The Cancer Imaging Program

The Quantitative Imaging Network

The National Cancer Institute

"*‘::* Then: 1939

And Now: 2016

AT A NN






In Memoriam

It was a year ago that Dr. Larry Clarke passed away suddenly from acute myeloid leukemia.
He was a pioneer in the field of quantitative imaging and its ability to measure or predict response
to cancer therapies. We met at the 2016 Annual Meeting knowing that Larry was not well, but not
knowing the extent of his illness. Now, we will be coming together for the 2017 meeting with a
feeling of loss by his absence. It is a testimony to Larry’s strength and dedication to the field of
quantitative imaging that progress in the Network remains scientifically vibrant and active, moving
toward the goas he set many years ago. Larry was not only a leader in this field, he was a good
friend to everyone who participates in it.







Quantitative Imaging for Evaluation of Response to
Cancer Therapies (U01)

The Quantitative Imaging Network

QIN

Fifth Annual Report

January 2017







FOREWORD

This is the fifth report of the Quantitative Imaging Network (QIN), covering the period
from January 2016 to January 2017. The period has seen the stabilization of the network at a
total of approximately 21 research teams with two of these teams funded by the Canadian
Government (the Institute of Cancer Research of the Canadian Institutes of Health Research)
The network of teams continues to create a number of collaborative projects among the
members, and the Executive Commitiee continues to provide the governance for the Networl,
guiding it through external collaborations with organizations such as National Clinical Trials
Network, (NCTN), the NCI Clinical Centers, QIBA, and other groups. This Executive
Committee, comprised of the principal investigators from each of the QIN teams, will
continue to grow as new teams enter the network.

Coordination of the internal activities of the network, including communication among
the various working groups continues to be the responsibility of the Coordinating Committee.
The chairs and co-chairs of the working groups comprise this committee. They meet every
month by teleconference to discuss the activities of the working groups and to find avenues
of collaboration whenever necessary. As the network grows and the domains of the working
groups expand, this overall coordination is needed to ensure the most efficient use of time and
resources within the network. A new responsibility of the Coordinating Committee during this
past year has been the review of challenges. A challenge is an activity where researchers can
test their algorithms against a common dataset to evaluate performance characteristics.

The activities of the working groups continue to evolve as the Network grows and
matures. Although this is only the fifth written report from the QIN, the Network is in its ninth
year of operation. Thus, several research teams have completed eatly-phase development and
optimization, and have moved into the important work of clinical validation. This progress is
presented in the individual reports from the more advanced teams. In addition, several teams
have “graduated” from the Network, having completed a five-years research cycle. Despite
this, they remain active in the consensus building and have contributed to this report.

Reporting individual team progress in a joint report is somewhat difficult because
while some teams are just beginning their research in quantitative imaging in QIN, others are
nearing the end of the five-year program period, Thus, there is a staggered level of
accomplishment within the network. This staggering has led to considerable mentoring of the
newer patticipants in the network by the more mature ones, and has created an environment
where the new teams are contributing to overall progress more quickly than the older teams
did when they were beginning in the QIN. This is because pathways to progress and solutions
to organizational issues have been solved by the older teams, and the newer ones are inheriting
the results. This is a distinct advantage for working within the organization structure of a
network.

A meeting was held in December 2016 between members of QIN and the NCTN
(National Clinical Trials Network) to discuss methods for placing quantitative tools in
upcoming clinical trials. This was very helpful to the QIN members present, and future
meeting on this subject are planned for the coming year. The overall goal for QIN remains




the translation of robust and well-tested tools into the clinical setting, and meeting such as the
ones planned will be a big help in that direction.

This was the final year for operation under the funding opportunity announcement
PAR-14-116. A new announcement PAR-17-128 and its companion announcement PAR-17-
129 will be in force beginning May 2017. In the initial announcement, teams entering the
QIN will propose a phased approach to development, optimization and validation of
quantitative tools for measuring or predicting response to therapy. In the first phase of one or
two years, the investigators will develop and optimize tools of their choosing. A review of
progress will determine whether the team will proceed to the second phase, where tools are
tested and validated in multisite clinical trials. The duration of the first phase is the choice of
the investigator, and the total duration of the two phases cannot exceed five years.

For teams with well-developed and optimized tools already for clinical testing, the
second PAR is available. This U0l mechanism is similar to the existing plan for QIN
members. The NCI program staff is hopeful that this change in approach to quantitative
imaging direction will accelerate translation to clinical adaption.

);Q/th\ p\\m«t S

Robert J. Nordstrom'
QIN Director
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UO01CA143062: Radiomics of NSCLC

H. Lee Moffitt Cancer Center

Robert Gillies, Ph.D.

INTRODUCTION

The first 5-year tenure of this award ended 02/29/2015, and was continued for an
additional year under a no cost extension. The original grant was focused on developing the
field of “radiomics”; that is, the conversion of images to structured, mineable data. At the end
of this period, it was decided to change tack and use the radiomics approach to address a
clinically relevant question and perhaps, change clinical practice. Hence, the renewed focus
of the UO1CA143062 program is to use radiomics to predict recurrence following surgical
resection or early stage lung cancers, and thus inform the decision whether to treat with
adjuvant chemotherapy. The projected accrual of this new project is 4558 domestic and 1675
foreign NSCLC patients; creating the largest such highly crated data set to date. A renewal
with this focus was submitted 11/05/2014 and was reviewed on 1/30/2015, receiving an
Impact Score of 24, which was not funded. An Al application was submitted 07/02/2015 and
was reviewed on 11/12/2015, receiving an Impact Score of 13, which was funded at the end
of the cycle. The NGA was received on 8/12/2016 and it was finally activated by Moffitt
1/06/2017. Hence, the entirely of 2016 was unfunded by the QIN program. Nonetheless, we
continued to be productive in a number of avenues, described below.

DISCUSSION OF PROGRESS
§ General Radiomics Opinion Pieces

As Sir Ernest Rutherford (1871-1937) said during a hiatus in his lab’s funding funding:
“Gentlemen, we have run out of money. It is time to start thinking”. We continue to write
reviews and contribute to opinion pieces on the current and future status of Radiomics. In
particular, there were two high-impact opinion pieces, below, that emanated from QIN
networks in the US (Yankeelov) and the UK (O’Connor) that are beginning to shape the way
quantitative imaging is practiced in oncology:

1. Yankeelov TE, et al. Clin Cancer Res. 2016.
2. O'Connor JP, et al., Nature Reviews Clinical Oncology. 2016.

Gillies published a paper in Radiology with Hedy Hriackh and Paul Kinehan that described
radiomics for a practicing radiologist, and took a look into the “radiology reading room of the
future” with shared data, and “habitat imaging”.

3. Gillies RJ, Kinahan PE, Hricak H. Radiology. 2016.

Finally, based on some comments made at an international meeting, Gillies and Tomas Beyer
were invited to write an opinion piece on PET/MR in Cancer Research, which also discussed
habitat imaging at length.



4. Gillies RJ, Beyer T. Cancer Research. 2016.

8 Radiogenomics of Lung Cancer

As a continuation of the original 5 year tenure of the grant, the U01 group finalized
analyses comparing NSCLC CT features to gene expression. In NSCLC, the most important
and well known driver mutations are k-ras, Alk fusion protein, and EGFR activating mutation;
the latter two of which are actionable. The rationale behind a radiomic approach is that: 1)
genomic information is often not available, while CT data are; 2) genomic information can
have high false negatives either through sample preparation or sampling artifacts. Hence it
was felt that an association of CT feature with gene expression, whether or not it was
orthogonal information, could contribute to the clinical management of patients. The first of
the papers looked at k-ras mutations in a large cohort with the interesting finding that
spiculation was the only feature that was strongly associated with k-ras status and that k-ras
status was not associated with survival. The only feature strongly predictive of non-survival
was pleural attachment:

5. Wang H et al., Clinical lung cancer. 2016.

A further paper using this same cohort associated radiomic features with Alk and
EGFR mutations:

6. Wang H et al. European journal of radiology. 2016.

Two papers focused in on EGFR mutation status in two large multi-institutional
cohorts used both semantic (radiologist scored) and agnostic (computer derived) features.
Both studies used large cohorts of 385 (manually scored by 2 radiologists) and 298 (computer
extracted) patients. Significant associations with EGFR mutation status were found with a
number of semantic features, which in turn were much more predictive of outcome than were
the agnostic features:

7. Liu Y et al. Clinical Lung Cancer. 2016.
8. Liu Y et al. Radiology. 2016.

§ Nodule Diagnosis

We also initiated work under the UO1 to begin investigating CT scans from then
National Lung Screening Trial (NLST). A major effort was spent to curate and build
appropriate cohorts for study, and this revealed otherwise unknown aspects wherein risk of
death could be assessed based on screening history. Based primarily on his outstanding
epidemiological work on this, Dr. Schabath was invited to be co-PI of the U01 renewal, which
will require significant curation and cohort building.

9. Schabath MB et al. PLoS One. 2016.



Using these cohorts, we have begun our radiomic analyses and have shown, quite
convincingly that quantitative computer derived features of CT screen-detected nodules at
baseline can predict emergence of cancer 1 or 2 years hence. Notably, over half of the patients
had radiomics scores in the lowest or highest quartiles, and these predicted good and bad
outcomes, respectively, with >93% accuracy. This work was published in JTO, where it
received the “Editor’s choice” award in Dec., 2016 and was the subject of an editorial
(http://www.jto.org/article/S1556-0864(16)31066-8/fulltext).

10. Hawkins S et al. Journal of Thoracic Oncology. 2016.

Further, we have performed a “semantic” analysis of incidentally detected
indeterminate pulmonary nodules from 172 patients in collaboration with Pierre Massion’s
group at Vanderbilt (102 training, 70 test). 24 radiological traits were scored by 3
radiologists and observed that a parsimonious set of 4 features could predict the presence or
absence of cancer with an AUROC of 0.88 (train) and 0.80 (test).

11. Liu Y et al. Clin Cancer Res. 2016.

§ Participation in QIN and QIBA activities

In addition to the above, we have also participated in a number of joint efforts
between QIN members. Many of these efforts finally bore fruit in 2016, such as our
participation in the QIBA lung nodule volume estimation challenge:

12.  Athelogou M et al. Academic radiology. 2016.

We undertook a multi-institutional study in collaboration with Drs. Kalpathy-
Cramer, Napel, and Zhou of the QIN to compare lung segmentation algorithms:

13. Kalpathy-Cramer et al. Journal of digital imaging. 2016;

This work was followed up by a multi-institutional study comparing the robustness of
radiomic features extracted form segmented lung nodules:

14, J. Kalpathy-Cramer, et al. Tomography, 2016.
Finally, through his leadership of the PET-CT committee of the QIN, Dr. Goldgof has
participated in a number of studies, one which was published in 2016 comparing 3-D PET

segmentations across institutions:

15. R. Beichel et al. IMRI, 2016.


http://www.jto.org/article/S1556-0864(16)31066-8/fulltext)

§ Future: Deep Learning, Habitats, and Rad-Path

Radiomics as it was first conceived involved the segmentation of tumors and
extraction of 100’s of quantitative features to describe them; and the subsequent mining of
these data to generate decision support. While this continues to be a goal, new techniques and
approaches are emerging that may supplant or complement this approach. One such approach
IS “habitat imaging”, which combines orthogonal data sets to identify sub-regions within
tumors with similar physiologies, and the subsequent extraction of radiomic features from
these regions. This approach obviates the need for segmentation. Currently, Habitat imaging
is best performed with MRI, so we have invested some effort into diseases, such as GBM
(Zhou) and prostate (Stoyonava) for which MRI is routinely practiced clinically:

16. Zhou M et al. J Magn Reson Imaging. 2016.
17. Stoyanova R et al. Oncotarget. 2016.

Notably, in this latter paper, biopsy locations are marked by MR-US fusion and thus
there is an effort to identify gene expression and histopathology associated with the Habitats
observed in MR images. Habitat imaging lends itself to co-registration with pathology, and
we have begun to explore quantitative histopathology measures of intra-tumoral
heterogeneity. This work showed important distinctions between the edge and core of tumors,
which is something that we observed radiomically in 2015 (Grove et al., PLoS One 2015;
PMCID 4349806):

18. Lloyd MC et al. Cancer Research. 2016.

Another approach that is just emerging is the analyses of images with deep learning,
or convolutional neural nets, CNNs. This holds promise as: 1) it is a mature technology in
other classification paradigms (facial recognition, defense applications); and 2) it may prove
to be immune to image acquisition heterogeneity, which is a challenge in radiomics. We have
made an initial foray into this space, and will continue to pursue it in the future:

19. Paul R et al. Tomography. 2016.

PLANS FOR NEXT YEAR
Our plans for next year include:

=

Establish the data entry pipeline via Clinica and NCBI.

Populate the data base with > 100 patients from each site (Tianjin and Moffitt)

3. Disseminate Data Management tools and CDEs to EDRN, MCL and other groups who
may have an interest.

no



LIST OF QIN PUBLICATIONS AND PRESENTATIONS

§ Publications

1.  Yankeelov TE, Mankoff DA, Schwartz LH, Lieberman FS, Buatti JM, Mountz JM,
Erickson BJ, Fennessy FM, Huang W, Kalpathy-Cramer J, Wahl RL, Linden HM,
Kinahan PE, Zhao B, Hylton NM, Gillies RJ, Clarke L, Nordstrom R, Rubin DL.
Quantitative Imaging in Cancer Clinical Trials. Clin Cancer Res. 2016;22(2):284-90.
doi: 10.1158/1078-0432.CCR-14-3336. PubMed PMID: 26773162; PubMed Central
PMCID: PMC4717912.

2. O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, Boellaard R,
Bohndiek SE, Brady M, Brown G, Buckley DL, Chenevert TL, Clarke LP, Collette S,
Cook GJ, deSouza NM, Dickson JC, Dive C, Evelhoch JL, Faivre-Finn C, Gallagher
FA, Gilbert FJ, Gillies RJ, Goh V, Griffiths JR, Groves AM, Halligan S, Harris AL,
Hawkes DJ, Hoekstra OS, Huang EP, Hutton BF, Jackson EF, Jayson GC, Jones A, Koh
DM, Lacombe D, Lambin P, Lassau N, Leach MO, Lee TY, Leen EL, Lewis JS, LiuY,
Lythgoe MF, Manoharan P, Maxwell RJ, Miles KA, Morgan B, Morris S, Ng T, Padhani
AR, Parker GJ, Partridge M, Pathak AP, Peet AC, Punwani S, Reynolds AR, Robinson
SP, Shankar LK, Sharma RA, Soloviev D, Stroobants S, Sullivan DC, Taylor SA, Tofts
PS, Tozer GM, van Herk M, Walker-Samuel S, Wason J, Williams KJ, Workman P,
Yankeelov TE, Brindle KM, McShane LM, Jackson A, Waterton JC. Imaging biomarker
roadmap for cancer studies. Nature reviews Clinical oncology. 2016. doi:
10.1038/nrclinonc.2016.162. PubMed PMID: 27725679.

3.  Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They
Are Data. Radiology. 2016;278(2):563-77. doi: 10.1148/radiol.2015151169. PubMed
PMID: 26579733; PubMed Central PMCID: PMC4734157.

4.  Gillies RJ, Beyer T. PET and MRI: Is the Whole Greater than the Sum of Its Parts?
Cancer research. 2016;76(21):6163-6. doi: 10.1158/0008-5472.CAN-16-2121. PubMed
PMID: 27729326.

5. Wang H, Schabath MB, Liu Y, Stringfield O, Balagurunathan Y, Heine JJ, Eschrich SA,
Ye Z, Gillies RJ. Association Between Computed Tomographic Features and Kirsten
Rat Sarcoma Viral Oncogene Mutations in Patients With Stage | Lung Adenocarcinoma
and Their Prognostic Value. Clinical lung cancer. 2016;17(4):271-8. doi:
10.1016/j.cllc.2015.11.002. PubMed PMID: 26712103; PubMed Central PMCID:
PMC4887405.

6. Wang H, Schabath MB, Liu Y, Han Y, Li Q, Gillies RJ, Ye Z. Clinical and CT
characteristics of surgically resected lung adenocarcinomas harboring ALK
rearrangements or EGFR mutations. European journal of radiology. 2016;85(11):1934-
40. doi: 10.1016/j.ejrad.2016.08.023. PubMed PMID: 27776643; PubMed Central
PMCID: PMC5123695.

7. Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O, Ye Z, Gillies RJ.
Radiomic Features Are Associated With EGFR Mutation Status in Lung
Adenocarcinomas.  Clinical  lung  cancer.  2016;17(5):441-8 e6.  doi:
10.1016/j.cllc.2016.02.001. PubMed PMID: 27017476.



10.

11.

12.

13.

14.

15.

16.

Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, Ye Z, Gillies RJ. CT Features
Associated with Epidermal Growth Factor Receptor Mutation Status in Patients with
Lung Adenocarcinoma. Radiology. 2016;280(1):271-80. doi:
10.1148/radiol.2016151455. PubMed PMID: 26937803; PubMed Central PMCID:
PMC4934516

Schabath MB, Massion PP, Thompson ZJ, Eschrich SA, Balagurunathan Y, Goldof D,
Aberle DR, Gillies RJ. Differences in Patient Outcomes of Prevalence, Interval, and
Screen-Detected Lung Cancers in the CT Arm of the National Lung Screening Trial.
PloS one. 2016;11(8):e0159880. doi: 10.1371/journal.pone.0159880. PubMed PMID:
27509046; PubMed Central PMCID: PMC4980050.

Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H, Li Q, Cherezov D,
Gatenby RA, Balagurunathan Y, Goldgof D, Schabath MB, Hall L, Gillies RJ.
Predicting Malignant Nodules from Screening CT Scans. Journal of thoracic oncology :
official publication of the International Association for the Study of Lung Cancer.
2016;11(12):2120-8. doi: 10.1016/j.jth0.2016.07.002. PubMed PMID: 27422797

Liu Y, Balagurunathan Y, Atwater T, Antic S, Li Q, Walker RC, Smith G, Massion PP,
Schabath MB, Gillies RJ. Radiological Image traits Predictive of Cancer Status in
Pulmonary Nodules. Clin Cancer Res. 2016. doi: 10.1158/1078-0432.CCR-15-3102.
PubMed PMID: 27663588.

Athelogou M, Kim HJ, Dima A, Obuchowski N, Peskin A, Gavrielides MA, Petrick N,
Saiprasad G, Colditz Colditz D, Beaumont H, Oubel E, Tan Y, Zhao B, Kuhnigk JM,
Moltz JH, Orieux G, Gillies RJ, Gu Y, Mantri N, Goldmacher G, Zhang L, Vega E,
Bloom M, Jarecha R, Soza G, Tietjen C, Takeguchi T, Yamagata H, Peterson S, Masoud
O, Buckler AJ. Algorithm Variability in the Estimation of Lung Nodule Volume From
Phantom CT Scans: Results of the QIBA 3A Public Challenge. Academic radiology.
2016;23(8):940-52. doi: 10.1016/j.acra.2016.02.018. PubMed PMID: 27215408.
Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R,
Napel S. A Comparison of Lung Nodule Segmentation Algorithms: Methods and
Results from a Multi-institutional Study. Journal of digital imaging. 2016;29(4):476-87.
doi: 10.1007/s10278-016-9859-z. PubMed PMID: 26847203; PubMed Central PMCID:
PMC4942386.

R. Beichel, B. Smith, J. Ulrich, C. Bauer, P. Ahmadvand, M. Budzevich, R. Gillies, D.
Goldgof, M. Grkovski, G. Hamarneh, Q. Huang, P. Kinahan, C. Laymon, E. Moros, J.
Mountz, J. Muzi, M. Muzi, S. Nehmeh, M. Oborski, Y. Tan, B. Zhao, J. Sunderland, J.
Buatti, "Multi-site Quality and Variability Analysis of 3D FDG PET Segmentations
based on Phantom and Clinical Image Data", Journal of Magnetic Resonance Imaging,
2016 (accepted for publication).

J. Kalpathy-Cramer, A. Mamomov, B. Zhao, L. Lu, D. Cherezov, S. Napel, S.
Echegaray, M. McNitt-Gray, P. Lo, J.C. Sieren, J. Utho , S.K.N. Dilger, B. Driscoll, 1.
Yeung, L. Hadjiiski, K. Cha, Y. Balagurunathan, R. Gillies, D.Goldgof, "Radiomics of
lung nodules: a multi-institutional study of robustness and agreement of quantitative
imaging features”, Tomography Journal, Special QIN Issue, V. 2(4), pp. 430-437, 2016.
Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. Identifying
spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J
Magn Reson Imaging. 2016. doi: 10.1002/jmri.25497. PubMed PMID: 27678245.



17.

18.

19.

Stoyanova R, Pollack A, Takhar M, Lynne C, Parra N, Lam LL, Alshalalfa M, Buerki
C, Castillo R, Jorda M, Ashab HA, Kryvenko ON, Punnen S, Parekh DJ, Abramowitz
MC, Gillies RJ, Davicioni E, Erho N, Ishkanian A. Association of multiparametric MRI
quantitative imaging features with prostate cancer gene expression in MRI-targeted
prostate biopsies. Oncotarget. 2016. doi: 10.18632/oncotarget.10523. PubMed PMID:
27438142,

Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, Gatenby RA. Darwinian
Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also
Variable Environmental Selection Forces. Cancer research. 2016;76(11):3136-44. doi:
10.1158/0008-5472.CAN-15-2962. PubMed PMID: 27009166.

Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO, Goldgof
DB. Deep Feature Transfer Learning in Combination with Traditional Features Predicts
Survival Among Patients with Lung Adenocarcinoma. Tomography : a journal for
imaging research. 2016;2(4):388-95. doi: 10.18383/j.tom.2016.00211. PubMed PMID:
28066809; PubMed Central PMCID: PMC5218828.

8§ Presentations

01/2016  Schabath MB *“Diagnostic and predictive quantitative-imaging features in lung

cancer screening”. Oral Presentation at AACR-IASLC International Joint
Conference: Lung Cancer Translational Science from the Bench to the Clinic, San
Diego, California

01/2016  Schabath MB, Gillies RJ*. “Radiomics of lung cancer”. Oral Presentation at

AACR-IASLC International Joint Conference: Lung Cancer Translational Science
from the Bench to the Clinic, San Diego, California. *Presented by Dr. Gillies.

01/2016 Gillies, RJ. “Imaging Tumor Habitats” Danny Thomas Lecture, St. Jude’s. Memphis

TN.

02/2016 Gillies, RJ. “Imaging Habitats in Cancer” 5th Tubingen PET/MR Workshop,

University of Tubingen, Germany

04/2016 Gillies, RJ. “Imaging Habitats of Cancer” AACR, New Orleans, LA
05/2016 LO Hall “Leveraging Big Data in Medical Image Analysis”, Nanjing University

of Science and Technology, Nanjing, China.

05/2016 LO Hall “Leveraging Big Data in Medical Image Analysis”, Invited Talk, 2016

International Conference on Intelligence Science and Big Data Engineering,
Guangzhou, China.

08/2016 Schabath MB “Diagnostic and predictive guantitative-imaging features in lung

cancer screening”. Oral Presentation at 15" Annual Guangdong Congress of
Radiology, GuangZhou, China

07/2016 Schabath MB *“Radiomics and Lung Cancer Screening”. Oral Presentation at NCI

Lung Cancer SPORE Workshop, Bethesda, Maryland

10/2016 Gillies, RJ. “Radiomics in Decision Support”; 3rd Personalized Medicine

Conference, invited speaker, Orlando, FL

10/2016  Gillies, RJ. “Whither Radiomics?” 6th Annual Radiomics Workshop, meeting

organizer, Clearwater Beach, FL

11/2016 LO Hall “Transfer Learning using Deep Features for Medical Image Analysis”,

University of Notre Dame,



12/2016 Gillies, RJ. “Radiomics and Tumor Habitats”; 28th EORTC-NCI-AACR
symposium, invited speaker, Munich, Germany

§ Conference Proceedings

I. Tunali, J.E. Gray, J. Qi, M. Abdullah, Y. Balagurunathan, R.J. Gillies, M.B.
Schabath. Quantitative Imaging Features Predict Response of Immunotherapy in Non-
Small Cell Lung Cancer Patients. Int’l Assoc. Study of Lung Cancer; Vienna, AUT,;
01/2017

D. Cherezov, S. Hawkins, D. Goldgof, L. Hall, Y. Balagurunathan, R.J. Gillies, M.B.
Schabath. Quantitative Imaging Features Predict Incidence Lung Cancer in Low-Dose
Computed Tomography (LDCT) Screening01/2017. Int’l Assoc. Study of Lung
Cancer; Vienna, AUT, 01/2017

D. Cherezov, S. Hawkins,, D. Goldgof, L. Hall, Y. Balagurunathan, R. Gillies, M. Schabath,
"Improving Prediction through Selecting Features Informed by Nodule Size Ranges in
NLST", IEEE International Conference on Systems, Man and Cybernetics (SMC
2016), Budapest, Hungary, 10/2016.

R. Paul, S, Hawkins, L. Hall , D. Goldgof, R. Gillies, "Combining Deep Neural Network and
Traditional Image Features to Improve Survival Prediction Accuracy for Lung Cancer
Patients from Diagnostic CT", IEEE International Conference on Systems, Man and
Cybernetics (SMC 2016), Budapest, Hungary, 10/2016.

H. Farhidzadeh, B. Chudhury, J. Scott, D. Goldgof, L. Hall, R. Gatenby, R. Gillies, M.
Raghavan, "A Quantitative Histogram-based Approach to Predict Treatment Outcome
for Soft Tissue Sarcoma Using Pre- and Post-treatment MRIs", IEEE International
Conference on Systems, Man and Cybernetics (SMC 2016), Budapest, Hungary,
10/2016.

R. Liu, L. Hall, D. Goldgof, M. Zhou, R. Gatenby, K. Ahmed, "Exploring Deep Features from
Brain Tumor Magnetic Resonance Images via Transfer Learning”, 2016 International
Joint Conference on Neural Networks, (IJCNN 2016), Vancouver, Canada, 7/2016.

B. Chaudhury, M. Zhou, D. Goldgof, L. Hall, R. Gatenby, R. Gillies, J. Drukteinis, "Predicting
Ki67 expression from DCE-MR images of breast tumors using textural kinetic features
in tumor habitats”, SPIE Medical Imaging 2016, San Diego, CA, 2/2016.

B. Geiger, S. Hawkins, L. Hall, D. Goldgof, Y. Balagurunathan, R. Gatenby, R. Gillies,
"Change Descriptors for Predicting Tumor Malignancy in NLST CT Screening
Images”, SPIE Medical Imaging 2016, San Diego, CA, 2/2016.

H. Farhidzadeh, J. Scott, D. Goldgof, L. Hall, R. Gatenby, R. Gillies, M. Raghavan, "Signal
IntensityAnalysis of Ecological Defined Habitats in Soft Tissue Sarcomas to Predict
Metastasis Development”, SPIE Medical Imaging 2016, San Diego, CA, 2/2016.

§ Radiomics Retreat 2016

We again hosted the Radiomics Retreat in Clearwater Beach on Oct. 24-26. This was
supported by generous gifts from both the Moffitt Cancer Center and the Department of
Radiology at Stanford University. There were 102 attendees from 47 different institutions.



Attendees came from US, China, Germany, Denmark, and Canada. The summary agenda is
attached. Once again, there was a sponsored Young Investigators dinner.

The major emerging theme at this meeting was the growing interest in Deep Learning
and Al applied to medical images, and this will be a focus of this meeting going forward. The
agenda for the meeting appears on the next page.
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U01 CA140206: Quantitative Imaging to Assess Response in Cancer
Therapy Trials

University of lowa

John M. Buatti, MD
Thomas L. Casavant, PhD
Michael M. Graham, PhD MD
Milan Sonka, PhD

INTRODUCTION

The University of lowa QIN team has been consistently committed to improve and
develop tools for quantitative image analysis both for assessment of response and for tumor
targeting. The group remains committed to the QIN central mission of “improving the role of
quantitative imaging for clinical decision making in oncology by the development and
validation of data acquisition, analysis methods and tools to tailor treatment to individual
patients and to predict or monitor response to drug or radiation therapy.”

Our team completed its 6™ year of participation and made significant progress building
on both developed infrastructure and through multi-institutional working group teams as part
of QIN. Several new publications highlight this progress and the interdisciplinary and inter-
institutional efforts being led within QIN. Our group continues to move forward on 4 specific
aims that build creatively from our previous work in a highly innovative fashion and help
accelerate QIN progress and collaboration.

§ Specific Aim 1:

Develop a novel, robust imaging genomics-based decision support platform using a
combination of our successful Phase-I developed and validated highly automated quantitative
image analysis methods applied to linked and publicly-available well curated image (TCIA)
and molecular (The Cancer Genome Atlas—-TCGA) data warehouses along with an established
outcomes database for H&N cancers. This will facilitate new methods and decision support
tools necessary for future risk adaptive trials that will certainly include both genomic and
quantitative image data.

§ Specific Aim 2:

Build and innovate based on Phase-1 developed and validated image analysis tools: a)
Apply highly and fully automated quantitative image analysis methods to a cooperative group
data set of H&N cancers, b) Develop unique new tools through creative new image analysis
methods for application to FLT/PET in H&N cancer, FLT/PET in pelvis and bone marrow, as
well as DOTATOC for liver metastases in neuroendocrine cancers. These newly refined
approaches will be made publicly available and will contribute to future clinical trials,
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decision support, quantitative imaging response assessment and therapy targeting in a variety
of cancer sites.

§ Specific Aim 3:

Create a novel link between our established work in PET quantification and calibration
phantoms with our image analysis and decision support tools to create a clinically practical
open source automated phantom analysis tool that can be applied to national efforts aimed to
improve quantitative imaging quality assurance for clinical trials across multiple modalities
including PET, CT, and MRI. This will provide a critical tool for improving the ease, accuracy
and harmonization for clinical trials data acquisition.

§ Specific Aim 4:

Adapt, enhance and extend quantitative image-based response assessment in
clinical trial decision-support through relevant active clinical trials. Several clinical trials are
highlighted exploring: 1) FLT-PET as a predictor of bone marrow activity and toxicity in
pelvic malignancies treated with chemoradiotherapy, 2) DOTATOC as an indicator of disease
burden in neuroendocrine tumors and 3) quantitative MR imaging [T2, T1, T1p, quantitative
susceptibility mapping (QSM) and MRSI] as effective predictors of response in malignant
glial tumors treated with intravenous high dose vitamin C. These trials will facilitate
guantitative image analysis tool development, decision support tools and risk adaptive
approaches in future clinical trials.

DISCUSSION OF PROGRESS

During the previous period our efforts continue in several major integrated activities.
Clinical data is provided for analysis including outcomes data using both an established head
and neck cancer data base that was initiated as part of our phase | effort. In addition, we are
increasingly reaching out to national data bases such as the TCGA and TCIA for other curated
data sets. There is a team of clinicians and computer engineers and physicists that have
worked closely to develop a group of computer algorithms applicable for quantitative analysis
of PET images in FDG. This tool is not only available in 3D Slicer but now has been
complemented by instructional videos on the lowa QIN website (http://gin.iibi.uiowa.edu ).
Review of these videos and methods highlights the potential applicability of these tools for
active clinical trials and makes practical application more feasible. The tools provide fully
automated liver uptake measurements for normalization of PET/CT images and also provide
“just enough interaction” methods for tumor segmentation in a series of head and neck
squamous cancers on FDG PET-CT. Such tools further enable the calculation of a large
number of radiomics features as well as automated and consistent response assessment or
targeting routines for clinical decision making.

In the past year, a major activity included coordination of a challenge that evaluated
the ability of 7 institutions to analyze a series of PET image data sets of both phantoms and
clinical head and neck cancer cases [9]. This included analysis of a group of different image
acquisition routines as well as different methods used as standard practice at the institutions.
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Simultaneously the decision support group has worked on developing the pipeline for
integrated analysis of both genomic and gquantitative image analysis data through utilization
of both TCIA and TCGA data. In the coming year additional clinical data and genome data
will be added. Our group continues to tightly integrate efforts through biweekly meetings that
discuss progress of our teams of bioinformaticists, computer engineers, statisticians, radiation
physicists, nuclear medicine physicians, radiologists and radiation oncologists. We remain
focused on advancing tools that can more effectively provide quantitative imaging based
response assessment in cancer clinical trials.

§ Aim1

During this past year, our efforts have been focused on refinement and enhancement
of our genomic variant analysis pipeline necessary to identify highly-informative features for
prediction and decision support. This novel informatics pipeline utilizes currently-available
TCGA data for H&N cancers for which TCIA data is also available. Currently, the TCGA
repository contains molecular data for more than 500 H&N squamous cell cancer patients.
This molecular data consists of 5 modalities including: 499 with full or targeted exome (DNA)
sequences corresponding to both tumor (T) and normal (N) samples, 526 with Copy Number
Variation (CNV) data from either genome-wide single nucleotide polymorphisms (SNP)
arrays or low-pass high-throughput DNA sequencing or both, 528 with epigenetic/methylome
(HumanMethylation450) data, and 505 with high throughput RNAseq data for tumor samples.
Figure 1 illustrates the basic analysis derived from alignments of this sequence data in three
ways. Alignment of an N sample to the UCSC reference genome sequence will reveal the set
of all germline (G) plus somatic (S) mutations present. Alignment of the T sample to the
UCSC reference will reveal the additional set of tumor-specific T mutations present. One
hundred forty eight H&N cases (of the 528 in TCGA) have some imaging data in TCIA.
Within this H&N subset with imaging and TCGA data, 30 subjects have PET imaging data,
144 have CT, and 11 have MRI.

