Reporting of Diagnostic 
Accuracy (STARD) criteria first reported in 2003 (Bossuyt, et al., Ann Int Med 138:W1-12, 
2003) and subsequently updated in 2015 (Bossuyt, et al., BMJ 351:h5527, 2015).  He has 
taken input from members of the CTDD WG and drafted a manuscript with a checklist of 
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Pathways for Adoption  of  QI Tools/Techniques  into Clinical Trials and Widespread  
Clinical Use  

 
 

   
    

    
  

   
  

   
 
§ Outreach activities  

 
Presentation at the July 2017 NRG Oncology meeting  
 

    
       

   
     

standards for QI reporting.  This manuscript has now been circulated among working group 
members for comments/edits and is in the final stages of preparation. It is expected that this 
manuscript will be submitted for review in the first quarter of 2018.  

Quantitative Imaging in Radiation Oncology   
 
With advances in radiation oncology, this field is now increasingly reliant on both 

high-resolution anatomic-based imaging (CT and MRI) as well as functional imaging (PET, 
DWI, MRSI etc.). Greater utilization of conventional and advanced imaging methodologies 
has developed because the radiation therapy delivery has become increasingly accurate 
through stereotactic guidance as well as image-guided radiation therapy (IGRT) with daily 
image-based alignment.  As this becomes possible on a routine basis, the margins of error in 
delivery have decreased to sub-millimeter accuracy in intracranial applications and on the 
order of 1-2 millimeters in body treatments.  A review of QI, in particular, focusing on its 
utility for the radiation oncologist should be an important addition to the literature and help 
highlight the increasing range of advanced imaging modalities for this clinical field. 

John Buatti and Hui-Kuo Shu are leading the effort in writing a manuscript reviewing the 
use of QI modalities by radiation oncologists in clinical trials and routine patient management.  
This review will highlight, in particular, the role of the QIN in developing and advancing QI 
techniques and their utilization in the field of radiation oncology.  A manuscript with wide 
input from members of the CTDD WG was submitted for review for a special imaging issue 
of the International Journal of Radiation Oncology, Biology, Physics (AKA The Red Journal) 
on 12/31/2017.  This manuscript was recently returned for modification and will be re-
submitted by 2/13/2018. 

With the impending conclusion of the above two projects with manuscript 
submissions, additional ideas for new projects have been entertained. Discussions are ongoing 
within the working group regarding a new white paper project that matches well with the 
PathCT initiative. The idea is to produce a review paper that goes through the hurdles that 
would need to be overcome for bringing new QI methodologies into clinical use.  Areas to be 
explored include what level of evidence is needed to warrant bringing a new QI technique 
forward and developing a roadmap for bringing this into clinical trial and subsequent adoption 
for general clinical use. 

Hui-Kuo Shu gave a presentation for the Imaging Working Group of NRG Oncology 
entitled “Implementing Quantitative Imaging Network (QIN) Tools in NCTN trials: QIN 
Clinical Trials Design & Development working group” at the semiannual summer meeting in 
Philadelphia, PA on July 14, 2017.  This presentation introduced the structure and goals of the 
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QIN to this audience as well as promoting the idea of including QI endpoints in clinical trials 
and how to facilitate greater interaction with QIN groups to help accomplish this.  In particular, 
details were given about AutoPERCIST™, an semi-automated tool for making SUL 
measurements on FDG-PET studies, which was touted as an example of an advanced tool 
developed within the QIN that may be of interest to clinical researchers within NRG 
Oncology.  

QIN session at the 3rd  AACR-SNMMI Joint Conference on State-of-the-Art  
Molecular Imaging in  Cancer Biology and Therapy, February  14-17 in San  
Diego, CA  

Ella Jones was instrumental in organizing a QIN session for this meeting scheduled on 
Friday, February 16.  This session will focus on clinical translation of QIN tools.  Although 
the meeting is generally on more pre-clinical subject matters, this session will be on a day 
where there are more clinical considerations.  Program will include Ella Jones who will 
introduce the QIN as well as additional speakers including Jayashree Kalpathy-Cramer, Tom 
Yankeelov and Brenda Kurland talking on a variety of QIN-related topics. 

Plan for a Cancer Imaging session for the 2018 Annual Meeting of the  American  
Association for Physicist in Medicine (AAPM)  

John Buatti will be chairing a session entitled “The Essential Role of Longitudinal 
Imaging in Cancer Decision Making” at the Annual AAPM meeting in Nashville, TN on July 
30-August 3, 2018.  This session will focus on advanced imaging techniques that can help 
provide clinical decision support for oncologic management and will include multiple QIN 
members. Speakers (topics) for this session will include Rujiang Li (The prediction of 
immune modulating effects of cancer therapy using radiomics features in lung cancer), John 
Bayouth (Longitudinal assessment of lung function using 4D imaging), Andrey Federov 
(Multiparametric MR parameters in Prostate Cancer predict response and guide therapy) and 
Hui-Kuo Shu (Whole Brain MRSI predicts early response to therapy and enables adaptation). 

Proposal for a Panel Session at the 2018  Annual Meeting of the American Society  
for Therapeutic Radiology and Oncology (ASTRO)  
 
A panel session was proposed by John Buatti and Hui-Kuo Shu entitled “NCI’s 

Quantitative Imaging Network: Development and Integration of Novel Tools for Oncology 
Clinical Trials and Patient Management” the next ASTRO Annual Meeting in San Antonio, 
TX on October 21-24, 2018. We are currently awaiting review by the organizing committee 
to determine whether this panel session will be chosen for this upcoming ASTRO meeting. 
The proposed summary, learning objectives and presentations of this panel session are as 
follows: 
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Summary: The National Cancer  Institute (NCI)  has funded the Quantitative  
Imaging Network (QIN) since 2009 to develop novel approaches, including tool  
development, for quantitative imaging a nd clinical decision support in oncology.   
Multi-disciplinary  research teams  from top institutions across the country that make  
up this network are developing a  number of quantitative cancer imaging methods and  
tools that can be applied in unique ways to add value to the management of oncology  
patients.  This session will feature  QIN members that are developing and validating 
quantitative imaging tools for common cancers that are of interest to the membership  
of ASTRO.  The panel will describe how advanced imaging modalities can 
complement more conventional ones for oncologic evaluations.  There will be a  
particular  focus on tools that are in an advanced stage of development with 
presentations that address unique clinical translational issues.  Another focus will  
involve an overview of the computing architecture/pipelines and informatics tools  
needed to fully exploit  the wealth of data that will be generated  with increased  
utilization of advanced quantitative imaging techniques.  This panel will raise  
awareness of the potential utility of advanced quantitative imaging for both research  
and general clinical practice.  Several barriers (shown below) have limited wider  
adoption of advanced quantitative imaging techniques in the clinic.  We believe that  
panels such as the one proposed here will help educate oncologists about the value of  
quantitative imaging and  further promote the development and validation of  new tools  
and methods needed to more fully bring quantitative imaging into the clinical setting.     
 

Learning Objectives:  The following  Learning objectives were achieved.  

1. Differentiate conventional qualitative from advanced quantitative imaging 
techniques and describe the added value of the quantitative methodologies to 
clinical management. 

2. Demonstrate knowledge of specific tools being developed by featured QIN 
research groups that will allow various advanced quantitative imaging 
techniques to be utilized on oncology clinical trials.  