USCS Reference
Genome Sequence

1l
S+G+T S+G
variants variants

Subject K4 7 S|;,l|bje(c]t
Tumor( j 00
sequence/s <> X (Normal
: \ T variants =

=4 sequence

Figure 1: Simplified schematic of variant analysis. G-germline, S-
somatic, and T-tumor-specific variants. Exome sequence available
for blood (normal) DNA, and tumor DNA. The three comparisons
represent possible choices of clustering features.
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The dataset driving our pipeline development efforts consists of 512 TCGA subject
exomes (>33Gb), and associated variant calls (regardless of imaging data availability). These
files contain on average 44,507 T variants per subject (tumor vs. normal, Figure 2). Of the
22,787,886 (non-distinct) variants total, 1,683,888 distinct variants were reported across all
512 subjects. We first intersect this with a set of 70 genes most often associated with H&N
cancer from the annotated genomic start of translation to genomic stop. The resulting set of
45,261 variants is then filtered by eliminating variants that appear in both the entire set of 512
subjects (not informative), and in fewer than 5% (25) of the 512 subjects. This resulting set of
1,836 variants is further filtered, so that only those with a minor allele frequency (MAF) of
0.5% or less from the 1000 genomes project were retained. This MAF filter reduces the
number of variants per subject to 51 known SNPs, however in the T samples there were an
additional 626 private mutations with no MAF values, bringing the total number of variants
of interest to 677.

| i

i 2

Figure 2: Examples for developed, freely available open-source software
for quantitative PET image analysis in 3D Slicer. (a) 3D Slicer PET Liver
Uptake Measurement tool. (b) 3D Slicer PET-IndiC tool for lesion
segmentation and generation of quantitative uptake features for treatment
outcome prediction.
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We next construct the subset of 29 subjects with corresponding PET/CT data available,
so that we could apply our quantitative image analysis methods to systematically extract
image-based features within this subgroup. We continue the refinement of the set of 677 rare
genomic variants by requiring that a variant must appear in at least 4, but in not more than 19
instances within the set of 29 cases analyzed. We thus arrived at a set of 395 distinct genomic
loci within this subgroup of patients with TCGA and PET/CT data, and 16 QI metrics derived
from our Phase | image analysis tool from which to build predictive models. As we continue
with expansion of the set of patients, as well as our improved selection of features of interest
for machine learning, we will be releasing our feature selection algorithms to the QIN
community through shared BIDS working group tools and interfaces.

8§ Aim2and3

We have updated and improved our publicly released open-source software for
quantitative PET image analysis, consisting of 3D Slicer PET Tumor Segmentation, 3D Slicer
PET DICOM Extension, PET Liver Uptake Measurement (Fig. 2(a)), and 3D Slicer PET-
IndiC (Fig. 2(b)) Extension as well as supporting libraries. To better document the released
software and facilitate the broad dissemination, we have published a summary paper, which
describes details of the implemented lesion segmentation algorithm as well as its validation
[3]. We have also established a website: http://gin.iibi.uiowa.edu providing instructional
videos and demonstrations that are fully narrated for public use. We are hopeful that this will
facilitate a broad utilization of our developed tools.

We have developed a fully-automated quantitative PET phantom analysis algorithm,
which allows the user to segment ACR/ACRIN-ECOG, SNMMI/CTN, and NEMA NU-2
image quality phantoms and will help to simplify the process of PET scan image quality
assessment (Figure 3).

To augment the lowa H&N PET/CT image collection (already available on TCIA
collection: “QIN-HeadNeck”), we have encoded a) segmentations and quantitative
measurements of lesions derived from lowa H&N PET/CT image data and b) clinical data
related to the lowa H&N PET/CT image data in standard conform DICOM format and
published it on TCIA, resulting in one of the most complex DICOM data collections currently
available on TCIA. The data is accompanied by a recently published paper, which describes
the data collection as well as underlying design decisions regarding the selected data
representation in DICOM format [3].

We have finished the Ul-led QIN PET Phantom and Clinical Head and Neck
Segmentation challenge and have written a summary paper [9], which provides valuable
insight on how to improve (multi-site) quantitative PET image analysis performance.

Development activities for an FLT based tool for head and neck cancer as well as for
DOTATOC for tumor burden in liver are also under development but are not yet mature.
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Figure 3: Example of the fully-automated analysis of a PET Torso phantom.
(@ Volume rendering of automatically identified inserts, and (b)
corresponding quantitative analysis report.
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Figure 4: Iron (111) is primarily responsible for the alterations seen in T,* relaxation time
and tissue susceptibility in phantoms. T,* relaxation times (Panels A and C) were
calculated by fitting a mono-exponential decay curve to the data on a voxel-by-voxel
basis. Quantitative susceptibility maps (Panels B and D) were generated using the MEDI
algorithm. Mean and standard deviation within the phantom are plotted relative to the iron
concentration.

§ Aim 4

We are pursuing imaging methods to assess tumor response to pharmacological
ascorbate as an adjuvant to standard of care therapy. Peak plasma concentrations of ascorbate
are currently measured as part of the trial but do not directly report the concentrations within
the tumor. Therefore, we have pursued the development of methods capable of directly
quantitating ascorbate within the tumor and measuring markers attributable to the reduction
of labile iron by ascorbate. Imaging presents a unique opportunity for directly quantitating
ascorbate in vivo and assessing an indirect marker of ascorbate efficacy. Since high
concentrations of ascorbate have been shown in vitro to reduce labile Iron(l11) to Iron(ll), we
have pursued the evaluation and reliability of T>* relaxation times and tissue susceptibility to
detect subtle changes in the net iron oxidation state that may occur after ascorbate infusion.
Phantoms containing physiological concentrations of Iron(Il) and Iron(l1l) were evaluated
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using the quantitative imaging metrics to determine the sensitivity of each imaging metric to
sensitivity to varying concentrations of each iron oxidation state. We have demonstrated that
Iron(l11) has a greater influence on T>* relaxation times and tissue susceptibility than does an
equal amount of Iron(Il). Work is on-going in phantoms and pre-clinical models to further
evaluate this relationship.

SIGNIFICANT RESULTS, INCLUDING MAJOR FINDINGS,
DEVELOPMENTS, OR CONCLUSIONS (BOTH POSITIVE AND
NEGATIVE)

The significant results from our research have been published or are being published
as noted in the text and below. We have successfully developed a robust segmentation for
commonly used phantoms and also evaluated the current methods for PET segmentation
through a QIN based challenge, which resulted in an accepted paper in Medical Physics [9].
We believe these methods will improve harmonization and enable more facile analysis needed
for clinical trials image acquisition consistency. We are making good progress according to
our overall project timeline although proceeding with internal DNA sequencing and obtaining
National studies has been slower than we had hoped. We believe continued progress in the
coming year will enable completion of all elements of the proposed research.

1 2 3 4 5 Investigators
Image Genomics Tools Casavant, Braun, Buatti, Grandis, Smith
- TCGA-TCIA linked analysis |r——
ﬁ University of Pittsburgh datalink | | 2=
University of lowa datalink } 4=
ECOG-ACRIN targeted datalink } =
™~ Multicenter ACRIN 6685 } - Beichel, Buatti, Graham, Anderson, Sonka, Smith
5} FLT Head & Neck } > Menda, Buatti, Beichel, Graham, Smith
) Automated Tools for | Sunderland, Graham, Beichel, Buatti, Smith,
ﬁ Phantom Harmonization | = |and Magnotta

Table 1: Gantt Chart for mapping progress.

PLANS FOR NEXT YEAR

In the coming year we will begin sequencing head and neck cancers from our own
University of lowa database. We will also continue to work with national databases and begin
image analysis on cooperative group data either from ECOG/ACRIN or the NRG or both.
These will be analyzed using the automated methods and compared to traditional analysis.
We will work to continue to define the platform for genomic-radiomic analyis in head and
neck cancer. We also plan to make progress on our FLT based tools and DOTATOC tools.
Publication of our phantom tool should also be accomplished and integrated into our website.
Initial work on defining an MR based tool will also be pursued. Further progress on MR
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imaging will be determined by progress on our phase Il trial using ascorbate with standard
therapy.
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UO01CA148131: Advanced PET/CT Imaging for Improving Clinical Trials
University of Washington and the Seattle Cancer Care Alliance

Paul Kinahan, Ph.D. and Hannah Linden, M.D.

INTRODUCTION

The goal of this project is to improve cancer clinical trials by enhancing the
effectiveness of quantitative PET/CT imaging of tumor response. This has three distinct and
linked components:

1. Develop and implement a unified database and imaging platform for our phantoms
and software tools.

2. Extend our biologically principled imaging tools developed for FDG to FLT
(proliferation) and FES (receptor status) in multicenter studies.

3. Prospectively test the integration of the above tools and methods in a newly
approved ECOG-ACRIN clinical trial that uses FES PET imaging to evaluate new
breast cancer therapies.

DISCUSSION OF PROGRESS

We list methods, results, and conclusions for each Aim in order below.

8AIM 1

Develop and implement a unified database and imaging platform for our phantoms
and software tools.

We have completed an evaluation of our PET/CT cross-calibration Kkit, which were
designed in collaboration with RadQual, and are now available as a commercial product called
the PET F-18 X-Cal System (Figure 1). The X-cal is designed to allow the monitoring of
biases in SUV values by enabling the monitoring of biases. The kits, which contain sealed,
long-lived 68Ge/68Ga sources in an epoxy matrix, were subjected to tests to evaluate the
repeatability and reproducibility of their measurements, including tests on scanners and dose
calibrators from multiple manufacturers across a network of local PET imaging centers.

inside a 20 cm diameter phantom filled with water. In this example a small
amount of 18F-FDG was added to the background water.
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Each X-Cal kit contains three sealed 68Ge/68Ga sources in an epoxy matrix for use in
a PET/CT scanner, dose calibrator, and well counter, respectively. Each source’s activity is
known to £2.5% with a 95% confidence level. The dose calibrator reference sources are
directly traceable to NIST (National Institute of Standards and Technology) standards. The
scanner and well counter sources are implicitly NIST-traceable, i.e. they are made following
the same procedures but are not certified by NIST.

In testing at multiple sites, per-site average recovery coefficients ranged from 0.907 to
0.983, with per-site standard deviations between 0.019 and 0.034. The 24 measurements
overall had a mean of 0.944 + 0.038. Dose calibrator recovery coefficients were 0.964 + 0.033.
For a single site, Figure 2 (right) shows the estimated SUV bias calculated from the recovery

coefficients as described by & = (RP/RD)—I, here b is the estimated SUV bias, Rp and Rp are

the recovery coefficients for the PET phantom and the dose calibrator sources. A comparison
of the pre-test PET scanner and dose calibrator biases did not show any correlations in the
biases.
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Figure 2: (left) PET scanner recovery values versus time from 6 local network hospitals.
24 scans were collected over 2.5 years. Overall the ensemble recovery coefficient had a
mean of 0.944 + 0.038. (right) Scanner, dose calibrator, and resultant SUV bias versus
time for a single site showing variability of SUV bias in time.

These results were published in the QIN special issue of Tomography [1] showing
longitudinal variations in bias at single-center and multi-center studies. The X-cal phantom
kit was deployed in a QIN multi-center study that has completed analysis and is being
submitted for publication.

Aim 2

Extend our biologically principled imaging tools developed for FDG to FLT
(proliferation) and FES (receptor status) in multicenter studies.

We developed a method called 'virtual clinical trials to evaluate variations in the PET
imaging process to characterize the ability of static and dynamic metrics to measure breast
cancer response to therapy in a clinical trial setting. We have competed and published three
studies: Estimating the effect of FDG uptake time on lesion detectability in PET imaging of
early stage breast cancer showing that delayed imaging improves detection [2], estimating the
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effects of uptake time variability on required sample size showing that variability in uptake
time can double the needed number of patient studies in clinical trials [3], and comparing
static versus dynamic PET imaging in measuring response to breast cancer therapy showing
that as expected, dynamic imaging improves the correct discrimination of response [4].

In this last study we generated 540 i.i.d. PET study realizations for each of 22 18F-
FDG breast cancer patient studies pre- and post-therapy. Each noise realization accounted for
known sources of variability in the imaging process. We then performed a ROC analysis on
the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the
variability on the measurement capabilities of each metric. Analysis showed that the kinetic
macro parameter, Ki, shows more variability than SUVmax (CV of 16.6% compared to
13.5%). However, for the patients who did not show perfect separation between the pre- and
post-therapy parameter uncertainty distributions (AUROC<1), dynamic imaging
outperformed SUVmax in distinguishing metabolic change in response to therapy (14/16
patients, p<0.05).

Patient 7 Patient 10
Tumor = Grade 2, 1.5 cm Tumor = Grade 2, 1.1 cm

Pre-
Therapy

Post-
Therapy

Figure 3: Two of the 22 patient studies used.
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Figure 4: Virtual clinical trial simulation of the imaging process and results
for patient 11. SUVmax at 60 minutes post-injection and dynamic ROIs were
measured from the tumors in the reconstructed images. Uptake time
uncertainty was added to SUVmax to generate the final SUVmax uncertainty
distributions pre- and post-therapy. The dynamic ROIs were re-input into the
kinetic model to generate the Ki uncertainty distributions.
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Aim 3

Prospectively test the integration of the above tools and methods in a newly approved
ECOG-ACRIN clinical trial that uses FES PET imaging to evaluate new breast cancer
therapies.

We have constructed a new set of X-cal phantom Kkits for deployment in the ECOG-
ACRIN trial 1142 '[18F] Fluoroestradiol (FES) as a Predictive Measure for Endocrine Therapy
in Women with Newly Diagnosed Metastatic Breast Cancer'. It is a multi-center trial for which
Dr Linden is the co-PlI.

PROGRESS AND PLANS FOR NEXT YEAR

Year 1 Year 2 Year 3 Year 4 Year 5 Lead team Secondary
Aim_Task 01 02 Q3 Q4|01 Q2|03 Q4[01 02 O3 Q401 Q2 O3 Q4|01 Q2 Q3 Q4
1.1 Database extensions and visualization/analysis software 1 2 3 4 P|5 5 Kitware UW, UF, BK
1.2  PET calibration phantoms 6 T P uw Hitware, UP
1.3 Protocol reconstruction tocls 8 P 9 P| UPUW  Kitware
2 Framework for virtual clinical trials 10 1 P uw, up Kitware
2.1 Bias and variability and corrections for FDG T n P 14 uUw, up BK
2.2 Bias and variability and corrections for FES 7 1 P 14 uw, uP BK
2.3 Bias and variability and corrections for FLT 1 P 14 UP, Uw BK
3 Prospectively integration with ECOG-ACRIN FES clinical trial T 12 P13 P| URUW BK, Kitware
nia  Make tools and results available for testing in QIN 4 9 P| Al
nla  Migrate data and tools to TCIA 5 5|14 P | Kitware Uw, up
nfa__Make results avaialble to QIBA P Al
Mi I del ! { P = Publication)

1 Database format (M-DICOM) on MIDAS available 8 Prot | Resc initial it

2 MIDASICTP platform installed at UW & UP 9 Protoocol Resconstructor update for new DIOCM formats

3 Slicer-PET Distributed 10 Data i i tested ively

4 Publication on integrated platform early results & QIN release 11 Data comection algorithms tested prospectively

5 Start-complete connectivity with TCIA 12 Patient accrual starts

6 Phantom construction / testing 13 Patient accrual ends

T Phantomn deployment 14 Transfer to TCIA
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UO01CA190214: Qualification and Deployment of Imaging Biomarkers of
Cancer Treatment Response

Stanford University Department of Radiology (1)

Daniel L. Rubin, M.D., M.S.

INTRODUCTION

Response to cancer therapy in clinical trials has traditionally been assessed via simple
linear tumor size measurement on images. However, linear measurement may be less effective
for newer targeted agents that can arrest tumor growth without causing shrinkage. While novel
imaging biomarkers, such as those being developed in the NCI Quantitative Imaging Network
(QIN), may be more appropriate for detecting and predicting treatment response to these
agents, few as of yet have been used in clinical trials, primarily due to three major challenges:
(1) it is difficult to introduce new imaging biomarkers into the workflow of clinical trials,
since current image viewing tools are generally closed systems and limited to linear
assessment of target lesions, and time does not allow for more complex human-guided
measurements; (2) there are no decision support tools that can employ new quantitative
imaging biomarkers to assess treatment response in individual patients or drug effectiveness
in clinical trial cohorts; and (3) it is difficult to repurpose existing clinical trial imaging data
to accrue aggregate evidence needed to show that new imaging biomarkers predict survival,
thereby qualifying them as surrogate endponts in clinical trials

We recently developed the electronic Physician Annotation Device (ePAD) to
facilitate collecting annotations and measurements on target lesions in compliance with
standards in the cancer imaging community. In this proposal, we will leverage our prior work,
our active collaborations with current QIN researchers, and our engagement with the ECOG-
ACRIN national cooperative group to develop and evaluate a software platform, algorithms,
and tools that meet all of these challenges.

Our project will tackle the foregoing challenges by developing a software platform
that incorporates ePAD for image viewing, enhancing it with a plugin architecture to deploy
novel quantitative imaging biomarkers developed by QIN and other researchers, and by
providing tools that facilitate translating and evaluating novel imaging biomarkers in clinical
trials. Our infrastructure will contain a workflow engine that computes these novel imaging
biomarkers during image interpretation, and tools for decision making about treatment
response and drug effectiveness based on them. It will also enable repurposing imaging data
from previous clinical trials to assess the benefit of these imaging biomarkers for predicting
treatment response.

Our flexible platform and tools will have substantial impact in cancer research and
ultimately in clinical care, specifically by (1) advancing cancer research and accelerating
clinical trials by enabling novel quantitative imaging biomarkers being developed by QIN
researchers and others, which may be more appropriate for newer, targeted anti-cancer agents,
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to be introduced into the clinical trial workflow, (2) improving both clinical trials and clinical
practice by providing decision support about cancer treatment response based on these
biomarkers, and (3) accelerating the acquisition of sufficient data needed to qualify new and
potentially better imaging biomarkers of cancer treatment response and survival.

DISCUSSION OF PROGRESS
§ Specific Aims

Specific Aim 1: We will develop a platform and tools to facilitate deploying new
imaging biomarkers in clinical trials and using them for decision support. We will create
a plug-in mechanism to our ePAD platform that allows novel quantitative imaging algorithms
developed by us or by others to be incorporated into the clinical trial workflow with minimal
impact on the time required for image interpretation. To assess individual and cohort response
based on new imaging biomarkers, we will develop decision support tools that summarize
their output in relation to clinical outcome. We will also develop tools that compare the
assessments of novel and conventional (e.g., linear dimension) imaging biomarkers of cancer
treatment response.

Specific Aim 2: We will develop methods to repurpose existing imaging data from
clinical trials to study new imaging biomarkers. We will develop automated image
segmentation methods that use seed points from conventional clinical trial lesion
measurements to derive volumetric lesion outlines, from which novel quantitative imaging
biomarkers of treatment response can be computed efficiently in the workflow of clinical
trials. With the ultimate goal of generalizability, we will develop and deploy two exemplar
quantitative image biomarkers: (1) target lesion volume in carcinoid tumors imaged by CT
and (2) functional quantitative image parameters in hepatocellular carcinoma (HCC) imaged
by MRI. We will deploy these as plugins to our ePAD platform so that they can be used for
repurposing existing imaging data, and can be incorporated into the clinical trial workflow.

Specific Aim 3: We will deploy and evaluate our platform and tools in the core
imaging laboratories of two cancer centers and the ECOG-ACRIN national cooperative
group. We will apply our tools retrospectively to a recently-completed ECOG-ACRIN
cooperative group trial (carcinoid tumors imaged by CT, linear measure vs. volumetric image
biomarkers to assess treatment response) and a prospective investigator-initiated trial (HCC
imaged by MRI, linear measure vs. novel functional quantitative MRI biomarkers to assess
treatment response), with image assessments performed at two cancer centers (Stanford and
Vanderbilt University). For both studies, we will compare the efficiency of the analysis done
with and without our platform. Finally, we will use aggregate image biomarker data we
acquire in conjunction with survival data from these clinical trials to study the important
hypothesis that radiological response based on quantitative image biomarkers can predict
overall survival.
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Section

Task Year1 Year2 I Year3 I Yeard I Year5

Aim 1: Platform to deploy imaging biomarkers inclinical trials

G121

Dewelopplugin architecture for ePAD platform

G121

Build workflowexecution engine

G122

Dewelopcomponents for assessing newimaging biomarkers

123

Dewlopdecision support fools forevaluating newim aging biomarkers

G124

Dewloptoolsto assess benefits ofnewimaging biomarkers

Testand refine individual components and algerthms

Aim 2. Develop methods to repurpose cliical trialimage data

G221

Dewlopalgonithms forautomated segmentation oftarget lesions

G222

Build biom arker plugin to denive lesion volume from linear measurements

G223

Build biom arker plugin to compute quantitative functional MRI biom arkers

Testand refine algorithms and com panents

Aim 3: Deploy and evaluate platform in clinical trials

G321

Deploy platiorm in the Stanford and Vanderbiltimage metrics laboratories

G321

Deployplatiom in the ECOG-AGRIN core laboratory

£i22

Evaluate workfloweficiencyin investigator-initiated clinical trial

G322

Evaluate workfloweficiencyin ECOG-ACRIN cooperative group dinical trial

G323

Demonstrate abilityof platform to enable accum ulation ofqualifing evidence

Figure 1: Gantt chart showing planned developments per Specific Aims. Red line is
current point in time.

8§ Progress on the Specific Aims

Our specific objectives and progress against these Aims for Years 1 & 2 were to:
(labels C.n.m refer to our grant proposal and the Gantt Chart (Figure 1)):

AIM 1: Develop a suite of configurable image feature characterization algorithms:

C.l21

Plugin architecture and workflow execution engine for deploying new
imaging biomarkers: We completed a prototype of a plugin mechanism to our
ePAD platform that allows novel quantitative imaging algorithms to be
incorporated into the clinical trial workflow. There are three components of
this architecture:

Biomarker plugins are code modules that can be added to the ePAD virtual
machine to execute the algorithms that QIN or others develop to compute novel
imaging biomarkers, or for producing automated segmentation of lesions
during image viewing.

Application modules are software applications that leverage data in the ePAD
platform, typically implemented as web-based applications that access data in
ePAD via a RESTful application interface. We created an application to show
images that have similar imaging features, called BIMM (Fig. 2) and an
application that tracks lesions and produces a Word file summary of treatment
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Figure 2: ePAD application: BIMM. This application, a “biomedical image
metadata markup manager” searches the database of image features collected
by ePAD to find similar images. The figure shows a query image (“selected
image”) and the results of searching for images that contain lesions having
similar features to that in the query image (“matching images”).

C.122

response that can be entered into the record of a clinical trial based on our
recent work [1].

Workflow execution engine: We have made plans to implement this via an
interface to the Quantitative Imaging Feature Pipeline (QIFP), a separate QIN
project undertaking developing a workflow engine.

We already are seeing third party developers beginning to develop new
imaging biomarkers into ePAD [2]. In addition, one of the QIN sites is going
to deploy ePAD for collecting quantitative imaging data in an upcoming multi-
site trial.

We also made enhancements to the core ePAD functionality, including more
robust DICOM segmentation object (DSO) support, interoperability with 3D
Slicer, and better AIM template support. We also began supporting AIM
interoperability with DICOM-SR.

Image viewing to facilitate assessment of quantitative imaging
biomarkers: This includes the several tasks (see Plans), and we made progress
on one of the tasks:

Managing projects, users, and clinical trial information: ePAD now groups
images into projects, managing users, and securing access to the data. It also
associates radiologists with the images they interpret, so that ePAD viewer can
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produce summaries of image interpretations that need to be performed in
clinical trials. This functionality has been helpful in a new project that adopted
ePAD: the MGH/HST Martinos Center for Biomedical Imaging) used this for
MEDICI project.

In addition, we engaged actively in community outreach and dissemination. We have
set up a public website for ePAD, http://epad.stanford.edu/ that contains introductory
material, a demo move, documentation, a detailed description of the developer interface,
and download information. ePAD is open source, and the license is posted as well. We
have regular releases, at least 6 times per year, and release notes are at
https://epad.stanford.edu/documentation/release-notes.

AIM 2: Develop methods to repurpose existing imaging data from clinical trials to
study new imaging biomarkers:

C.2.2.1 Exemplar #la—Automated segmentation of cancer lesions: Cancer lesions
are challenging to segment since they vary in appearance in different organs. We
created a novel method for adaptive estimation of active contour parameters for lesion
segmentation (Fig. 3) [3]. The method is fully automatic once the lesion has been
detected. The location of the level set contour relative to the lesion is estimated using
a convolutional neural network (CNN). The output CNN probabilities are then used
to adaptively calculate the parameters of the active contour functional during the
segmentation process. Finally, the adaptive window size surrounding each contour
point is re-estimated by an iterative process that considers lesion size and spatial
texture. We evaluated the method in a diverse dataset of 164 MRl and 112 CT images
of liver lesions that includes low contrast and heterogeneous lesions as well as noisy
images. Our method, as assessed by Dice similarity coefficients, performed
significantly better than currently available methods. An average Dice improvement
of 0.27 was found across the entire dataset over all comparisons. We also analyzed
two challenging subsets of lesions and obtained a significant Dice improvement of
0.24 with our method (p < 0.001, Wilcoxon) [3].

PLANS FOR NEXT YEAR

We will continue our software developments as follows (labels C.n.m refer to our
grant proposal and the Gantt Chart (Fig. 1)):

C.1.2.1 Plugin architecture and workflow execution engine for deploying new
imaging biomarkers:

e Biomarker plugins We will continue developing new plugins and
incorporating those submitted by the community. In particular we will work
with Dr. Abramson to create a plugin to compute a biomarker of response
based on pixel histogram characteristics along the long axis (“ADLA plugin”).

e Application modules: We will develop applications to enable tracking lesions
and producing waterfall plots (see C.1.2.3).

31


http://epad.stanford.edu/
https://epad.stanford.edu/documentation/release-notes

o Workflow execution engine: We will link ePAD to QIFP, a separate QIN
project undertaking developing a workflow engine, to provide this
functionality.

b)

Figure 3: Lesion segmentation using the proposed method with different
initializations. Left column - small initialization (3-pixels radius), middle
column — more accurate initialization (5-pixels radius), right column — large
initialization (9-pixels radius). a) low-contrast lesion, b) noisy and
heterogeneous tissue surrounding the lesion. For both cases, lesion is located
close to the liver boundary. Magenta — initial contour, yellow — our final
segmentation, green — manual radiologists’ annotation.

C.1.2.2 Image viewing to facilitate assessment of quantitative imaging
biomarkers: We will pursue several tasks:

e Facilitating image biomarker assessments by clinical centers, such as
incorporating several tools into ePAD viewer that streamline the assessment of
quantitative imaging biomarkers.

¢ Facilitating oversight of image readings by clinical trial researchers and
sponsors: We will develop a study monitoring application module that permits
ePAD to monitor the status of image interpretations made in multiple clinical
trials and summarized as a table in ePAD viewer.

C.1.2.3 Decision support in assessing treatment response: We will develop tools to
assist decision making based on image biomarker assessments in two major
clinical trial tasks: (1) determine treatment response in patients, and (2)
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evaluate treatment effectiveness by determining the cohort-based treatment
response.

C.1.2.4 Tools to assess the benefits of new imaging biomarkers: We will develop

the biomarker comparison module, an application module in ePAD viewer that
compares the cohort treatment response results obtained when using novel vs.
conventional (e.g., linear dimension) imaging biomarkers. This module will
summarize the treatment response in patient cohorts based on the new imaging
biomarker (using linear measurement for comparison) using several methods:
waterfall plots to show the best overall response rates in the cohort,
progression-free survival (PFS), MRR, and MTP.

C.2.2.2 Develop algorithms for automated segmentation of target lesions:

(Exemplar #la—Automated segmentation of cancer lesions; we will pursue
additional exemplars as outlined in our timeline in future years). We will also
engage with the QIN community to test these modules.

In addition:

1.
2.

We will make a working prototype available to interested QIN participants.
We will make regular public releases of ePAD and will submit an educational
exhibit to RSNA 2017 that will allow us to begin to train the broader
community regarding the use of the QIFP.
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UO01CA142565: Quantitative MRI for Predicting Response of Breast
Cancer to Neoadjuvant Therapy

Vanderbilt University and University of Texas at Austin
Thomas Yankeelov, Ph.D.
INTRODUCTION

The long-term vision of this program is to significantly improve patient care by
optimizing, validating, and then extending quantitative MRI methods for the early prediction
of breast cancer response to neoadjuvant therapy (NAT). During the first period of support
we incorporated quantitative dynamic contrast enhanced MRI (DCE-MRI) and diffusion
weighted MRI (DW-MRI) into a predictive statistical model to achieve an area under of the
receiver operator characteristic curve of 0.87 for predicting the eventual response of breast
tumors after the first cycle of neoadjuvant therapy (NAT). We now seek to extend these results
in multi-site clinical trials.

The ability to predict—early in the course of therapy—patients who will eventually
achieve a pathological complete response remains a highly relevant clinical objective.
Accurate and early response assessment would provide the opportunity to replace an
ineffective treatment with an alternative regimen, and in so doing potentially avoid or curtail
debilitating side effects or toxicities. With the numerous options for NAT that have become
available, development of a method to predict response early in the course of therapy is
especially needed.

We have developed several experimental and computational tools for improving DCE-
MRI and DW-MRI of the breast, and we have successfully applied these tools in clinical trials
at Vanderbilt University. We are now applying these techniques in multi-site clinical trials at
Vanderbilt University and The University of Chicago. Furthermore, we have an exploratory
component in the community setting in place at The University of Texas at Austin.

The knowledge acquired through this study will provide direction on developing
personalized treatment strategies for breast cancer patients undergoing NAT and may
motivate a fundamental shift in existing paradigms of therapy monitoring and selection in
breast cancer. Furthermore, MRI assessment of early response could be more broadly
applicable to other solid malignancies where NAT is appropriate (e.g., pancreas,
osteosarcoma, rectal, ovarian); thus, the results of this study could potentially have a
significant impact beyond breast cancer.
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DISCUSSION OF PROGRESS

§ Our primary work
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Figure 1: T, parametric maps are shown for inversion recovery
(left column), uncorrected variable flip angle (VFA, center) and
B;-correctedVFA (right) data collected from each of three patients
(show in rows).

We have recently completed a set of repeatability/reproducibility studies in phantoms,
healthy volunteers, and a limited number of patients; these data consist of quantitative, Bloch-
Siegert corrected Ti-mapping, apparent diffusion coefficient maps, and quantitative
magnetization transfer (qMT) maps. Figure 1 displays inversion recovery, variable flip angle
(VFA) and B:-corrected VFA T1 maps on three patients. Compared to the VFA data, the B-
corrected VFA Ti values of the fibroglandular tissue (FGT), adipose tissue (AT), and tumor
in all three patients are more similar to the IR T: values. After B:1 correction, %error
significantly (p < 0.001) decreased from 17% to 8.6% and the concordance correlation
coefficient increased from 0.55 to 0.83 in the FGT. The 95% CI of the mean difference
decreased from £94 ms to +38 ms after B1 correction. Similar accuracy and reproducibility
results were observed in the AT and tumor tissues. These data show that Bloch-Siegert B1
mapping significantly improves accuracy and precision of VFA-derived T1 measurements.

Quantitative MT imaging potentially provides more specific information on tissue
composition, including the ratio of macromolecular protons to the protons in the free water
pool, or pool size ratio (PSR). We have assessed the reproducibility of PSR measurements of
FGT in healthy controls. Figure 2 displays PSR maps from the central slice of three subjects
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for scan 1 (top row) and scan 2 (bottom row). The mean difference for all subjects (-0.06)
was not significantly different from zero, and the 95% confidence interval limits were +0.64
(o0 =10.05) and the repeatability measure (2.77 x wSD) was 1.87. The Bi-corrected T1, ADC,
PSR measurements are implemented in identical protocols on nearly identical 3T Philips
scanners at Chicago and Vanderbilt. The clinical trials that were selected to deploy these
measurements have also been successfully opened at both data acquisition sites and we have
begun to acquire patient data. This essentially completes the majority of Aim 1 and has us
well-positioned to address Aims 2 and 3.

Figure 2: PSR maps from the central slices of three subjects for scan
1 (top row) and scan 2 (bottom row). Note the range of adipose tissue
to fibraglandular tissue ratios observed in these healthy volunteers.

In addition to collecting the above data in our ongoing clinical trials, we are exploring
the utility of ultrafast imaging of the breast during the first minute after the administration of
contrast media. Using standard Fourier techniques, we achieved temporal resolutions of 2 to
9 seconds by reducing spatial resolution, and increasing parallel imaging and partial Fourier
factors. While several techniques have been developed to increase temporal resolution without
sacrificing spatial resolution (e.g., view-sharing, sliding window), they rely on under sampling
the edges of k-space and mixing data acquired at different times. In a situation when the signal
is rapidly changing, and much of the enhancement is occurring in small areas, undersampling
and view sharing at the periphery of k-space could lead to artifacts and errors in parameters
descriptive of lesion kinetics. Our initial experience with ultrafast breast imaging showed that
malignant lesions, on average, enhanced earlier and faster than benign lesions and normal
uninvolved parenchyma. Because of this, lesion conspicuity is increased in ultrafast images.
Ultrafast imaging also allows for more accurate estimations of parameters descriptive of
contrast media uptake, and for the measurement of these parameters relative to the time at
which the contrast bolus arrived in the breast (see Figures 3 and 4), rather than the time of
injection, removing the dependence on global variables such as cardiac output. Imaging the
early phases of contrast uptake allows for the use of simplified pharmacokinetic models to
estimate parameters such as the volume transfer constant, K",
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Figure 3: Time of arrival (TOA) is defined as the time the lesion
began to significantly enhance relative to when the contrast agent
firs arrived in the arteries of the breast. The TOA is show as a color
overlay in these images. Lesions are marked with arrows: a) and b)
invasive ductal carcinoma, c) complex sclerosing lesion, d)
fibroadenoma. The results show her are typical of our initial results,
with malignant lesions having a shorter average time of arrival than
benign lesions (6.9 s +/- 4.6 s and 15.5 s+/- 13.6 s, respectively).

to+17.55

Figure 4: Maximum intensity projections (MIPs) for post-contrast minus pre-contrast
difference images acquired at a temporal resolution of 3.5s to is defined as the time that
arterial enhancement is first measured in the breast. Two likely benign lesions are marked
with arrows in the latest image shown.