3. Demonstrate an understanding of computing architecture/pipeline and 
informatic needs to fully exploit development of quantitative imaging 
methods/tools for clinical use. 

Presentations  

1. Advanced imaging tools for head and neck cancer segmentation and 
evaluation (John Buatti). 

2. Computing architecture/pipeline requirements for quantitative imaging 
assessment and application to radiogenomic mapping (Sandy Napel). 

3. Informatic issues with implementation of quantitative imaging methodologies 
for improved digital interoperability (Andrey Federov). 
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4. Development of novel spectroscopic MRI technique for evaluation and 
follow-up of brain tumors (Hui-Kuo Shu).  

PET Response Criteria in Solid Tumors (PERCIST) was initially proposed by Wahl et 
al. (J Nucl Med, 50 (suppl 1):122S-150S, 2009) as an approach to standardize interpretation 
of FDG-PET results using a consistent PET protocol.  Richard Wahl’s group has subsequently 
examined the variability for interpretation of FDG-PET results in 22 readers across 15 
institutions on 30 test cases with scans before and after therapy to determine multicenter 
variability using each institution’s own preferred software for this analysis.  This published 
study (J Nucl Med, 58:1429-1434, 2017) showed high correlation across readers and 
institutions but did still identify some level of variability. 

Dr. Wahl’s team has developed a software (AutoPERCIST™) to semi-automatically 
identify and measure reference tissue (liver), set disease threshold values and calculate SUVs 
(peak, max, mean, volume and total lesion glycolysis) based on PERCIST criteria. He has 
initiated a study to test across institutions and readers using AutoPERCIST™ to evaluate the 
same 30 test cases referenced above.  The main goal is to determine whether variance among 
readers and institutions is further reduced when the AutoPERCIST™ tool is used.  The latest 
version of this software was installed by 11 participating institutions (from United States, Asia 
and Europe) through a materials transfer agreement (MTA) and the 30 paired sets of 
anonymized FDG PET-CT images were downloaded for evaluation.  Instructions for this study 
were given to each participating institutions with up to 5 tumor lesions from each PET image 
to be evaluated.  All selections were recorded and sent to the central database at Johns Hopkins 
Image Response Assessment Team for quality control. Initial results show that very consistent 
SUV peak values were obtained and this had less variability than was seen when different 
institutional software was used.  Joo Hyun O, Clinical Assistant Professor (Department of 
Nuclear Medicine, Seoul St. Mary’s Hospital, Seoul, Korea) and Richard Wahl are leading 
this effort with an abstract that has been submitted for the 2018 SNMMI Annual meeting.  

Pathways to Clinical Trials (PathCT) initiative  

This initiative was started at the QIN Annual F2F meeting in April 2016 with 
significant progress including the drafting of a PathCT Summary report, updating of a list of 
QIN tools that documents their level of readiness for clinical trial translation, a QIN-NCTN 
planning meeting in Philadelphia in December 2016 and establishment of the PathCT Focus 
Group that is working to advance this initiative.  These accomplishments were documented in 
the previous year’s Annual Report.  

The CTDD WG in 2017-2018 has continued to work to help facilitate the translation 
of QIN-developed tools to NCTN clinical trials. The working group have the following 
accomplishments towards advancing these goals: 
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QIN presentation for  the Imaging Working Group at the July 2017 NRG  

Oncology meeting:  See above for more details.   
 
QIN-NCTN planning meeting  at the Alliance Semiannual Meeting on November 

2-4, 2017 in Chicago, IL:   Through a several months planning process led by L arry Schwartz, 
Paul Kinahan and David Mankoff, QIN investigators were  given the opportunity to participate  
in a significant  fashion a t the Alliance meeting in November 2017.  The planning c ommittee  
for this effort included Hui-Kuo Shu as a representative of  the CTDD WG.   Robert Nordstrom  
and Michael Knopp addressed the entire Alliance group at their Plenary session introducing 
the QIN  and making a case for the value of incorporating quantitative imaging  
assessments/endpoints into clinical trials.  Many QIN  representatives  were also  given the  
opportunity to speak and participate in different disease site/discipline  committees including  
Nola Hylton and Mary Ellen Giger (at the Breast committee), Paul Kinahan and Amita Dave 
(at the Experimental Therapeutics  committee),  Larry Schwartz and Hugo Aerts (at the GI  
committee), Mike Jacobs, Andrey  Federov and Brian Ross (at the GU committee), Rich Wahl  
and Dave Mankoff  (at the  Lymphoma committee),  Brad Erickson, Jatsharee Kalpathy-Cramer  
and Michael Knopp (at the Neuro-Oncology committee), Hui-Kuo Shu and Yue Cao (at the  
Radiation Oncology  committee), John Buatti and  Michael McNitt-Grtay (at the Respiratory  
committee) and  Ying Xiao, Michael Knopp, Mark Rosen and T.J. Fitzgerald (at the  Imaging  
committee).    

 

 
 

 

Coordinating QIN-NCTN planning meeting for the NRG Oncology Semiannual  
Meeting on July 12-14, 2018 in Philadelphia, PA:  The planning process  has been initiated  
(1st  teleconference in January 2018)  for  a QIN  effort similar to the past Alliance meeting at  
the NRG Oncology meeting in July 2018.  There  has been early communications with Mitch  
Machtay, Deputy Group Chair for Research Strategy  within N RG, about organizing this effort.   
Hui-Kuo Shu a nd John Buatti will also be taking on an increased role in the planning process  
for this effort.  Monthly teleconferences will continue until the time of the meeting to maintain  
momentum for planning.  In addition to the type of participation that QIN had at the Alliance  
meeting, one idea would be to bring specific proposals to incorporate certain advanced QIN  
tools/methodologies into developing protocols at specific targeted disease committees.   

 
PathCT Focus Group:  This group,  which consists  of members of the CTDD WG  

(current composition include John Buatti, Elizabeth Gerstner, Lori Henderson, Ella Jones,  
Hui-Kuo Shu and Richard Wahl), continues to meet on a regular basis to review  the readiness  
of QIN-developed tools.  To gain a better understanding of the most up-to-date status of QIN  
tools, this group developed a short questionnaire, which is now ready for distribution to QIN  
PIs to help assess the stage of development for individual tools.  Once this is determined, this  
group will likely target groups with tools that are just about at the stage for clinical trials  
translation to see this Focus Group can help provide guidance for the next steps in advancing  
these specific tools.    
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PLANS  FOR THE  COMING YEAR (2018-2019)  
 
§ Goals for  the  coming  year include  the following:  

1. Completing the submission of two manuscripts (STIRQI criteria and Quantitative 
Imaging in Radiation Oncology) for review in appropriate peer-reviewed journals. 

2. Starting a new project on discussing the requirements and hurdles for translation of QI 
tools into clinical trials and general clinical practice and producing a new white paper on 
this topic.  

3. Continued outreach efforts at national oncology and cooperative group meetings to 
educate about the utility and promise of QI and the role of the QIN in developing these 
techniques.  Specific efforts will include the following: 

a. A planned session on Cancer Imaging will be given at the AAPM Annual Meeting 
July 30-August 3, 2018 in Nashville, TN.  

b. A panel session proposal has been submitted to present at the ASTRO Annual 
Meeting in 2018. If this proposal is approved, the session will take place at ASTRO 
October 21-24, 2018 in San Antonio, TX.  