We have also used the high-temporal resolution data to automatically detect, segment,
and track tumor associated vasculature within the breast. Representative results are shown in
Figure 5. In Figure 5a, two tracked paths based on data obtained with 2 sec resolution data are
indicated and overlain on the MIP of a post-contrast image. Observe how the vessels appear
to originate from the most lateral lesion and extend to the internal thoracic veins. Figure 5b
shows the normalized signal intensity time series associated with four different locations
within the most anterior vessel (i.e., P1, P2, P3, P4 as labeled in Figure 5a). The order of
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enhancement is what allows for the color coding of the vessel displayed in Figure 5a. The
high temporal resolution of the acquisition thus allows for not only vessel tracking, but also
determining the direction of flow within the breast tissue. Figure 5c prevents a 3D rendering
of the tracked vessels within the breast volume to better visualize their trajectory. An abstract
summarizing this work is to be presented at the upcoming ISMRM meeting. Longer term, we
aim to include these measurements in our ongoing trials.

* tracked path
breast region

b’
Early 140 c)

100 pa

Normalized Signal Intensity

9 18 27 36
] ate Time Points (sec)

Figure 5: Panel a displays two tracked vessels overlain on a maximum intensity projection.
The (normalized) signal intensity time courses associated with locations P1-P4 are indicated
on Panel b for one of the tracked vessels. Note how the high temporal resolution acquisition is
critical to determining the direction of flow within the tracked vessel. Panel ¢ shows a 3D
rendering of the same two vessels within the breast volume.

We are thrilled to report that we have established a public-private collaboration
between The University of Texas at Austin, Austin Radiological Associates, Texas Oncology,
and Seton Healthcare. This is truly noteworthy as our team only arrived on campus in
February of 2016 and we were able to establish this formal collaboration (complete with
contracts, etc.) and open a clinical trial by September. Our first patient was enrolled in this
study in October of 2016. More specifically, we are testing the hypothesis that quantitative
dynamic contrast enhanced MRI (DCE-MRI), diffusion-weighted MRI (DW-MRI), and
magnetization transfer MR1 (MT-MRI) can predict, early in the course of NAT, the eventual
response (i.e., pathological complete response vs. residual disease) of the individual patient,
and that this can be achieved in the community setting. A real, practical, advance of these
studies is that we have implemented these advanced MRI measures in the community setting;
that is, in the locations around Austin where patients go for their standard-of-care imaging
session. The patients do not have to come to an academic setting, they can simply go to where
they usually receive their care. If our methods prove successful, then the barrier between the
bench and the bedside is dramatically lowered with this approach. Figure 6 presents an
illustrative data set from a patient enrolled in our study. This constitutes a “new aim” in the
Gantt plot below.
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Figure 6: The figure displays two of the quantitative parametric maps we acquire in patients
undergoing neoadjuvant chemotherapy; ADC = apparent diffusion coefficient which is a
surrogate for cellularity, and kep = efflux transfer constant which is a surrogate for
vascularity. We perform various computations on these parametric maps to predict who
will achieve pCR and who will have residual disease at the time of surgery. Note: although
only a single slice is show here, we collect full 3D data sets at each time point.
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At | | | | [

In addition to the above progress, we have also participated in a large number of
intra-QIN projects which we now briefly summarize.
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§ IAPM MRI Subgroup: ADC DICOM Challenge

Drs. Dariya Malyarenko and Tom Chenevert from the University of Michigan have
distributed DICOM files of diffusion weighted MRI data of their ice water phantom from
three obtained on GE, Siemens, and Philips scanners. We were asked to generate ADC maps
and save the results in DICOM format. We have processed the data and sent back to Dr.
Malyarekno for processing.

§ Data Acquisition Working Group: T1-mapping Challenge

Our team has scanned the phantom that was sent to us as part of the challenge and
submitted the data to Dr. Octavia Bane. We used one of head and neck protocols with a 32-
channel head coil to perform the generic T: mapping sequence as all other participants.
Additionally, we performed our multi-flip angle T: mapping sequence as well. We are co-
authors on the abstract accepted to ISMRM.

§ Data Acquisition Working Group: Diffusion, Phase |11

We were one of the sites that scanned the fBIRN phantom for the second phase of the
diffusion gradient nonlinearity challenge led by Drs. Malyarenko and Chenevert from the
University of Michigan group. We scanned the phantom, deliveted the data to Dr.
Malyarkenko and co-authored manuscript submitted to and accepted by Tomography.

8§ DCE-MRI Data Challenge: Effects of AIF Quantification in Soft Tissue Sarcoma

This effort was led by Dr. Wei Huang at the Oregon Health Sciences University. to
investigate the effects of AIF variations on DCE-MRI prediction of soft tissue sarcoma
response to preoperative therapy. As did all the participating centers, we determined
individual AlIFs for each patient in the cohort from the femoral artery using the DCE-MRI
data with our site-specific method and submitted them to the OHSU for pharmacokinetic
modeling of the tumor voxel DCE-MRI time-course data using the standard Tofts model. This
effort will be presented as an abstract at the upcoming ISMRM meeting.

8 DCE-MRI Data Challenge: Effects of AIF Quantification on Shutter-Speed Analysis

This effort was led by Dr. Wei Huang at the Oregon Health Sciences University. The
goal was to determine the effects of AIF characterization on the ability to perform a robust
Shutter-Speed analysis at multiple sites. The study design was similar to that described in the
previous paragraph and this effort will also be presented as an abstract at the upcoming
ISMRM meeting.

§ Participation in National Clinical Trials
We have participated in two previous ECOG-ACRIN trials investigating advanced

quantitative MRI techniques in breast cancer, and are currently ramping up to participate in
another consortium trial that is comparing an abbreviated breast MRI exam to digital breast
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tomosynthesis in breast cancer screening of women with dense breasts. The primary objective
of this study is to compare the detection rates of invasive cancers between the imaging
technologies. This additional scan sequence was developed by Drs. Karczmar and Pineda at
The University of Chicago, and both are current investigators in our QIN multisite breast MRI
program.

PLANS FOR NEXT YEAR

The main goal during the next reporting period is to accrue a significant number of
patients at the two institutions. Now that the protocols are up and running at both institutions,
we are well-positioned to attack these Aims. In addition to accruing patients in support of the
ultimate goals of the application, we will also pursue a number of technical—but practical—
issues. In particular, as described in the initial application, we will assess the repeatability
and reproducibility of data acquired in the same healthy volunteers at both VU and UC. We
will also perform a cross-validation of independent site analyses. The goals here are to
determine if our acquisition and analysis toolbox can provide statistically identical answers
when used at different institutions.

We will continue to participate in inter-QIN collaborative projects and assist in the
writing and publication of these efforts.

At The University of Texas at Austin we will continue to expand our footprint into the
community setting by completing repeatability and reproducibility studies in health subjects
at multiple private practice settings.
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UO01CA151261: Quantitative MRI of prostate cancer as a biomarker and
guide for treatment

Brigham and Women’s Hospital
Fiona M. Fennessy M.D. Ph.D.

INTRODUCTION

Prostate cancer (PCa) continues to be the most common malignancy and third
leading cause of cancer-related mortality in American men. PCa is the most common cancer
in men in North America and Europe, with over 180,000 new cases to be diagnosed in 2016,
when 26,120 men will die from their disease (1). The natural history of PCa is remarkably
heterogeneous and still not completely understood. Autopsy and early observational studies
have shown that approximately one in three men > 50 years old has histologic evidence of
prostate cancer; a significant portion of these tumors are small and possibly clinically
insignificant, although others are extremely aggressive and lethal(2). As the number of men
with localized prostate cancer increases, the need for an accurate non-invasive imaging tool
increases. MR imaging has been shown to contribute significant incremental value to both
digital rectal exam and TRUS-guided biopsy in cancer detection and localization within the
prostate.

REPORT OF PROGRESS

The specific aims (SA’s) and summary of the important findings of our first
cycle are as follows:

8 SA 1: To optimize prostate MR Image analysis tools

We optimized DCE-MRI modeling tools through investigation of T1 mapping effects
(3), assessment of optimal Arterial Input Function (AIF) (4,5), and assessment of the effects
of the bolus arrival time (BAT) measurement(6). We demonstrated the sensitivity of
pharmacokinetic (PK) parameters to tissue T1 values, and found that using either a flip
angle corrected VFA method, or a VTR FSE method with judiciously chosen TR values,
increased the accuracy of T: values (3). We demonstrated that the method for automated
determination of AIF can lead to variability in DCE-MRI parameters (5). Therefore, PK
values obtained using different AIF methods may not be comparable. We found that
inaccuracies in BAT, another choice in DCE MRI analysis, leads to variability among DCE-
MRI PK model parameters, diminishes the quality of model fit, and produces fewer voxels
suitable for modeling (6).

We subsequently shared, through the TCIA, a subset of our prostate imaging data
with 9 QIN centers to evaluate variations in PK parameters in PCa due to differences in AIF
determination, and showed that AIF variations significantly affect PK parameter values for
prostate DCE-MRI data (7). We also contributed to a multi-center study investigating the
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role of platform-specific data encoding on the accuracy of quantitative analysis (8), and to a
study investigating the role of the analysis platform on the PK analysis of DCE-MRI (9).

Our first cycle also supported a repeatability study of treatment-naive men
undergoing ecoil prostate mpMRI, within a 2-week period. Knowledge of measurement test-
retest repeatability is critical in longitudinal studies to enable differentiation of true change
vs. measurement noise. Our results indicate that PI-RADS v2 suspicion scores are highly
repeatable, while tumor volume change in response to therapy may not be considered
significant unless it exceeded 70% on T2-WI, or 120% on DCE-MRI and ADC imaging. A
change in mean ADC may not be significant unless it exceeds 40%. We are in the final
stages of preparing this manuscript and, importantly, we plan to accompany the manuscript
with the dataset which will be publicly shared on TCIA.

8 SA 2: To clinically validate prostate MR quantitative analytic tools

We clinically validated our MR quantitative analytic tools from SA 1. Using
whole mount pathology (WMP) validation, we both automatic and model-based AIF
methods for DCE-MRI to be excellent in discriminating PCa from normal tissue, but the
same method should be used throughout a biomarker study(74). We validated PK maps used
for guidance in our MRgBX program(10), which demonstrated higher PCa detection rates,
when compared to TRUS biopsy samples. We also compared 2 approaches for correlating
pathology to mpMRI (11), and found that WMP correlation is superior to standard path
report for accurate localization of all index lesions, but is not required to distinguish
differences of quantitative MRI parameter values within tumor. We also determined if
tumor cell density and % GP within an index tumor on WMP correlated with ADC values
on mpMRI. We found tumor cell density and ADC to be significantly negatively correlated
(p=-0.61, p=0.005) (12).

8 SA 3: To determine the clinical use of the analysis tools as a biomarker guide for
targeted therapy and as a surrogate for disease recurrence in low-risk PCa patients

The last enrolled patients have completed their follow up MRIs within the last
6 months, and we are in the final stages of data analysis of this project, which explores the
feasibility of mpMR as an imaging biomarker to assess response of bulky localized prostate
cancer to combined ADT/EBRT.

8 SA 4: To determine the clinical use of the analysis tools in evaluating tumor response
to treatment with neoadjuvant second-generation androgen receptor inhibitor
enzalutamide in patients with high-risk PCa

This study is in the final stages of manuscript preparation, and demonstrated
no significant difference between mpMRI-based residual tumor burden (RTB) and RTB at
RP. In addition, there is a strong positive correlation between DCE-MRI and RTB (p=0.79,
p=0.03), and a strong negative correlation (p=-0.91, p=0.005) between ADC and RTB,
indicating a very promising role for mpMRI as a biomarker for treatment of localized PCa
with neoadjuvant therapy.
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In summary: 1) We optimized/validated our prostate mpMRI protocol
(3,4,6,13,5), 2) we established a MRI-pathology validation workflow (4,10,11,12): 3), we
established open source tools within 3D Slicer for annotation/quantitative analysis of
mpMRI(14): 4), we determined the clinical use of the analysis tools as a biomarker guide for
targeted therapy and as a surrogate for disease recurrence in high and low-risk PCa
populations, and in the final stages of manuscript preparation for these 2 trials; 5) we
contributed to multi-site QIN manuscripts(5,7-9,15-18). Finally, the data we shared in
Cycle 1 was invaluable to several QIN community projects/challenges (3,7).
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INTRODUCTION

Patients with glioblastoma (GBM), a deadly form of brain cancer, have extremely
poor prognosis and few treatment options [1-3]. Assessment of response to therapies is
critically needed to aid in clinical decision-making [2,4,5]. The QIN team from MGH
continues to make good progress in developing and validating novel biomarkers for
measuring the response to therapy in GBM. Our techniques for the analysis of diffusion
weighted imaging, dynamic contrast enhanced MRI (DCE-MRI) and dynamic susceptibility
contrast MRI (DSC-MRI) are being applied in a number of prospective and retrospective
clinical trials [6]. The software tools used for these analyses are publicly available as open-
source packages, both standalone as modules for 3D Slicer [7]. These techniques have been
developed using phantom studies, simulations, retrospective analysis, and prospective
analysis in patients undergoing treatment with anti-angiogenic therapies. Having worked
with other teams in the QIN as well as other groups in the community in establishing
common, standardized approaches to image analysis and acquisition for patients with GBM
[8,9,10,11], we are now implementing these protocols in clinical trials.

Advanced MRI methods may improve our ability to provide an accurate prognosis
and potentially guide treatment choices for glioblastoma patients [2,4,5]. We continue to be
fortunate to work closely with our clinical colleagues who provide us with great access to
high quality imaging data acquired both as part of clinical trials and as part of routine
clinical care. Our “double baseline” studies have established the variability in the DCE-
MRI, DSC-MRI and diffusion MRI based parameters (Ktrans, rCBV, rCBF, MTT, ADC,
FA) in patients scanned 2-5 days apart. These studies also establish best practices for image
analysis to achieve maximal robustness [8,11]. Our novel image acquisition methods
include a double-echo DSC and DCE sequences and a multi-shell, multi-directional
diffusion sequence that help us better elucidate the tumor microenvironment. In addition to
progress in the image acquisition arena, we have also made significant strides in image
analysis and informatics. We have also developed a number of open-source image analysis
tools for tumor segmentation and registration, multimodal atlases, personalized tumor
growth models and hardware and software approaches to improve image resolution. We
continue to develop open-source software tools for the analysis of DCE data, especially T1
mapping, and the “double-echo” sequence that has been shown to be able to quantify R2*
effects. Some of these have already been disseminated as Slicer modules, in conjunction
with the QIICR ITCR project.

The team from MGH continues to actively participate in the Quantitative Imaging
Network (QIN) and has made significant contributions as part of the various working group.
We have been very actively engaged in the “challenges” being conducted as part of the QIN,
both as organizers and participants. We have also developed a number of close and fruitful
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collaborations with other members of the QIN, resulting in joint publications, planned multi-
institutional studies and successful grant applications.

In addition to our primary work in the area of GBM, the MGH team has been
participating actively in the PET/CT working groups and has developed radiomics pipelines
and statistical analysis  tools. These are  also publicly  available
[https:/ / github.com/QTIM-Lab].

DISCUSSION OF PROGRESS
8§ Quantitative imaging pipeline for GBM

We followed up on our previous work creating a within-patient and longitudinal
registration pipeline. In particular, we developed a pipeline to register and upsample T1, T2,
DTI, DSC, MPRAGE, FLAIR, and DCE maps into 1x1x1mm isotropic space. This involved
ordering images in a chain of sequential registrations, such that only visually-similar images
are registered in any given step. This allowed us to coregister and upsample every modality
in every patient visit without error. Our registration scheme is provided below. This
pipeline is available as a Docker container and is being shared with our collaborators at Tata
Memorial Hospital in India.

T1POST ROI

T1POST

ADC (DTI) |

MEMPRAGE BO (DTI) |

Figure 1: Proposed registration order in our registration and
resampling pipeline. Volumes are only registered to their most
similar neighbor.