4. Presentation of the results of the AutoPERCIST™variance test at the SNMMI Annual 
Meeting June 23-26, 2018 in Philadelphia, PA and preparation/submission of a manuscript 
for this effort. 

5. Continue to advance the goals of the PathCT initiative through the following: 

a. Planning significant QIN participation at the NRG Oncology Semiannual Meeting 
July 12-14, 2018 in Philadelphia, PA.  

b. Continuing the activity of the PathCT Focus Group as detailed above. 
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Bioinformatics and Data Sharing Working Group  
 

Jayashree Kalpathy-Cramer, Ph.D.  
Peter S. LaViolette,  Ph.D.  

 
INTRODUCTION  

The Bioinformatics and Data Sharing (BIDS) working group serves two main aims to the 
QIN. Aim 1 is promoting and facilitating data sharing. Aim 2 is the promotion and facilitation of 
tool sharing between sites and researchers. The past focus has been on data sharing, specifically 
through the TCIA. This year the broad focus of the BIDS group has been on tool sharing. 

DISCUSSION OF PROGRESS  
 
§ Group Communication Update  
 

Early in the year it was decided to track both the meeting minutes and the agendas on a 
shared Google doc. We have also formed a Google Group called “QIN BIDS Working Group” 
where group communications are tracked, and links to shared documents are located. To join the 
group, please email either Justin Kirby justin.kirby@nih.gov or Peter LaViolette: 
plaviole@mcw.edu. To email the entire group, use the email address: qin-bids@googlegroups.com 
In addition to using resources such as Google for communication, the The National Cancer 
Informatics Program (NCIP) Hub has also been proposed as a mechanism for carrying out 
collaborative research projects. As stated on the website: www.nciphub.org, the NCIPHub is “a 
site for community research and collaboration in cancer research and informatics. Users can share 
resources, host online communities, and use collaboration tools. These resources are available to 
visitors from all over the world. The NCIP hub is supported by the National Cancer Institute, 
National Institutes of Health to foster collective innovation and democratize access to data, tools 
and standards across the cancer research community.” 

§ Tool Sharing  

Much of the effort of the BIDS group this year have been focused on the creation and 
dissemination of a list of tools created by QIN investigators. After extensive discussion it was 
decided to use a google spreadsheet for the list, which is located here: 
https://docs.google.com/spreadsheets/d/1YMj_KvrAYSbaK9AVzK0n_zF3GGMJ1ZfWZy5dhR4hwfg/edit#gid=0 

Figure 1. Snapshot of the first few tools listed in the QIN Tool List. 
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The tools listed range from 3D-Slicer, a multi-modal image processing platform, to 
histology segmenting tools geared specifically towards one specific immunohistochemistry stain. 
The current list of tools began the year as a spreadsheet that was passed user to user for updates. 
We decided early that the best way to ask everyone all at once was to use an online spreadsheet 
available to all for editing and maintaining. The initial Google Sheet created contained the same 
columns as the excel sheet that was passed user to user. To improve the information contained in 
the list, many new columns have been added which contain unique information including: 

Tool/Platform Name ** 
Institution ** 
PI** 
Contact Person ** 
Image/Data Type ** 
Application type ** 
Intended user ** 
Disease Site** 
Interested in participating in the ToolX Challenge? (Y/N) 
Tool Type ** 
Tool Description ** 
Tool Capabilities ** 

Was this tool created by your site as part of your QIN grant activities? ** 

Additional Funding Notes 

Evaluation Status ** Examples: Prospective, Retrospective, primary/secondary endpoints, Number of cases, examples of challenge 
validation, etc. 

List any clinical trials used to assess your tool (add Title & NCT #) or used in trial for decision making. 

What is the study’s objective and what is the purpose of the tool in this trial? Integral or Integrated? Used for correlative work or to 
make decisions? 

What is the study’s objective and what is the purpose of the tool in this trial? Integral or Integrated? Used for correlative work or to 
make decisions? 

License 
How is the tool distributed ** 
Distribution Notes / LINK if Applicable** 
Link to Source Code 
Link to documentation 
Cost 
Hardware Requirements 

Industry Affiliates (bold text indicates actual industry collaborator on QIN activities as indicated on grant application) 

Competing Technology - List commercial product(s) that your tool competes with or could replace 

External Sites Utilizing Tool 
Tool Publication(s) (List PMID) Users Should Cite ** 
Contact Email ** 
Funded Technical Support? 
Entries Last Updated (Date) PLEASE UPDATE REGULARLY 
Additional Comments 
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List items marked by ** are required entries. Many of the items in the list are organized as 
drop-down menus meant to standardize the entries. The list currently has 62 different tools listed 
and has been updated by each group. A finalized list will be available for users at the F2F group 
meeting. Ongoing efforts in the future will be to maintain this list through BIDS group leadership. 
Reminders to update entries will be sent to the tool developers listed twice annually. Eventually 
this list will appear in an abbreviated form on the new QIN web page. 

§ ToolX Challenge  
 

In order to facilitate and encourage cross-group collaboration using shared tools, the ToolX 
challenge has been proposed. This project is currently in the planning stages and will likely be 
rolled out summer/fall of 2018. The QIN Tool list described above has a column where tool 
developers can indicate whether or not they are interested in participating. Currently ~25 tools are 
listed as interested. The broader goals of this project are to improve the tool usage potential by 
matching external users with tool developers. Feedback provided by new users will then be 
incorporated into the documentation and tools themselves. 

QIN RELATED TCIA UPDATES  

The Cancer Imaging Archive (TCIA) is a web based repository for storing and sharing 
datasets of imaging and associated meta-data. There have been several updates over the past year 
to datasets located on the TCIA. Links can be found at their website: 
www.cancerimagingarchive.net. Table 1 shows a list of the recently updated datasets.  

Table 1. List of QIN related datasets on the TCIA (Source TCIA Website). 
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§ TCIA Publications  
QIN Specific publications can be seen here: 

https://wiki.cancerimagingarchive.net/display/Public/Publications#Publications-QIN 

§ Pipeline Collaborative Research  Project  
 

A pipeline is a series of well-defined steps meant to take a dataset from its rawest form to 
a dataset processed to a point that statistical testing can be applied to determine group level 
inferences. Some example pipeline steps include raw image conversion, image registration, image 
segmentation, image classification, and perhaps some ROC or other measurement of performance. 
When properly constructed, one may ‘swap in’ some new algorithm that performs one of those 
steps and evaluate the impact on accuracy or computational efficiency. 

Currently, there are no standard guidelines for standardizing modules that make up 
pipelines, as well as the inputs and outputs of each “step”.  This unfortunately results in duplication 
efforts as each group creates their own pipeline methodology and their own algorithms that go into 
the pipeline. The BIDS Pipeline collaborative research project is focused on identifying best 
practices for creating and sharing the modules used to make pipelines as well as the best way to 
create and maintain the pipelines themselves. While this project is currently still in the planning 
phase, ongoing efforts by BIDS members developing both the modules and pipelines are ongoing. 
It is planned that the first projects will involve datasets from the TCIA such as the LIDC dataset. 

PLANS FOR NEXT YEAR  

The BIDS group will continue to work on the dissemination of datasets and tools. This will 
include focussing on efforts aimed at making it easier for QIN community to leverage the tools 
that others develop, and making it easier to share datasets. Focus will be on both the ToolX project 
and the Pipeline Collaborative Research Project. We plan to open dialogue at the face-to-face 
meeting, and hope that will both educate the QIN community and give us actionable feedback 
about the relative importance of the above projects. 

LIST OF BIDS QIN PUBLICATIONS 2017-2018  
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interval segmentation using the NLST data. Med Phys. 2018. 
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QIN MRI Subgroup Annual Report  

2017-2018 Chairmen:  
Yue Cao, PhD  

Laura Bell, PhD  

INTRODUCTION  

The mission for the MRI subgroup of the Image Analysis & Performance Metrics 
Working Group (IAPM) of the Quantitative Imaging Network (QIN) is “to provide guidance, 
coordination, consensus building, and awareness regarding the development of algorithms and 
methods for quantitative analysis of tumors, related tissues and organs, and changes in 
response to disease progression and treatment, as well as to influence the development of 
sharable objective methods and metrics for assessment of MRI image analysis accuracy, 
reproducibility, and robustness. The working group coordinates the collaboration between 
members in this area.” Currently, 12 cancer imaging centers participate in the MRI subgroup 
activities:  Oregon Health and Science University (OHSU), Brigham and Women’s Hospital 
(BWH), Medical College of Wisconsin (MCW), Icahn School of Medicine at Mount Sinai 
(MS), University of Michigan center #1 (UM1), University of Michigan center #3 (UM3), 
University of Pittsburgh (UPitt), Vanderbilt University (VU), University of Washington 
(UW), University of California San Francisco (UCSF), Stanford University (SU), 
Massachusetts General Hospital (MGH). 

This past year we had three challenges wrap up completely and published in peer-
review journals. Fortunately, we have several challenges that have taken over in the meantime. 
One challenge is near completion and a manuscript is planned to be submitted to QIN special 
issue in Tomography 2018.  Two additional challenges remain quite active and work-in-
progress. One challenge idea is currently being discussed as a potential proposal. Specific 
status details are provided in the following sections. 

§ Completed Challenges  –  submitted for publication/published  
 

ADC Mapping Project  (Lead: David Newitt, UCSF)  
 

The goal of this challenge was to investigate the reproducibility of DW-MRI ADC 
maps generated from 11 QIN sites, 1 non-QIN site, and 3 scanner vendor online maps. Both 
phantom and in vivo breast data were analyzed by all participating sites for 2 and 4 b-value 
diffusion metrics using their own diffusion processing software. 

This challenge showed that ADC metrics both in vivo and in phantoms showed 
significant differences between analysis implementation. Differences were the largest when 
comparing vendor online ADC maps to site-specific post-processed maps. For ADC maps 
calculated with two b-values, the differences were found to be clinically insignificant. 
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DSC Project (Lead: Kathleen Schmainda, MCW)  

 
 
 

   
   

  
 

  
   

      
   

    

However, analysis of ADC maps from multi b-values showed differences large enough to be 
of concern, especially for multi-site, multi-vendor clinical trials. 

The results from this challenge were presented at International Society of Magnetic 
Resonance in Medicine 25th Annual Meeting (Hawaii, 2017) and published in JMI [1]. 

DICOM Storage Project  (Leads: Dariya Malyarenko, UMICH1  & Andrey  
Fedorv, BWH QIICR)  

The goal of this challenge was to demonstrate the ability to generate and store relevant 
DICOM metadata for ADC parametric maps (PM) across vendors, sites, and software tools. 
Ten QIN participating sites analyzed multi-vendor DWI DICOM datasets for 
polyvinylpyrrolidone (PVP) diffusion phantom to generate ADC maps in DICOM format 
using their choice of software for two (ADC2) and four (ADC4) b-value fit. 

The results from this challenge showed that standardization of DICOM formatting is 
needed for ADC parametric maps. Minor numerical discrepancies among sites were observed 
within the source (multi-vendor) DWI bias and were higher for ADC4 versus ADC2 fits. 
Limited ability for DWI DICOM parsing was observed across vendor software compared to 
site-specific software. All sites stored ADC maps as DICOM MR (non-PM) objects and were 
lacking standard attributes for source-image reference, model parameters, ADC units, and 
scale (all fields that would have been provided by a DICOM PM header). Site-specific ADC 
DICOM MR was back-compatible with existing research and commercial DICOM 
parsers/viewers. On the other hand, ADC DICOM PM had limited back-compatibility as it is 
not yet adopted by PACs vendors. As a solution to these issues, it’s recommended to use the 
QIICR supported command line “dcmqi” developed to support ADC conversion to DICOM 
PM from site-specific software output to supply metadata required for centralized meta-
analysis in muti-site trials. 

The results from this challenge were presented last year at the QIN F2F 2017 and 
published in JMI [2]. 

The goal of this challenge was to compare multi-site/mult-platform analysis of a 
publically available brain tumor patient DSC-MRI dataset. Numerous studies have 
demonstrated the value of DSC-MRI perfusion metrics, but they have not been widely 
implemented due to the lack of confidence in the consistency of DSC-MRI metrics across 
sites, imaging platforms, and analysis software. 

The results from this challenged showed that DSC-MRI derived normalized nRCBV 
and nCBF maps across sites are reliable in differentiating tumor grade. For nRCBV and nCBF, 
93% and 94% of entries showed good or excellent cross-site agreement (0.8 ≤ LCCC ≤ 1.0). 
All hemodynamic metrics were able to distinguish low-grade from high-grade brain tumor. 
For the first time, these pooled results were also able to determine optimum thresholds for 
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nRCBV (1.4 threshold, 90% sensitivity, 77% specificity) and nCBF (1.58 threshold, 86% 
sensitivity, 77% specificity). 

The results from this challenge were presented at International Society of Magnetic 
Resonance in Medicine 25th Annual Meeting (Hawaii, 2017), and a manuscript has been 
accepted to AJNR for publication [3]. 

§ Near Completed Challenges  – an alysis  completed  
 

DCE Project  Part 2 (Lead: Wei Huang)  

The goal of this challenge was to determine the effect of AIF determination from 11 
prostrate DCE-MRI datasets shared amongst 9 QIN centers. Each participating site used their 
own site-specific methods to determine the AIF. These AIFs were then submitted to a 
managing center for pharmokinetic data analysis using the Shutter-Speed model with and 
without the use of a reference tissue (adjacent normal muscle). Literature population AIF 
(Parker et al.) was also included in the analysis. 

The results from this challenge showed that normalizing the AIF to a reference tissue 
improved the agreement in the derived physiological oarameters. Ktrans had the highest 
variation affected by AIF uncertainty across sites, while ve and τi had the lowest variability. 
These results suggest that maybe ve and τi should be the biomarkers used in clinical trials. 

The results from this challenge were presented at International Society of Magnetic 
Resonance in Medicine 25th Annual Meeting (Hawaii, 2017) and the manuscript is currently 
being prepared and planned to be submitted to the special issue in Tomography in 2018. 