8 Tumor growth modeling and personalization of radiotherapy:
We continue to develop our tumor growth models and their use in personalization of

radiotherapy. Using a radiation therapy plan based on the expected growth patterns of
tumors can results in improved tumor control and better sparing of normal tissues compared
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to a uniform expansion of the visible tumor. As shown in two recent publications [13,14],
this is a promising approach and had the potential for use in adaptive radiotherapy.

Clinical
segmentations

Clinical dose

Personalized dose

Figure 2: Clinical segmentation is used to define the clinical
target volume (CTV, white dashed line) as a 2 cm expansion of
the segmentation. In clinical settings, 60 Gy is prescribed to the
CTV. We propose to personalize the prescription dose (Bottom)
to account for tumor infiltration and segmentation uncertainty

8 Tumor segmentation and Normative atlases

We have created tools for automatic tumor segmentation as well as normative atlases
that are useful in the semi-automated segmentation process. In diagnosing brain tumors,
gadolinium contrast agent is usually injected to patients to highlight enhancing tumor in T1-
weighted magnetic resonance imaging (MRI). Gadolinium, or other contrast agents, help
localize the tumors and are used in surgery planning, treatment design and prognosis
prediction. Automatic segmentation tools, such as those based on “subtraction images”
(comparing post contrast with pre-contrast) can tools incorrectly identify normal enhancing
areas (such as large vessels) are being tumor tissue. In order to quantify”’normal”
enhancement to correctly distinguish tumors, we took the approach of constructing
normative atlases, from patient images as normal patients are typically not given contrast.
These normative enhancement maps are publicly available
[https:/ /www.nitrc.org/projects/stamp_atlases Jand have been used by a number of
groups (including ours) in conjunction with automatic segmentation algorithms to remove
false positive and clean up segmentations.
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Figure 3: The STAMP T1d atlas (top row) and its maximum
intensity projection (MIP) rendering quantifying locations and
extent of enhancement of a (virtual) average normal.

8 QIN Challenges and collaborative projects

The MGH group participated in several QIN challenges and project last year,
including DSC challenge, ADC challenge, T1 mapping challenge and the breast response
challenge.

QIN DSC Challenge: Though DSC-MRI perfusion is of well-known benefit for the
evaluation of brain tumors, clinical translation has been hampered by a lack of confidence in
the consistency of the derived relative cerebral blood volume (RCBV) and cerebral blood
flow (CBF) values across sites and platforms. This multi-site and multi-platform study, for
which the same patient data set was analyzed, demonstrated substantial consistency in
RCBF across software sites and platforms and the ability of each to distinguish low-grade
from high-grade tumor. In addition, a single RCBV threshold was identified for which all
platforms maintained good accuracy. This study was summarized in an abstract and
accepted as an oral presentation at ISMRM. A full manuscript is under preparation. The
MGH software package, used to produce the results of the challenge is available as an open-
source module for 3D Slicer [7]. The results of our module showed excellent concordance
with other commercial packages and performed similarly in distinguishing high grade
tumors from low grades.

QIN ADC Challenge: Reproducibility of diffusion metrics is essential given the
increasing role quantitative diffusion weighted imaging plays in diagnosis and treatment
monitoring. Here we examined the variability in apparent diffusion coefficient (ADC)
measures resulting from different post-processing software implementations utilized by
researchers across the NCI Quantitative Imaging Network. Agreement between the majority
of implementations was good; typical biases for in vivo ADC measures of 2-3%, and lower
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biases in phantom scans. Higher deviations (above 5%) detected among individual
implementations and scanner-generated parametric maps highlighted inadequacies in meta-
data and post-processing parameters that need to be addressed in multi-site study settings.
This study was summarized in an abstract and submitted to the ISMRM. A full manuscript is
under preparation. Again, our open source implementation provided excellent results and
showed good concordance with other software packages.

QIN T1 Mapping Challenge: This multicenter study examined variability in T1
quantification by testing common inversion-recovery spin echo and variable flip angle
(VFA) protocols, as well as T1 mapping methods used by participating sites, using a
phantom with known T1 values. We found field strength dependence of the accuracy, and
platform dependence of the repeatability of T1 measurements with the common VFA
protocol. Accuracy for site-specific protocols was influenced by site, while repeatability, by
type of protocol. Our findings suggest modified IR methods and VFA protocols with
multiple flip angles and B1 correction as good methods for repeatable T1 measurement.

Lung volume interval challenge: As members of in the PET/CT working group,
MGH was an active participant for the lung volume interval challenge and developed a data
visualization platform to analyze the effectiveness of five institutions’ automatic lung nodule
segmentation algorithms.

Our visualization platform
[http://cbibop.cloudapp.net:3838/Interval _Lung_Challenge_ShinyApp/ ] has been used
effectively during the group meetings for the statistical data analysis. Examples of the
analyses techniques supported by our system are found below. As seen in Figure 4, there
were nodules with substantial disagreement between segmentation algorithms while in other
cases, there was good agreement. As seen in Figure 5, there was a range of Dice agreements
reflecting the range of agreement. The AUCs using percent change as a measure of
malignancies were somewhat consistent between the groups. Our visualization also
demonstrated the difficulty of recognizing segmentation failures without a human observer.
A manuscript is forthcoming on the results derived from this visualization platform.
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Figure 4: Low agreement (left) and high agreement (right)
segmentations of lung nodules from the Lung Interval Volume
Challenge.
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Figure 5: a.) Pairwise Dice coefficients b.) AUC of percent tumor volume
change as a measure of malignancy.

Lung feature challenge: Working with the data from the lung feature challenge, we
analyzed the results of 800+ unique features generated from lung nodule segmentations by
seven different institutions’ feature extraction software. The group developed a lexicon of
radiomics feature and categorized the features are being related to shape, size, texture,
margins and local and global shape descriptors. We found that many texture features were
highly and unexpectedly correlated with segmentation volume, either because of errors in
coding implementation or because of errors in methodology. Additionally, we found that the
choice to include highly-textured border regions between tumor tissue and normal tissue can
significantly change the values of certain texture features. As such, any texture features that
purport to measure texture across an entire tumor area may only reflect this highly-textured
area on the tumor border. The development of ground-truth “phantoms” for certain texture
features will help achieve standardization across the field of texture features. We used a
graphical model approach to visualize the correlation between features from different sites
as well as features from different classes, as seen in Figure 6.
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This work resulted in a recent publication in the Tomography QIN special issue [15]

Figure 6: Graphical model showing correlation between features by feature
type and site.

§ DCE repeatability study

We used two separate double-baseline studies of patients with glioblastoma to
evaluate the repeatability of pharmacokinetic variables (kirans, V€) derived from DCE-MRI
images. Patients (n = 45) were scanned twice without any intervening treatment between 3-4
days apart, and then pharmacokinetic parameter maps were generated using in-house
software. We found that using individually-calibrated AIFs and variable flip-angle T1
mapping was less repeatable than using population AlFs and static T1 values, despite the
theoretical accuracy benefits these patient-specific methods could achieve. Furthermore, we
found that values obtained from methods using individual AlFs did not correlate well with
methods using population-based AlFs, and that individual AIF methods generated higher
median kians Values than population-AlF methods. This suggests that one’s chosen method
for deriving pharmacokinetic parameters has a significant effect on those parameters’
accuracy.

We have also found that many publically-available software packages for DCE-MRI
parameter mapping do not perform well on the publically available QIBA digital reference
object (a software phantom). We have identified several ways in which flawed
implementations of parameter-mapping software can lead to systematically biased values for
keans and Ve. These biases are compounded in noisy, real-world data, likely leading to
inaccurate results in practical and clinical settings. We have developed a Python package
and a C++ module in the open-source program 3D Slicer that addresses these
implementation errors. It performs better than existing proprietary software packages on
both noisy and non-noisy ground truth data. We also developed open source software that
produces perfect results on the QIBA digital reference object (a software phantom), and the
best results in a multi-institutional study (to be published shortly). A manuscript is
forthcoming detailing the specific changes to our software’s parameter-optimization
methods.
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8 Applications of imaging tools and pipeline to clinical trials and retrospective data
analysis.

Finally, our suite of tools was applied to a phase Il study of Tivozanib in recurrent
glioblastoma. In this study, we a recurrent glioblastoma population (N=10, median age 62
(51-72)) receiving tivozanib who underwent baseline and follow-up MRIs (once every 4-
week cycle). We reported that tivozanib was well tolerated but most patients progressed
rapidly, and the majority of patients had little changes in tumor enhancement and perfusion
imaging suggesting that his anti-angiogenic agent had limited impact on brain tumor
vasculature. This paper is in press in the Journal of Neuro-Oncology [6].

PLANS FOR NEXT YEAR

We are in the final year of our current participation in the QIN. For the next year, we
will continue to apply our tools to ongoing clinical studies of GBMs. We will disseminate
our research through publication and presentations and making available our tools as open-
source packages to the community. We hope to continue to be part of the QIN in the future.
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INTRODUCTION

When new cancer treatments are being tested, longitudinal images of patients’ tumors
are used to determine whether the treatment is working. The current uni-dimensional RECIST
method and standard cut-off values for response assessment are outdated. The goal of our
research is to develop new response parameters and assessment criteria for cancer treatment
based on CT imaging of changes in tumor volume and density (e.g., necrosis fraction). This
study will seek a proof of concept using two types of tumors (HCC and sarcoma) in which
RECIST is known to correlate poorly with tumor response to treatment and clinical outcome.
HCC is one of the most common malignancies worldwide, and sarcomas, though rare, carry
the same molecular alterations as many other heterogeneous cancers; they are the classic
cancer studied in drug discovery.

Our specific aims are therefore,

Aim la. To establish the reproducibility of volumetric and unidimensional measurements
obtained with our advanced segmentation algorithms, using images from the SARC
011 multicenter clinical trial.

Aim 1b. To continue the development of the different algorithms over the time of the grant to
reduce the fraction of lesion measurements that must be corrected by a radiologist.

Aim 2. To validate new imaging response parameters and criteria based on tumor volume,
necrosis volume, and their combination using data from SARC 011 (sarcoma) and
CALGB 80802 (HCC) trials.

Aim 3. To explore the correlation between the new imaging biomarker with biochemical
biomarkers and the added value of the combination of both in the prediction of
patient survival.

The proposed research will first develop criteria based on quantitative imaging
biomarkers (tumor volume and necrosis fraction) and then compare the predictive value of
these criteria to the current clinical standard. Gaining evidence that volume and necrosis are
early biomarkers of response or progression would aid clinical trials in the development of
cancer drugs/treatments and help match patients to the treatments that work best for them. The
new criteria will be widely applicable to clinical practice because CT is the most common
imaging modality for cancer, the new quantification algorithms run on popular imaging
platforms, and this method will enhance radiologist productivity.
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By the time we complete this project, we will deliver the followings:

e new response metrics and criteria, based on CT imaging of changes in tumor volume
and necrosis fraction, for better assessing sarcoma and HCC treatments,

e robust computer algorithms for segmentation of solid tumors including tumors in the
lungs, liver and lymph nodes,

e insight into the variability that exists in measuring these new response parameters
using the computer-aided methods, and

e aCT image dataset containing radiologists’ mark-up of tumors made from a subset of
the studying data.

Success of our study will help resolve the urgent, unmet need for early and more
accurate response assessment methods in the study of targeted therapies in drug discovery
by rapidly translating the new imaging biomarkers into clinical trials.

DISCUSSION OF PROGRESS

There has been no modification to the Specific Aims stated in the original
application. For this reporting period, from October 2015 to today, we continued moving
forward our project smoothly. The following subsections will briefly address our
accomplishments in the previous year.

§ Segmentation algorithms

We completed the development and validation of the segmentation algorithm for
lymph nodes, the last algorithm proposed to be developed and optimized in our grant. We are
now writing up a manuscript to report this technique. To date, we have successfully developed
all of the three proposed algorithms; one for lung lesions, one for liver metastases, and one
for lymph node metastases.

Clinical correlative studies: We proposed two clinical trial studies to validate our
new volumetric and density-based response assessment method.

Clinical Trial Study #1: SARC 011, a Phase Il study of patients with
recurrent or refractory Ewing’s sarcoma treated with IGF1R antibody (R1507)

This study is completed and now published in JCO (1).

Clinical Trial Study #2: CLAGB 80802, a Phase 111 randomized study of
sorafenib plus doxorubicin versus sorafenib in patients with advanced HCC

To date, we completed the collection of HCC CLAGB 80802 patient data and

tumor measurements as well. In total, we measured 207 patients (681 scan time points).
We are in the process of final data analysis.
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8 Image-based response assessment platform

We developed and published a prototype imaging platform for efficient assessment of
tumor response to therapies using uni-, bi-dimensional and volumetric techniques (2) (Figure
1). We integrated our segmentation algorithms developed for lung, liver and lymph node
lesions into this platform to validate the volumetric response assessment technique in clinical
trials and clinical practice. Our current imaging platform offers standard functions to view,
manipulate and process CT and MR images. We have used this platform for measuring tumor
volumes in various clinical studies including SARC 011 and CALGB 80802.

Lymph node

Home-grown imaging platform with integrated lesion segmentation algorithms

Figure 1: Home-grown imaging platform for efficient assessment of tumor response
to therapies

Collaborations within other teams at QIN

Dr. Lawrence Schwartz, the contact Pl of this grant, served as the Chair for QIN
Executive Committee (EC) and organized monthly t-cons for the EC since May 2016.

Challenges: After successful collaboration with the other QIN teams on the Lung
Segmentation Challenge (3), we continue actively participating in all CT- and PET-related
challenge projects within the Image Analysis & Performance Metrics Working Group
(IAPMWG) — PET/CT subgroup of QIN.
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PET tumor segmentation challenge: We participated in the PET Tumor Segmentation
Challenge and completed the three phases’ experiments, DRO report (measuring max SUV,
SUV std, etc), and H&N lesion segmentation, using our home-developed PET lesion
segmentation algorithm. This work is now accepted for publication in Medical Physics (4).

NIST Lung Nodule Change Challenge: We participated in the Lung Nodule Change
Challenge to study variations in measuring tumor and tumor change over time. There are six
QIN team participants (Moffitt/USF, MGH, Columbia, Stanford, UCLA, and U Michigan). We
completed nodule segmentations for 100 NIST patients (50 cancer subjects and 50 non-cancer
subjects) on diagnostic and 1-year follow up CT scans and provided both computer-generated
and radiologist’s edited tumor volumes. This project is currently under intensive data reviewing
and analysis. We have participated in weekly or bi-weekly t-con discussions.

CT Feature Comparison Study: This project was among eight QIN sites (Columbia, Stanford,
MGH, Moffit/USF, UCLA, U of lowa, Princess Margaret Cancer Centre, U Michigan). Using the Moist
Run Lung Segmentation Challenge project’s results (i.e., 52 segmented lung lesions x 3 algorithms x 3
repeats/algorithm), we computed the quantitative image features implemented at each site from each of
these segmentations to explore features” definitions and repeatability between repeated runs of each
algorithm, and reproducibility across segmentation algorithms. The comparison was performed through
the C-BIBOP, the informatics platform being developed by the joint U24 grant from the four QIN sites,
MGH, Columbia, Stanford andMoffitt/USF. Our preliminary result is now published (5).

§ Joint grants

After receiving a joint U24 grant entitled “Informatics Tools for Optimized Imaging
Biomarkers for Cancer Research & Discovery” by the four QIN sites, as a result of the
continued collaboration on the radiomic feature development and comparison study
mentioned above, the 8 QIN sites jointly submitted an R24 grant application entitled
“Community based terminology standards for quantitative imaging (radiomics) metadata to
advance precision medicine” in middle November 2016. The purpose of this R24 grant is to
develop terminology standards for radiomic features to reduce the chaos, enable identification
of best features for particular uses and ultimately improve the repeatability and reliability of
these features and ensure better predictive models that use them. Our portal will provide access
to datasets of images, features, terminology and tools for comparison and visualization of
feature. We will also encourage community-based participation in this effort by providing a
means for participants to suggest new features, relationships to known semantics and clinical
terminology.

In the past year, in addition to participating in the U24 regular bi-week t-cons and

worked together with the other three sites to build this informatics system, we also participated
in the regular t-cons to develop and submit the new R24 grant.
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PLANS FOR NEXT YEAR

During the 1% No-Cost Extension year (next year),

1. We plan to publish our lymph node segmentation algorithm. The manuscript is under
development.

2. We will integrate the necrosis (in HCC) segmentation algorithm into our Weasis-based
response assessment imaging platform.

3. We will complete the analysis of CALGB 80802 HCC data and publish this study.

4. We will submit 100 de-identified cases (CT images) collected from the CALGB 80802
HCC clinical study to the NCI public database.