§ Active Challenges  –  proposal accepted  
 

DSC DRO Project (Lead: Chad Quarles, BNI)  
 

The goal of this challenge is to understand how brain tumor DSC-MRI acquisition and 
post-processing affect the accuracy and multi-site consistency of computed hemodynamic 
biomarkers. In order to accomplish this, a validated digital-reference-object (DRO) was 
developed for each of the participating QIN sites based on their clinical DSC protocol. These 
site-specific DROs (that included pulse sequence parameters and dosing schemes) were 
provided to participating groups for processing (using their in-house tools) in order to assess 
accuracy and consistency of CBV values across QIN sites. 

As of the beginning of February, the site-specific DROs have been simulated and 
distributed to 10 participating QIN sites. Analysis from this QIN challenge is pending these 
results. 
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Multi b-value Project  (Lead: Peter LaViolette, MCW)  

The goal of this challenge is to determine if DWI parameters are reliably calculated 
across QIN sites in both normal and cancerous regions in the prostate, and if these parameters 
can reliably differentiate malignant tumor from normal tissue. This challenge has roughly 30 
prostrate DWI datasets that were acquired with 10 b-values with histology as the ground truth. 
Each participating site will compute any DWI biomarkers of their choosing (ie – IVIM, 
kurtosis, bi-exponential etc) and submitted their parametric maps back to MCW. 

Nine QIN participating sites have been identified who will participate in this 
challenge. As of the beginning of February, IRB approval is being sought in order to distribute 
the datasets to the participating sites. 

To evaluate performance of site-specific diffusion modeling software tools, Dariya 
Malyarenko from UMICH1 created DROs of IVIM and kurtosis models, which were tuned to 
the parameters for prostate cancers and normal tissue.  DROs were provided to Peter 
LaViolette, MCW, the managing team, and are ready for distribution to the participating 
teams. 

1. imFIAT (Toolx) evaluation Project (Lead: Yue Cao, UMICH3 & John Buatti, UIowa) 
Yue Cao has submitted a request for a material transfer from University of Michigan to 
University of Iowa to evaluate imFIAT (a functional image analysis tool developed in 
UMICH3). A proposal will be submitted in April 2018. 

CITATIONS  

1. Newitt DC, Malyarenko D, Chenevert TL, et al. Multisite concordance of apparent 
diffusion coefficient measurements across the NCI Quantitative Imaging Network. J. Med. 
Imaging. 2017;5(1):1. 
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§ Accomplishments  
 

Kinetic Analysis of Dynamic  PET with FMISO  (Hosted by Sadek  
Nehmeh/MSKCC)  

 

QIN PET-CT Subgroup  
 

Dmitry Goldgof, Chair  
Sandy Napel, Co-Chair  

INTRODUCTION  

The PET-CT subgroup is a subgroup of the Image Analysis and Performance Metrics 
Working Group, whose mission statement is: 

The mission of the Image Analysis & Performance Metrics Working Group 
(IAPMWG) is to provide guidance, coordination, consensus building, and awareness 
regarding the development of algorithms and methods for quantitative analysis of tumors, 
related tissues and organs, and changes in response to disease progression and treatment, as 
well as to influence the development of sharable objective methods and metrics for assessment 
of image analysis accuracy, reproducibility, and robustness. The IAPMWG will coordinate 
the collaboration between QIN members in this area. 

Subgroup activities focus on quantitative image analysis applications to CT, PET-CT, 
and dynamic PET data in several clinical domains, including lung cancer and head & neck 
cancer. Our major efforts to stimulate the collection and sharing of tools, and analysis and 
evaluation methods, has been through the development of “challenges”, of which there are 
four active at this time (described below). In addition, we have participated in cross-WG 
activities with the Bioinformatics and Data Sharing (BIDS) WG which are also described 
below. 

The goal of Kinetic Analysis of  Dynamic PET with FMISO challenge is to assess the 
inter-operator variability in compartment analysis (CA) of dynamic-FMISO (dyn-FMISO)  
PET.  
 

Methods:  Study-I: Five investigators conducted CA for 23 NSCLC dyn-FMISO  
tumor time-activity-curves. Study-II: Four  operators performed CA for four NSCLC dyn-
FMISO datasets. Repeatability of  Kinetic-Rate-Constants (KRCs) was assessed.  
 

Results: Study-I:  Strong correlation (ICC > 0.9)  and interchangeable  results  among  
operators  existed for all  KRCs. Study-II:  Up  to 103%  variability in tumor  segmentation, and 
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weaker ICC in KRCs (ICC-VB = 0.53; ICC-K1 = 0.91; ICC-K1/k2 = 0.25; ICC-k3 = 0.32; ICC-
Ki = 0.54) existed. All KRCs were repeatable among the different operators. 

Conclusions:  Inter-operator variability in CA of  dyn-FMISO was shown to be within  
statistical errors.  

This challenge is successfully completed and a manuscript is published in the Clinical 
Imaging Journal, January 2018, [1]. 

§ Lung Nodule Interval  Segmentation Challenge using NLST data (Hosted by Yoganand 
Balagurunathan and Dmitry Goldgof, USF/Moffitt CC)  

The goal of the Lung Nodule Interval Segmentation Challenge using NLST data 
challenge is to study the variability in volume change estimates of pulmonary nodules due to 
segmentation approaches used across several algorithms and to evaluate these effects on the 
ability to predict nodule malignancy. 

Methods:  We obtained 100 patient image datasets from the National  Lung  Screening  
Trial (NLST) that had a nodule detected on each of two consecutive low dose  computed  
tomography  (LDCT)  scans, with an equal  proportion of  malignant  and  benign cases  (50 
malignant, 50 benign). Information about the nodule location for the cases was provided by a  
screen capture with a bounding box and its axial location was indicated.  Five participating  
Quantitative  Imaging Network (QIN) institutions performed nodule segmentation using their  
preferred semi-automated  algorithms  with  no  manual correction; teams  were  allowed  to  
provide additional manually  corrected segmentations (analyzed separately). The teams were  
asked to provide segmentation masks for each nodule at both time points. From these masks, 
the  volume  was  estimated for  the  nodule  at  each time  point;  the  change  in volume  (absolute  
and percent change)  across time points was  estimated as well.  

We used the concordance correlation coefficient (CCC) to compare the similarity of 
computed nodule volumes (absolute and percent change) across algorithms. We used Logistic 
regression model on the change in volume (absolute change and percent change) of the 
nodules to predict the malignancy status, the area under characteristic curve (AUC) and 
confidence intervals were reported. Because the size of nodules was expected to have a 
substantial effect on segmentation variability, analysis of change in volumes was stratified by 
lesion size, where lesions were grouped into those with a longest diameter of <8mm and those 
with longest diameter ≥ 8mm. 
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  (a) (b) 

Figure 1: Describes the multi-institutional Interval Segmentation Challenge, (a) 
Process work flow of the study and (b) Representative patient scans (2D, center slice) 
at different screening intervals for nodules diagnosed to be malignant and benign (non-
cancerous) at follow-up scan. The teams are: Moffitt Cancer Center/University of 
South Florida (MCC/USF), Dana Faber Cancer Center (MCC), Columbia University 
Medical Center (CUMU), and University of California at Los Angeles Medical Center 
(UCLA), University of Michigan Medical Center (UMICH), Stanford University (SU), 
and Massachusetts General Hospital (MGH). 

Results: We find that segmentation of the nodules  shows substantial variability across  
algorithms, with the CCC ranging from 0.56 to 0.95 for change in volume (percent change in 
volume range was  [15%  to 86%])  across  the  nodules. When examining  nodules  based on their  
longest  diameter, we  find the  CCC  had higher  values  for  large  nodules  with a  range  of  [0.54  
to 0.93]  among  the  algorithms, while  percent  change  in volume  was  [30%  to 95%]. Compared 
to that  of  smaller  nodules  which had a  range  of  [-0.0038 to 0.69]  and percent  change  in volume  
was [-3.9%  to 92%].  The  malignancy  prediction results  showed fairly  consistent  results  across  
the  institutions, the  AUC  using  change  in volume  ranged from  0.65 to 0.89  (Percent  change  
in volume  was  64%  to 86%)  for  entire  nodule  range. Prediction improves  for  large  nodule  
range  (≥  8mm)  with AUC  range  0.75  to 0.90 (percent  change  in volume  was  74%  to 92%).  
Compared to smaller  nodule  range  (<8mm)  with AUC  range  0.57 to 0.78 (percent  change  in  
volume was 59% to 77%). 
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ROC Curves for Percent Volume Change Classification, Benign vs. Malignant 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   

 
 
 
 
 

 
 

 
 
 
 
 

 
 

   
 

 
 
 

  
           

   
   

 
 

  

a) Using percent volume change. 

b) Using absolute volume change. 

Figure 2: Receiver operator curves (ROC) across teams to predict 
nodules malignancy using, a) percent volume change and b) absolute 
volume change. 

Conclusions:  We find there is a fairly high concordance in the size measurements for 
larger nodules (≥8mm) than the lower sizes (<8mm) across algorithms. We find the change in 
nodule volume (absolute and percent change) were consistent predictors of malignancy across 
institutions, despite using different segmentation algorithms. Using volume change estimates 
without corrections shows slightly lower predictability (for two teams). 
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This challenge is successfully completed and a manuscript is published in the Medical 
Physics Journal, January 2018, [2]. 

§ Multi-center survey  of PET/CT protocols for quantitative imaging in clinical trials  
(Hosted by  Darrin Byrd/UW)  

The goal of Multi-center survey of PET/CT protocols for quantitative imaging in 
clinical trials is to record key sources of bias and variability in PET imaging. An observational 
study was conducted using two surveys. The first round of surveys was designed and 
distributed by the American College of Radiology’s Centers of Quantitative Imaging 
Excellence program in 2011. The second survey expanded on the first and was completed by 
the National Cancer Institute’s Quantitative Imaging Network. Sixty-three sites responded to 
the first survey and 36 to the second. 

Methods:  Participating cancer centers underwent an initial qualification assessment 
that included a survey, phantom scans, assessment of clinical images, and a standardized set 
of quality control procedures. The CQIE qualification program included PET, CT, and MRI 
scanners at National Cancer Institute Designated Cancer Centers. Sites were required to 
submit the data reported here in order to be accredited by the CQIE. 

The CQIE survey consisted of eight questions, some with sub-questions, and was 
repeated for both body- and brain-imaging protocols used in clinical trials at each site. 

The QIN PET survey was initiated in 2013 and was designed based on the results of 
the CQIE survey. The survey consisted of 22 questions that were repeated for both body and 
brain-imaging protocols used in clinical trials at each site. Sites were encouraged to submit 
data on multiple PET scanners. PET scanner manufacturers and years of installation were also 
recorded. Both surveys asked about clinical trial protocols and did not record differences, if 
any existed, between clinical trial imaging and routine protocols. 

Key imaging parameters varied across participating sites. The range of reported 
methods for image acquisition and reconstruction suggests that signal biases are not matched 
between sites. Patient preparation was also inconsistent, potentially contributing additional 
variability. For multicenter clinical trials, efforts to control biases through standardization of 
imaging procedures should precede patient measurements. 
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Figure 3: Fused PET/CT images of an X-Cal phantom in a water-filled 20-cm diameter 
cylindrical phantom. PET signal is shown in orange in (a) transaxial and (b) coronal views. 

Figure 4: PET image with XCaliper ROI marked with a gray square. The black bounding 
box is 15 mm in each dimension (including axially) and is centered on the phantom signal’s 
centroid, which is marked by the plus sign. The ROI includes all voxels that are 
completely contained in the bounding box. 

Results: The CQIE survey was sent to 55 hospitals and a total of 63 unique PET/CT 
scanner responses were analyzed. Thirty-six hospitals responded, and a total of 44 unique 
PET/CT scanner responses were received. 
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Of the CQIE-survey scanners, 33 were General Electric, 23 were Siemens, and 7 were 
Philips. Of the 44 scanners included in the QIN survey, 24 were General Electric, 18 were 
Siemens, and 2 were Philips. 

For scanners in the QIN survey, the reported trans-axial field-of view diameter was 63 
± 11 cm (range 30 to 81 cm) for body imaging and 32 ± 10 cm (range 25 to 70 cm) for brain 
imaging. For body imaging, the average trans-axial voxel size was 4.2 ± 1.2 mm. For brain, it 
was 2.0 ± 1.1 mm. Slice thicknesses had distributions of 3.57 ± 0.89 mm and 2.98 ± 0.71 mm 
for body and brain, respectively. Reconstruction methods varied across scanners in the QIN 
survey. 

Of the QIN-survey sites, 24 provided a fixed value of injected radiotracer for body 
imaging of adults, 11 provided a range, and 15 reported a weight-based injection. For sites 
reporting weight-based injections for body scans, injections were computed with coefficients 
between 0.14 and 0.20 mCi/kg (average of 0.15 mCi/kg). Three sites did not report their 
method of calculating weight-based injections for body scans and one site reported using 
(BMI)/3 mCi, where BMI is the body mass index. The injection for brain scans was on average 
less than that for body scans. 

All QIN-survey sites required prescan fasting for both body and brain imaging. For 
brain imaging, the majority of QIN-survey sites followed the same fasting period as body 
imaging with 17 sites requiring a 4 hours fasting period and 18 sites requiring 6 hours. For 
body and brain scans, carbohydrate restriction was the same at each QIN-survey site. 

Twenty-nine QIN-survey sites reported 199 or 200 mg/dL as the maximum blood 
glucose level allowable in order to proceed with injection and scanning for body imaging. For 
body imaging, the most common uptake time was 60 min, and nearly half of the sites reported 
no difference between targeted and actual uptake times. For brain imaging, the most common 
time was 30 min and again approximately half of the sites reported that targeted and actual 
uptake times were equal. 

Some QIN-survey sites provided discrete values for bed position timing and others 
provided a range. Fixed durations ranged from 1 to 10 min, and the distribution was 3.5 ± 1.6 
min. 

Based on the range of reported imaging parameters, we expect that large 
differences in biases may exist among the sites that participated in these surveys. This was an 
observational study, and we cannot directly estimate the combined impact of the parameter 
variations on the net variations in PET SUVs. One reasonable interpretation of our results is 
that standardization of the parameters above should precede any multicenter trial that uses 
PET SUVs quantitatively. This should be a high priority for future multicenter trials using 
quantitative imaging. 