5. We will continue actively participating in the existing and new QIN challenge
initiatives to which our expertise, algorithms and datasets can contribute.
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INTRODUCTION

The underlying hypothesis of this project is that combining multiple quantitative
image-derived parameters, whether different quantities from the same modality, multiple
modalities or multiple tracers, can provide a more robust prediction and assessment of
treatment response than a single imaging metric. Substantial effort has been focused on
developing single-modality metrics and assessing and reducing their variability. Modalities
investigated include DWI and ADC MRI, FDG and FLT PET/CT, In-111 octreotide and Y-
90 and SPECT/CT. In MRI we have studied the stability and reproducibility of DWI and ADC
mapping. In PET/CT we have investigated the variability of SUVmax and SUVpeak and
proposed an index of defect heterogeneity. In SPECT/CT we have studied the stability of
SPECT systems and developed protocols for calibrating quantitative SPECT imaging that
reduce instrumentation-related sources of variability. We have investigated the variability of
In-111 octreotide uptake in normal organs and investigated the reliability of simplified
methods for determining normal organ VOIs based on simplified ROIs. We have validated
Quantitative Y-90 bremsstrahlung SPECT reconstruction methods by phantom studies and in
vivo comparison to Y-90 PET. Integrating multiparametric and multimodality images
requires registration of images obtained with a variety of technical parameters including field-
of-view, matrix size, and scan planes. These differences result in a challenging registration
problem. We have developed a registration method based on a 3D wavelet transformation and
nonlinear affine transformation that performs 3D resampling and interpolations of the
reference and target radiological images without loss of information. The registration method
was validated using synthetic and multiparametric MRI and PET/CT images applied to breast
and prostate cancer data.

PROGRESS OVER THE PREVIOUS YEAR
8 Specific Aim 1: Optimize and characterize individual methods

We have initial results on our newly developed Radiomic-Informatic modeling of
radiological imaging. Multiparametric radiological imaging is a very effective technique for
diagnosis of breast cancer in patients. Conventionally, radiologists produce diagnosis using a
set of carefully designed features defined by BI-RADS. However, the process of manually
engineering features is difficult, time consuming, requires expert knowledge and leads to a
limited set of features. Moreover, “hidden” features such as complex interaction between
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different MRI images are not visually perceivable and hence are not extracted by radiological
experts. In order to automatically extract useful features or representations directly from the
raw multiparametric radiological imaging datasets, we developed an advanced unsupervised
machine learning algorithm called the multidimensional imaging radiomics-geodesics
(MIRaGe) and shown in Figure 1.

Intrindic dimendion 2

Intrinsic dimension 1
MiRaGe

(B) contribution Scattergram

(A) Multiparametric MRI dataset in R" (C) Radiomics-Geodesics feature matrix

Figure 1: Demonstration of the MIRaGe algorithm in a breast cancer patient.
A. Multiparametric radiological parameters from the patient. B. The resulting
Contribution scattergram and informatics structure in feature space from the
MIRaGe algorithm. C. The multidimensional histogram from the radiomic-
geodesic distance metrics between each radiological parameter. The geodesic
distances are represented using heights of different bars as well as color-coded
from blue (low) to red (high).

We investigated seventy-six breast tumor patients (mean age = 52, age range = 24-80)
who underwent 3T MRI breast imaging were used to test the ability of the MIRaGe algorithm
to extract feature representations relevant to the task of classification of breast tumors as
benign or malignant. The MRI parameters used were T1-weighted imaging, T2-weighted
imaging, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted
imaging (DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGF)
from multiparametric breast MRI datasets of all the patients by learning their intrinsic
manifold representations. The radiomics-geodesics features (RGF) represented as RGF(la,Ib)
characterize the complex interactions between all possible image pairs (la,Ib) in the
multiparametric MRI. The feature selection and classification model (tlso-SVM) was
implemented using a combination of Student’s ttest, Isometric feature mapping (Isomap) and

76



support vector machine (SVM) algorithms. The tIso-SVM model first filtered the set of top N
significant features using Student’s ttest and transformed them into a two-dimensional feature
space using the Isomap algorithm and then trained the support vector machine classifier on
the two-dimensional feature space to classify patients as benign or malignant. The tlso-SVM
model outputs the most informative RGFs as well as the trained model for the given task,
validated using k-fold and leave one out cross validation. We found that new graph theory
metrics resulted in the average path length (mean RGF) and the graph diameter (maximum
RGF) for the contribution scattergrams were obtained at 24.9+7.7 and 72.6+20.6 for benign
patients and 25.3£5.5 and 69+15.1 for malignant patients in image distance units respectively.
The tlso-SVM model was built using all the RGFs extracted by the MIRaGe algorithm. The
tIso-SVM model successfully classified malignant lesions from benign lesions with a
sensitivity of 93% and a specificity of 91%. The tlso-SVM model identified a total of 50 RGFs
as the most informative features for classification of malignant from benign breast lesions.
The top 50 RGFs primarily involved the contribution scattergram edges or paths between
different dynamic contrast enhanced images. Therefore, we developed the novel MIRaGe
feature extraction algorithm for automatic feature extraction from multiparametric
radiological imaging and demonstrated the power of the MIRaGe algorithm at automatically
discovering useful feature representations directly from the raw multiparametric MRI data. In
conclusion, the MIRaGe informatics model provides a powerful tool with applicability in
cancer diagnosis and a possibility of extension to other kinds of pathologies.

We are performing a comprehensive repeatability test of FDG PET/MR and PET/CT. We
have accrued 8 patients to date. The patient type and data tables are shown on the next page.
We have whole tumor data, but not voxel by voxel data, or subtumor region analyses. Also
are working on PEAK analyses. The test and re test are highly correlated for both PET and
MRI. The ADC means are reasonably reproducible. We have not yet reached our target
accrual to perform Bland Altmann analyses or tests of significance. We note one case in which
the ADC values were not measurable due to image artifacts. These assessments continue.

We have developed and evaluated methods for comparing quantitative methods using
patient that do not require a gold standard. A paper on these methods and validation with
simulated data was published in Physics in Medicine and Biology (publication 6, below).

As described in previous years, we have investigated simplified methods for defining
VOlIs to estimate activity concentration in normal organs. These methods are important in the
context of quantitative response metrics as normal organ activities play a role as threshold or
image QC metrics for metrics such as PERCIST 1.0. A paper on this was just accepted for
publication in Medical Physics.

We have developed resampling methods for estimating the precisions of quantities
estimated from images such as SUVmean, SUVmax, etc. A series of three papers on this work
have been written. One was submitted to IEEE Transactions on Medical Imaging. Revisions
and resubmission were required, and these are in process. Drafts of two other manuscripts are
written and undergoing coauthor review.
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PETCT PETMR

SUBJECT| SULmax-V1 | SULmax-V2| SULmax-V1| SULmax-V2| ADCmean-V1| ADCmean-V2 HISTOLOGY

1 10.02 9.88 12.59 11.72 - - rectal adenocarcinoma

2 1.97 1.4 231 241 1382.1 816.8 rectal carcinoma

3 16.24 2236 20.78 19.77 1227.2 12217 | Sauamous cell carcinoma of the
cervix

4 9.63 8.21 8.76 7.83 1160.2 1002.4 endometrioid adenocarcinoma

5 13.24 123 1436 13.42 1184.1 11466 | Sauamous cell carcinoma of the
cervix

6 1367 15.95 14.18 14.98 943.32 944.36 squamous cell carcinoma of

rectovaginal septum

7 14.73 14.9 15.11 14.17 890,57 gp5g | Sauamous cell carcinoma of the
cervix

8 11.99 14.63 15.48 16.19 1063.2 1082.2 carcinoma of the cervix

Table 1: Results from an initial set of 8 patients.

8 Specific Aim 2: Develop methods to optimally combine methods

A key premise of this grant is that the ability to accurately characterize different tissue
types and response to therapy in cancer requires information from multiple radiological
modalities. For example, multiparametric and multimodality radiological imaging methods,
such as, magnetic resonance imaging (MRI), computed tomography (CT), and positron
emission tomography (PET), provide multiple types of tissue contrast and anatomical
information for tissue and response characterization. We have developed and applied multi-
parameter MRI to breast cancer used a novel machine-learning model based nonlinear
dimension reduction methods to integrate multiparametric MRI data (T:WI, T>WI, ADC, pre-
and post-dynamic contrast enhanced) for improved tissue characterization of breast tissue with
demonstrated excellent diagnostic ability. Moreover, we have moved these type of tissue
characterization to include our advanced Radiomic discussed above. Discussion: A patent for
this method has been granted.US Patent 9,256,966; Inventors: Jacobs MA, Akhbardeh A.
Multiparametric Non-linear dimension reduction methods for segmentation and classification
of radiological images.

In addition, we investigated the integration of Mammography, ultrasound(US) and
MRI modalities used for breast cancer detection. The BIRADS lexicon provides a set of
descriptors that facilitates consistent structure for assessment and reporting of breast lesions.
To predict recurrence, oncologists use OncotypeDX, which stratifies patients into three risk
groups: low, medium, and high]. We hypothesize that there is a relationship between imaging
features defined by BIRADS and the genetic profile of cancers. To test this, we developed a
machine-learning non-linear dimension reduction(NLDR) algorithm with embedded
informatics. Using these techniques, we compare BIRADS descriptors to the OncotypeDX for
recurrence prediction.
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Methods: Patients(n=48) who underwent diagnostic breast imaging, were ER+, with
available OncotypeDX were tested with the algorithm. The clinical and BIRADS parameters
for mammography included breast density, asymmetry, microcalcifications(morphology,
distribution), mass(size, shape, margins, density) and architectural distortion. Ultrasound
parameters included mass presence, size, echogenicity, shape, margins, vascularity, and
orientation. These parameters were assigned numerical values to reflect relative suspicion of
each descriptor. RESULTS: There were 24 patients with low(0-17), 13 with intermediate(18-
31), and seven with high risk(>31) scores from OncotypeDX. The top predictors were
mammographic beast density, and mass margins and US directional size. These predictors
resulted in a significant AUC(0.86+0.07). The mammographic tumor sizes in high risk groups
were larger(1.9+0.58cm) compared to the low-risk group(1.38+£0.58cm) with similar results
for US measurements in the radial(2.7x1.2cm vs.1.2+0.8cm), AP (1.8£0.76cm vs.
0.98+£0.61cm) and antiradial (2.1+1.3cm vs.1.0£0.58cm) dimensions. We created a
visualization informatics heat map detailing the contribution of each parameter. The resulting
risk map is shown in Figure 2.
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Figure 2: The NLDR heat map demonstrates the stratification of the mammographic
and ultrasound parameters correlated with the OncotypeDX score for advanced
clinical decision support system for precision medicine.

8 Specific Aim 3. Apply methods to data from clinical trials
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As described in previous reports, we have been studying repeatability of
quantitative 18F-3'-fluoro-3'-deoxy-L-thymidine (18F-FLT) positron emission tomography
(PET). A paper on this has been recently accepted in has potential as a non-invasive tumor
biomarker for the objective assessment of response to treatment. To guide interpretation of
these quantitative data, we evaluated the repeatability of 18F-FLT PET as part of a multi-
center trial involving patients with high grade glioma. A paper on this has been accepted for
publication in the Journal of Nuclear Medicine (see item 4). 18F-FLT PET was performed on
10 patients with recurrent high grade glioma at 5 different institutions within the Adult Brain
Tumor Consortium trial ABTC1101. Data were acquired according to a double baseline
protocol in which PET was repeated within 2 days of each other with no intervening treatment.
On each of the 2 imaging days, dedicated brain PET was performed at 2 time-points, 1 and 3
hours after 18F-FLT administration. Tumor standardized uptake values (SUVs) and related
parameters were measured at a central lab using various volumes-of-interest: isocontour at
30% of the maximum pixel (SUVmean 30%); gradient-based segmentation
(SUVmean_gradient); the maximum pixel (SUVmax); and a 1 mL sphere at the region of
highest uptake (SUVpeak). Repeatability coefficients (RCs) were calculated from the relative
differences between corresponding SUV measurements obtained on the 2 days. RCs for tumor
SUVs were: 22.5 % (SUVmean_30%), 23.8 % (SUVmean_gradient), 23.2 % (SUVmax) and
18.5 % (SUVpeak) at 1 hour post injection. Corresponding data at 3 hours were: 22.4, 25.0,
27.3 and 23.6 %. Normalizing the tumor SUV data with reference to a background region
improved repeatability and the most stable parameter was the tumor-to-background (T-to-B)
ratio derived using SUVpeak (RC 16.5 %). SUV quantification of 18F-FLT uptake in glioma
has an RC in the range of 18-24 % when imaging began 1 hour after 18F-FLT administration.
The volume-of-interest methodology had a small but not negligible influence on repeatability,
with the best performance obtained using SUVpeak. Although changes in 18F-FLT SUV
following treatment cannot be directly interpreted as a change in tumor proliferation, we have
established ranges beyond which SUV differences are likely due to legitimate biological
effects.

We have applied the no-gold-standard methods described in publication 6 to patient data
in the context of comparing methods for evaluating segmentation methods for estimating
metabolic tumor volume in FDG PET/CT. A paper on this was submitted to the Journal of
Medical Imaging. The initial reviews were positive, and we have addressed the concerns and
resubmitted the paper.

We have developed methods for automatic segmentation of bone lesions that uses

clustering methods and joint information from bone SPECT and CT scans. An abstract on this
was submitted to the SNMMI annual meeting.
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COLLABORATIONS WITHIN THE NETWORK

Two publications (8 and 9) have resulted from previous QIN collaborations.

PLANS FOR NEXT YEAR

This project is halfway through a no-cost extension. A renewal has been submitted
that builds on the methods developed her and applies them to the problem of monitoring
metastasis of prostate cancer to bones. We will continue to adapt methods to this problem and
are planning a resubmission for March.

We will complete the PET-MRI clinical repeatability at Washington University. We will
use these data to evaluate the repeatability of various single and multi-modality metrics for
tumor response.

We have two drafts of papers on the use of bootstrap resampling methods to evaluate the
precision and accuracy of VOI definition methods. We plan to submit this paper in the next
two months.

We will continue studies on quantitative bone imaging in the context of response to
therapy of metastatic prostate cancer.

PUBLICATIONS AND PRESENTATIONS FROM QIN
INVOLVEMENT

1. Parekh V, Jacobs MA. Radiomics: a new application from established techniques.
Expert Review of Precision Medicine and Drug Development. 2016;1(2):207-226

2. Parekh V, Jacobs MA. Multidimensional Imaging Radiomics-Geodesics: A Novel
Manifold Learning Based Automatic Feature Extraction Method for Diagnostic
Prediction in Multiparametric Imaging. Med Phys. 2016 Jun;43(6):3373-3374

3. Ahlawat S, Baig A, Blakeley JO, Jacobs MA, Fayad LM. Multiparametric whole-body
anatomic, functional, and metabolic imaging characteristics of peripheral lesions in
patients with schwannomatosis. J Magn Reson Imaging. 2016 Oct;44(4):794-803

4. Blakeley JO, Xiaobu Ye, Duda DG., Halpin C, Bergner AL., Muzikansky A, Merker
VL., Gerstner ER. Fayad LM; Ahlawat, S; Jacobs MA, Jain RK, Zalewski C, Dombi
E, Widemann B, Plotkin S. Efficacy and biomarker study of bevacizumab for hearing
loss due to neurofibromatosis type 2 associated vestibular schwannomas. Journal of
Clinical Oncology. 2016;34(14):1669-75.

5. Lodge MA, Holdhoff M, Leal JP, Bag AK, Nabors LB, Mintz A, Lesser GJ, Mankoff
DA, Desai AS, Mountz JM, Lieberman FS. Repeatability of 18F-FLT PET in a Multi-
Center Study of Patients with High Grade Glioma. Journal of Nuclear Medicine,
accepted 2016 Sep 29, J Nucl Med.

6. Jha AK, Caffo B, Frey EC. A no-gold-standard technique for objective assessment of
quantitative nuclear-medicine imaging methods. Physics in medicine and biology.
2016 Mar 15;61(7):2780.

7. Malyarenko DI, Newitt D, J Wilmes L, Tudorica A, Helmer KG, Arlinghaus
LR,Jacobs MA, Jajamovich G, Taouli B, Yankeelov TE, Huang W, Chenevert TL.
Demonstration of nonlinearity bias in the measurement of the apparent diffusion
coefficient in multicenter trials. Magn Reson Med. 2016 Mar;75(3):1312-23
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8. Malyarenko DI, Wilmes L, Arlinghaus LR Jacobs MA, Huang W, Helmer KG, Taouli
B, Yankeelov TE, Newitt D, Chenevert TL. QIN DAWG Validation of Gradient
Nonlinearity Bias Correction in Quantitative Diffusion Weighted Imaging.
Tomography, 2016 2(4) 396-405

PATENTS

US Patent Application 20160132754: Inventors: Akhbardeh A., Jacobs MA. A integrated real-

time tracking system for normal and anomaly tracking and the methods therefore Date
Awarded: May 12, 2016.

US Patent Application 20160171695: Inventors Jacobs MA, Akhbardeh, A. Advanced Treatment
Response Prediction Using Clinical Parameters and Advanced Unsupervised Machine

Learning: The Contribution Scattergram, filed on July 31, 2014, Date Awarded: June
23, 20160.