This challenge is successfully completed and a manuscript is published in the Journal 
of Medical Imaging, December 2017, [3]. 
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The goal of measuring temporal stability of PET SUV bias using long-lived sources 
in a multicenter network challenge is to compute the bias in SUVs at multiple time points 
multiple sites over a 14-month period. 

Methods:  Calibration stability was assessed with long-lived cross-calibration kits (X-
Cal kits). The kits contained two 68Ge sealed sources, one to be assayed in a dose calibrator 
and the other to be measured by a PET/CT scanner. The dose calibrator standard contained 
∼0.8 MBq (20 μCi) of 68Ge activity initially and approximated the geometry of a syringe 
containing a clinical dose of radiotracer. 

All dose calibrator standards were calibrated to a well-characterized National Institute 
of Standard and Technology (NIST) 68Ge standard. The scanner source, or X-Cal phantom, 
was cylindrical with an active region 45 mm in diameter by 45 mm in height. The initial 
activity concentration was ∼250 kBq/ml (6.8 μCi/ml) for a total activity of 20 MBq (0.54 
mCi). 

Data were collected for 19 PET/CT scanners and 16 dose calibrators at the nine sites 
(some dose calibrators were used for more than one PET/CT scanner). The number of scans 
per scanner ranged from 3 to 43 (average of 13) and the duration over which scans were 
performed ranged from 39 to 412 days (average of 232). The average duration between scans 
for the entire set of data (N ¼ 236) was 20 days. A total of 161 dose calibrator measurements 
were made with an average separation of 24 days between measurements. 

The signal from each reconstructed image was computed as the mean of voxel values 
within a region of interest (ROI) in the center of the phantom. ROIs were drawn via an 
automated algorithm, XCaliper, which was implemented in a plug-in developed at the 
University of Washington for the OsiriX DICOM® viewer. For this study, the maximum ROI 
size was 15 mm in each dimension. This size was chosen to exclude voxels near the edge of 
the phantom, where signal intensity is lessened due to partial-voxel effects and finite image 
resolution. 

For each PET/CT scan, the metadata from the DICOM® images were extracted. The 
metadata are saved in each image slice produced by the scanners and contain many imaging 
parameters. 

Results:  The average ρ across scanners was 0.924. The standard deviation of ρ ranged 
from 0.011 to 0.065. The coefficient of variation (COV) for ρ was 3.5%. Six scanners had Φ 
> 0.1. The average Δmax was 0.057. The average r was 1.01 across all calibrators. Standard 
deviations of r ranged from 0.004 to 0.048. Three scanners were affected by dose calibrators 
with Φ > 0.1. The average Φ for dose calibrators was 0.065. The average Δmax was 0.051. 
Average σ across scanner-calibrator pairs was 0.910. Per-pair standard deviation ranged from 
0.0044 to 0.067. The standard deviation and Δmax of σ were slightly larger on average than 
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those of ρ and r. For many of the scanners, the scanner recovery ρ was correlated with scale 
factors from the DICOM® headers. 

Figure 5: For body imaging, smoothing (postfilter full width at half maximum) versus 
iterative updates for the (a) QIN survey and (b) CQIE survey. Where multiple points lie in 
the same location, small shifts have been introduced to make markers visible. 

Figure 6: For brain imaging, smoothing (postfilter full width at half maximum) versus 
iterative updates for the (a) QIN survey and (b) CQIE survey. Where multiple points lie in 
the same location, small shifts have been introduced to make markers visible. 

Conclusion:  Our phantom images suffered some signal bias due to the epoxy used in 
their construction, and consequently we have focused on signal stability rather than absolute 
accuracy. SUV bias from instrument calibration was often stable over successive 
measurements, and on average had a modest COV of 3.5%. However, over the course of our 
14-month study, shifts in bias were apparent for many scanners, and on average SUV recovery 
varied over an intra-scanner range of 11%. The biases of scanners and dose calibrators were 
not correlated, and estimated SUV variability was not smaller than the variability of either 
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§ QIN  PET Segmentation Challenge (Hosted by Reinhard Beichel and Brian  
Smith/UIowa)  
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instrument. Information saved in the DICOM® headers appears to show that scanner 
recalibration influences PET scanner bias and potentially contributes to changes in SUV bias. 
The variability of scale factors saved in the DICOMs® was nearly as large as that of scanner 
signal. This supports the conclusion that a long-lived source should be used as in independent 
check on the calibration process to reduce potential recalibration errors. 

This challenge is successfully completed and a manuscript is published in the Journal 
of Medical Imaging, January 2018, [4]. 

The goal in Phase I of the multi-Institutional QIN PET segmentation challenge was to 
measure variability and bias in a large number of segmentations of Positron Emission 
Tomography (PET) scans. In addition to different lesion segmentation approaches, a high 
noise component related to the limited stochastic nature of the raw data, and the wide variety 
of reconstruction options influence segmentation performance. Understanding each element 
contributing to these inconsistencies in image segmentation is paramount for ultimate 
utilization of these methods in multi-institutional trials and clinical oncology decision making. 

o assess segmentation quality and consistency at the multi-institutional 
level, we conducted a study of seven institutional members of the National Cancer Institute 
QIN. For the study, members were asked to segment a common set of phantom PET scans 
acquired over a range of imaging conditions as well as a second set of head and neck cancer 
(HNC) PET scans. Segmentations were generated at each institution using their preferred 
approach. In addition, participants were asked to repeat segmentations with a time interval 
between initial and repeat segmentation. This procedure resulted in overall 806 phantom insert 
and 641 lesion segmentations. Subsequently, the volume was computed from the 
segmentations and compared to the corresponding reference volume by means of statistical 
analysis. 

On the two test sets (phantom and HNC PET scans), the performance of the 
seven segmentation approaches was as follows. On the phantom test set, the mean relative 
volume errors ranged from 29.9 to 87.8% of the ground truth reference volumes, and the repeat 
difference for each institution ranged between −36.4 to 39.9%. On the HNC test set, the mean 
relative volume error ranged between −50.5 to 701.5%, and the repeat difference for each 
institution ranged between −37.7 to 31.5%. In addition, performance measures per phantom 
insert/lesion size categories are given in the paper. On phantom data, regression analysis 
resulted in coefficient of variation (CV) components of 42.5% for scanners, 26.8% for 
institutional approaches, 21.1% for repeated segmentations, 14.3% for relative contrasts, 5.3% 
for count statistics (acquisition times), and 0.0% for repeated scans. Analysis showed that the 
CV components for approaches and repeated segmentations were significantly larger on the 
HNC test set with increases by 112.7% and 102.4%, respectively. 
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Conclusion:  Analysis results underline the importance of PET scanner reconstruction 
harmonization and imaging protocol standardization for quantification of lesion volumes. In 
addition, to enable a distributed multi-site analysis of FDG PET images, harmonization of 
analysis approaches and operator training in combination with highly automated segmentation 
methods seems to be advisable. 

Phase I of this challenge was successfully completed and a manuscript was published 
in Medical Physics, February 2017, [5]. 

Phase II  

In phase II of this challenge, the goal is to assess bias and variability in imaging 
biomarkers derived from PET images with different segmentation methods, comparing 
agreement to a reference standard, studying prognostic performance, and estimating sample 
size for future clinical studies. For this purpose, a statistical analysis framework was 
developed, which is based on data obtained from phase I of the QIN PET segmentation 
challenge, providing tumor volumes which were measured manually and with seven different 
semiautomated segmentation algorithms. Estimates and comparisons of bias and variability 
in the resulting measurements are provided along with an R software package for the technical 
performance analysis and an online web application for sample size and power analysis. 

Methods:  The methodological approach taken aims to characterize the bias and 
variability that can result when estimating the risk of clinical outcomes associated with an 
imaging biomarker derived from different quantification methods. An underlying Bayesian 
model is specified for the joint distribution of method-specific biomarker measurements and 
sources of measurement error. Based on the model, a measurement-error-free reference 
biomarker is obtained and used to simulate clinical outcomes for user-specified risk 
associations and sample sizes. Then, based on the modeled joint distribution, risks estimated 
from method-specific biomarkers measured with error are compared. 

Statistical methods were developed and applied for the comparison of 
multiple quantitative methods. The Bayesian biomarker model was applied to log-transformed 
tumor volume measurements from the 8 QIN PET challenge methods each used to segment a 
common set of 47 head and neck cancer lesions. The log-transformation was needed to satisfy 
the model assumption of normally distributed, homoscedastic, and additive errors. From our 
proposed model, performance metrics commonly used in the technical validation of imaging 
biomarkers were derived and analyzed, including bias, operator variance, repeatability 
coefficient, intraclass correlation coefficient (ICC), coefficient of variation, and between-
method correlation. 

unified Bayesian approach has been developed for the assessment, 
comparison, and clinical study design of quantitative imaging biomarkers. The importance of 
reporting more than one performance metric was discussed in relation to complementary 
information provided by bias, concordance, and precision measures. With respect to inference, 
the joint posterior distribution provided by the Bayesian approach allows for probability 
statements to be made about measures of interest, including credible intervals that can be 
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interpreted as containing the true value with a specified probability. Potential downsides to 
the Bayesian approach include prior specification which may be criticized as being subjective 
and computational challenges of obtaining MCMC samples. For study design, algorithms and 
an online web application are provided to determine power for and to assess the effects of 
estimating odds ratios with different quantification methods. 

The statistical analysis approach was published in the Statistical Methods in Medical 
Research Journal, January 2017, [6]. So far, our analysis was focused on tumor volume as the 
biomarker, and currently we are working on investigating relevant quantitative PET imaging 
biomarkers with our analytic methods and software and plan on publishing our findings in a 
paper. 

PLANS FOR THE  NEXT YEAR (ACTIVITIES IN PROGRESS AND 
PLANNED)  

 
§ Lung Nodule Malignancy Prediction, Based on Sequential CT Scans (Lead Keyvan  
Farahani/NCI and Yoganand Balagurunathan/MCC along with QIN  members)  

This challenge intends to advance methods development on the current clinical 
impediment to assess nodules status for lung cancer screening subjects with consecutive scans. 

We will provide sequential low-dose CT (LDCT) scans at two screening intervals from 
the National Lung Screening Trial (NLST), with matched identified nodules from the same 
subject. We would like the participating teams to provide estimated nodules dimensions 
(longest diameter, volume) in the screening interval and the probability of malignancy. The 
teams are open to use any radiomic descriptors for nodules across time points and or change 
in size measurements including doubling time (DT) toward their assessment. If teams prefer 
to use doubling time (DT) metric (measured in days), following formulation is stated for 
reference. 

DT = (t2 - t1) * (log 2 /(log(V2) - log(V1))) 

Where V1, and V2 are the nodules volume (or size) measured at two screening 
intervals; in our study, t1 and t2 are baseline and diagnostic scan time respectively. Participants 
may use any other preferred formulation, any variant formulation, need to be described with 
reasoning in their respective training summary report. 

Specifically, participants are asked to submit files that include nodule size (longest 
diameter), volume, and a probability of malignancy score (range from 0 to 1, for absence or 
presence of cancer, respectively) for both the train and blinded test cases. The participants will 
be evaluated on the test data performance (AUC). 
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§ Phantom study in ‘hypoxic fraction/volume’  measurement  (Hosted by Ivan 
Yeung/PMCC) 

Hypoxia imaging using FMISO, FAZA and EF5 has low uptake compared to FDG 
imaging.  One way to quantify hypoxia imaging is by ‘hypoxic fraction’ (HF) or ‘hypoxic 
volume (HV) which is the proportion of voxels in a tumor having uptake value higher than a 
threshold. There is no consensus as how to set the threshold. In addition, the quantification of 
HF depends on the uptake distribution and therefore the noise characteristic of the particular 
scanner. A collaborative project is proposed with the primary aim to measure the variation of 
HF/HV measurement at different PET scanners by scanning a phantom which is manufactured 
to have different percentages of uptake regions. The secondary aim is to investigate possibly 
a more robust method of quantifying HF/HV among different scanners. 

§ PET/CT Multi-Institutional, multi-reader observer study  (Hosted by  Reinhard Beichel 
and Brian Smith/UIowa) 

In the first analysis phase of this study, seven institutional members of the QIN applied 
different segmentation methods to a common set of phantom scans acquired over a range of 
imaging conditions as well as to a second set of head and neck cancer scans.  Tumor volumes 
derived from the segmentations were analyzed statistically to assess variability and bias across 
methods. Findings were published in Medical Physics [5] as summarized in the abstract 
provided earlier in this report.  In the second analysis phase, we are assessing the technical 
and clinical performance of quantitative imaging biomarkers (QIBs) derived from the 
segmentations. A statistical analysis framework has been developed and published [6] for this 
purpose.  During the upcoming year, we plan to apply the analysis framework to a panel of 
QIBs.  Technical performance will be assessed with respect to variability and bias in QIB 
measurements derived from the different segmentation methods.  Clinical performance will 
be assessed with respect to the effect of the different segmentation methods on bias and 
variability in estimating risk associations between QIBs and clinical outcomes.  A preliminary 
analysis of this second phase has been conducted on 22 QIBs.  The full scope of the analysis 
is being formulated with input from the PET/CT subgroup members, who will have the 
opportunity to contribute to a manuscript summarizing the analysis approach, results, and 
conclusion for submission later this year. 

§ Feature Ontology Effort (Hosted by Michael  McNitt-Gray/UCLA) 
 

Possible Goals: 

1. Mission of this effort (Gap analysis. What is our scope? What are others doing and how
can we interact with and/or complement existing efforts such as ISBI)

2. Region of Interest Types/Definitions (Larry Pierce suggested this and also thought we
could come up with an exhaustive list; this would be a helpful “pre-requisite” for many
feature definitions.)
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3. Phantoms (Digital and Physical), Reference Datasets and a testing procedure (including
possibly a suggested progression). This has been suggested by several folks where one can
start with analytical phantoms, move to physical phantoms (or rather digital image
representations of physical phantoms) and then to patient datasets (or something like this).

4. Reference implementations of features (not an exhaustive list of features, but
“representative implementations” from different feature groups that could be shared
publicly).

ACTIVITIES ACROSS WORKING  GROUPS  

• Tool interoperability demo for 2017 F2F. (PET-CT/BIDS)
• Working with Keyvan Farahani on QIN Benchmarks
• Working with Keyvan Farahani/IBSI on a lung cancer challenge
• Welcoming Image Acquisition Group into PET-CT (two activities completed)
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