Patent Cooperation Treaty Applications
PCT: Inventors: Jacobs MA, Parekh V. (IRIS):Anformatics Radiomics Integration System: A novel

informaties radiomics method for the integration of many types of data for classification into
different groups.
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INTRODUCTION
8 Dynamic contrast-enhanced MRI (DCE-MRI)

DCE-MRI is one of the mostly used functional imaging modalities for evaluation of
cancer response to treatment. It involves collection of serial Ti-weighted images before,
during, and after the IV injection of a contrast reagent (CR). It mostly measures tissue
perfusion and permeability. DCE-MRI evaluations of cancer therapy response frequently use
empirically quantitative (semi-quantitative) approaches to analyze DCE-MRI signal intensity
time-course data, such as initial area under the curve (IAUC) [1-3], wash-in rate [4-6], time-
to-peak [6], and enhancement ratio [7]. However, the results obtained are often dependent on
the MRI scanner [vendor, magnetic field strength (Bo)], data acquisition details (pulse
sequence and parameters), CR dose and/or injection rate, personnel skills, etc., which often
vary from one institution to another. This leads to high variability and low reproducibility for
DCE-MRI monitoring of tumor response to therapy. Fitting a pharmacokinetic model to
signal intensity time-course data to extract tissue parameters, quantitative DCE-MRI [8], is a
more desirable approach. These “imaging biomarkers” are physiological quantities, in
principle independent of all of the factors listed above. The parameters are usually variants
of: K", arate constant for passive CR plasma/interstitium transfer, and ve, the interstitial
space (extracellular, extravascular) volume fraction (the putative CR distribution volume).
The K" value is directly related to tumor vessel wall permeability and/or blood flow, while
the ve parameter may be a complementary measure of tumor cellularity. However, the
commonly used Standard Model (SM) (or Tofts model (TM) [8]) for DCE-MRI data analysis
incorrectly assumes that equilibrium inter-compartmental water exchange kinetics is infinitely
fast. This is physically unrealistic, and contrary to more than 40 years of experimental results
[9,10]. Ina DCE-MRI study of 92 suspicious breast lesions [11], we found this erroneous
assumption (for transcytolemmal water exchange) causes pharmacokinetic parameter
underestimation. Remarkably, for K" this is significant for only malignant lesions. This is
the major source of the limited TM DCE-MRI specificity for breast cancer detection [9-11]
and of pharmacokinetic parameter dependence on CR dose and dose delivery rate [12]. Such
dependencies violate the definitions of the K" and ve parameters.

Shutter-Speed Model for Pharmacokinetic DCE-MRI Data Analysis: We have
recently developed the “Shutter-Speed” Model (SSM) for DCE-MRI data analysis to account
for finite inter-compartmental water exchange kinetics [13,14]. It removes the CR dose
delivery rate- and/or dose-dependence mentioned above [12]. With the 92 breast lesion cohort
[11], we have shown that at 100% sensitivity, tumor region-of-interest (ROI) SSM K" has
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significantly (p = 0.02) higher specificity than TM K" in breast cancer diagnosis.
This success is because the TM K" ynderestimation is uniquely amplified for malignant
tumors. In a meta-population analysis 0f137 breast lesions [15], we found that the excellent
SSM K™ discriminative ability is independent of MRI instrument vendor
(platform/software), Bo, pulse sequence and parameters, and the CR used — the essence of a
quantitative imaging biomarker. Similar success for prostate cancer diagnosis has been found
using the SSM DCE-MRI method [16].

The finite water exchange effects in DCE-MRI pharmacokinetic modeling, at least on
Krans estimation, become more prominent (and thus the greater extent of SM or TM K"
underestimation) with increased CR extravasation [9,10]. Once the vascular shutdown begins
to occur with successful cancer therapy, it can be expected that DCE-MRI shutter-speed
effects will be significantly diminished. The potential major impact of the SSM DCE-MRI
method for assessment of response to cancer therapy is embedded in two rational hypotheses:
(@) by correcting SM or TM DCE-MRI pharmacokinetic parameter underestimation, the SSM-
derived parameters have greater dynamic ranges and thus, will be more sensitive to therapy-
induced changes; and (b) vascular changes as a result of treatment will lead to amplified
decreases in shutter-speed effects, which can be measured with a novel imaging biomarker,
such as AKTS[= KaS(SSM) — K'a"S(TM)]. In Specific Aim 1, SSM DCE-MRI will be
compared with TM DCE-MRI, and tumor size measurement for early prediction of treatment
response and assessment of residual cancer following therapy completion. Breast cancer and
soft tissue sarcoma will be studied for this aim.

Currently, there is no widely adopted standard DCE-MRI protocol in data acquisition
and processing for assessment of therapy response. As in the case of TM DCE-MRI, accuracy
and reproducibility of parameters derived from SSM DCE-MRI may be influenced by choices
of data acquisition and processing schemes, such as arterial input function (AIF)
quantification [17,18]. In Specific Aim 2, the effects of DCE-MRI acquisition duration,
temporal resolution (tRes), AIF quantification, and MR system platform on imaging
biomarkers will be evaluated within the context of monitoring therapy response. These are
necessary steps in validating SSM DCE-MRI as a reliable and reproducible tool for assessing
therapeutic response before it can be standardized across multiple sites.

Informatics Approach to Software Development: For quantitative imaging
biomarkers to be used in clinical practice for assessment of cancer response to therapy,
software framework is needed to integrate imaging biomarkers with other patient-specific
information including clinical data and molecular biomarkers. This will enable the translation
of novel imaging techniques into clinical practice. Different interfaces should be presented to
clinicians and imaging scientists, fitting into their respective workflows. The software
framework proposed for our Specific Aim 3 will leverage the cancer Biomedical Informatics
Grid (caBIG®), an information network created by NCI that enables researchers, clinicians
and patients in the cancer community to share data and knowledge. A caBIG compliant
approach to this aim will enable us to more readily disseminate the advances made during the
course of this project to the larger cancer community.
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DISCUSSION OF PROGRESS

§ Specific Aim 1: Compare SSM DCE-MRI with TM DCE-MRI, and tumor size for
early prediction and evaluation of cancer therapy response

DCE-MRI Evaluation of Soft Tissue Sarcoma Response to Preoperative
Chemoradiotherapy: Twenty patients (15 male, 5 female; mean age: 49 years; age range:
25 — 69 years) with histologically confirmed, > 5 cm, intermediate to high grade extremity
soft-tissue sarcomas, who were planned for preoperative systemic therapy and surgical
resection, provided written informed consent to participate in a longitudinal research MRI
study that included DCE-MRI. The tumors were located in the thigh (n = 13), knee (n = 3),
and calf (n = 4).

Twelve patients were treated with our institutional standard chemoradiotherapy
regimen consisting of ifosfamide and epirubicin (IE) combined with preoperative
hypofractionated radiation. Each 21-day chemotherapy cycle included epirubicin 30
mg/m?%/day 1.V. infusion over 3-5 minutes on days 1-4 (epirubicin was omitted during cycle
2) and ifosfamide 2.5 g/m?/day 1.V. infusion over 90 minutes on days 1-4 along with 1.V.
hydration, mesna, anti-emetics, and filgrastim or pegfilgrastim. Chemotherapy was planned
for 3 preoperative and 3 postoperative cycles. Surgery was planned for week 9 and
chemotherapy was resumed approximately 4 weeks after surgery. External beam radiation
therapy was initiated concomitantly at the start of cycle 2 of chemotherapy and consisted of
28 Gy administered as 8 fractions of 3.5 Gy each over 10 days. The other eight patients were
treated on a phase I clinical trial that included the addition of sorafenib (200 mg daily, 400 mg
daily, or 400 mg twice daily), a vascular endothelial growth factor receptor (VEGFR) tyrosine
kinase inhibitor, to the same chemoradiotharapy regimen, except that 3 rather than 4 days of
chemotherapy was administered. Sorafenib administration began 2 weeks before the first
cycle of chemotherapy [19]. The clinicopathologic characteristics of the patients are
presented in Table 1.

The research MRI exams were performed before treatment (Visit 1, V1), after two
weeks of sorafenib-only treatment in the phase I trial or after the first cycle of IE treatment in
the standard regimen (V2), and after completion of preoperative therapy but prior to surgery
(V3). Several patients dropped out of the MRI study at V2 and V3 due to various personal or
medical reasons, resulting in completed MRI exams in 16 subjects (9 on the standard regimen
and 7 on the sorafenib trial) at V2 and 12 subjects (7 on the standard regimen and 5 on the
sorafenib trial) at V3.
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Table 1. Clinicopathologic Characteristics of Patients

Patient | Age Gender | Histologic Tumor Tumor | Pre- Chemaotherapy NP (%) Pathologic Response

Number | {yr) Subtype Grade | Therapy Regimen

Size (cm)

1 55 Male myxoid liposarcoma Inter 13.5 IE+5 95 Optimal

2 60 Female | myxoid liposarcoma Inter 13.1 IE+5 85 Sub-optimal

3 62 Female | myxofibrosarcoma Inter 20.6 IE 50 Sub-optimal

4 38 Male pleomorphic/undiffer | inter 225 IE+5 a5 Optimal
entiated/spindle

5 58 Male myxoid liposarcoma Inter 246 IE+5 95 Optimal

6 43 Male spindle cell sarcoma Inter 6.4 IE+S 30 Sub-optimal

7 58 Male pleomorphic/undiffer | High 7.3 IE+5 99 Optimal
entiated/spindle

8 53 Male synovial sarcoma Inter 12.7 IE+5 60 Sub-optimal

9 25 Male synovial sarcoma Inter 10.9 IE45 80 Sub-optimal

10 40 Female | pleomorphic High 159 IE 80 Sub-optimal
liposarcoma

1 53 Male pleomorphic/undiffer | High 5.0 IE o9 Optimal
entiated/spindle

12 26 Male myxofibrosarcoma Inter 10.4 IE 93 Optimal

13 64 Male pleomorphic/undiffer | High 8.6 IE a8 Optimal
entiated/spindle

14 33 Male synovial sarcoma High 8.0 IE 70 Sub-optimal

15 57 Male pleomorphic/undiffer | inter 9.0 IE 99 Optimal
entiated/spindle

16 34 Male myxoid liposarcoma Inter 5.6 IE 20 Sub-optimal

17 64 Female | pleomorphic/undiffer | High 57 IE 98 Optimal
entiated/spindle

18 69 Male pleomorphic/undiffer | High 18.8 IE 920 Sub-optimal
entiated/spindle

19 40 Female | myxofibrosarcoma Inter 6.6 IE 5 Sub-optimal

20 45 Male synovial sarcoma Inter 12.8 IE 30 Sub-optimal

Inter: intermediate; Pre-therapy tumor size was the longest diameter (LD) measured from post-contrast DCE-MRI images;

IE: Ifosfamide + Epirubicin; 5: Sorafenib; NP: necrosis percentage

Table 1: Clinicopathologic characteristics of study patients.

DCE-MRI Data Acquisition: All the research MRI studies were performed using a
3T Siemens Tim Trio system with the body coil as the radio frequency (RF) transmitter and a
phased-array body matrix coil (combined with a phased-arrayed spine matrix coil) as the RF
receiver. Following scout and multi-slice axial T2-weighted MRI with fat-suppression to
locate the tumor, 3D sagittal DCE-MRI data acquisition with fat-suppression was conducted
using a RF-spoiled gradient-echo sequence, covering the spatial extent of the tumor. The
acquisition parameters included 10° flip angle, 1.5/6.0 ms TE/TR, a parallel imaging
acceleration factor of two, 24 - 36 cm FOV, 448 x 224 in-plane matrix size, and 5.0 mm slice
thickness. The total acquisition time for a DCE-MRI series was ~10 minutes for 36 - 80
frames of image volume of 12 - 30 slices each with 6.8 — 16.0 s temporal resolution. The
variations in number of frames, number of slices per volume, and temporal resolution were
due to differences in tumor size. The L.V. injection of the contrast agent (CA), Gd(HP-DO3A)
[ProHance (Bracco Diagnostic Inc.)] (0.1 mmol/kg at 2 mL/s), by a programmable power
injector was timed to commence after acquisition of five frames of baseline image volumes,
followed by a 20-mL saline flush.
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For quantification of the pre-CA T1 value, T1o, proton density-weighted images were
acquired immediately before and spatially co-registered with the DCE-MRI scan [20,21]. The
data acquisition pulse sequence and parameters were the same as for the DCE-MRI scan
except for 5° flip angle and 50 ms TR.

Pharmacokinetic Analysis of DCE-MRI Data: The soft-tissue sarcoma region of
interest (ROI) was manually drawn by an experienced musculoskeletal radiologist on
contiguous post-CA (approximately 120 — 180 s after CA injection) DCE-MRI image slices
that cover the entire spatial extent of the CA-enhanced tumor. The radiologist also measured
the longest diameter (LD) of the tumor from these images based on the RECIST guidelines
[22]. Table 1 lists the tumor LD values prior to treatment (V1).

For each DCE-MRI data set, the voxel signal intensity time-courses within the multi-
slice tumor ROIs were subjected to pharmacokinetic analysis using a two-compartment-three-
parameter fast-exchange-regime (FXR)-allowed version of the Shutter-Speed model (SSM).
The three fitting parameters of the FXR-SSM are K" (rate constant for plasma/interstitium
CA transfer), ve (volume fraction of extravascular and extracellular space), and ti (mean
intracellular water molecule lifetime). The ti parameter is used to account for the finite cross-
cell membrane water exchange kinetics. The CA intravasation rate constant, Kep, was
calculated as kep = K""/v,

Used for pharmacokinetic data analysis, the voxel Tio values were determined by
comparing signal intensities between the spatially registered proton density-weighted images
and the averaged baseline images from the DCE series [20,21]. The arterial input function
(AIF), the plasma CA concentration time-course, was determined for each individual DCE-
MRI data set through direct measurement. An ellipsoidal ROl was placed within the clearly
visible femoral artery on a post-CA DCE image slice that was approximately through the
center of the artery. The ROI signal intensity time-course was recorded and then converted
to blood R1 (= 1/T1) time-course using the steady-state signal intensity equation for RF-spoiled
gradient-echo sequence, which was further converted to plasma CA concentration time-course
using a linear relationship between Ry and CA concentration with an CA relaxivity of 3.8 mM"
st at 3T, a fixed pre-CA blood R; of 0.61 s [23], and a hematocrit value set at 0.45 [21,24].

Following the FXR-SSM fittings of the DCE-MRI data, voxel-based multi-slice
parametric maps of the derived pharmacokinetic parameters were generated. The mean
pharmacokinetic parameter value of the whole tumor was calculated by averaging the returned
voxel parameter values. For each imaging metric, including pharmacokinetic parameters and
RECIST LD, the percent changes for later MRI visits relative to V1, V21% (V2 relative to
V1) and V31%, were calculated.

Pathological Analysis: Pathological analysis of the post-therapy resection specimens
of each soft-tissue sarcoma was performed under light microscopy using standard pathologic
procedures. The pathologist estimated the amount of viable tumor and the percentage of
necrosis. Pathologic response to preoperative chemoradiotherapy was classified as either
optimal (> 95% necrosis) or sub-optimal (< 95% necrosis).
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Statistical Analysis: Descriptive statistical analysis was conducted to summarize the
pharmacokinetic parameter and RECIST LD values at each MRI visit, as well as the percent
changes of these imaging metrics relative to baseline (V1). In assessing the abilities of MRI
metrics (absolute values and percent changes) for evaluation of therapy response, the
univariate logistic regression (ULR) analysis was used to correlate V1, V2, V3 MRI metrics,
and the corresponding V21% and V31% changes, with dichotomous pathologic response
endpoints, optimal vs. sub-optimal. A ULR C statistics value, equivalent to the area under the
Receiver Operating Characteristic curve (ROC AUC), in the range of 0.9 — 1.0 indicates an
excellent marker; 0.8 — 0.9, a good marker; 0.7 — 0.8, a fair marker; < 0.7, a poor marker. Two
sample t test was used to evaluate the differences in imaging metrics and the corresponding
percent changes between the two response groups, as well as between the two cohorts that
received standard chemoradiotherapy and sorafenib plus standard chemoradiotherapy,
respectively. Fisher’s exact test was used to determine if there was association between
therapy regimen (with and without sorafenib) and response status (optimal vs. sub-optimal).
Pearson’s correlation analysis was used to examine relationships between MRI metrics and
necrosis percentage (NP) of the resection specimens.

Results and Discussion: As shown in Table 1, pathological analyses of the surgical
specimens revealed that 9 (45%) patients (5 on the standard regimen and 4 on the sorafenib
trial) achieved optimal response to preoperative chemoradiotherapy, while the other 11
patients (7 on the standard regimen and 4 on the sorafenib trial) had sub-optimal response.
There was no statistically significant (Fisher’s exact test, P = 1.0) association between the use
of sorafenib and pathologic response status, nor any significant (two sample t test, P > 0.2)
differences in any MRI metric (RECIST LD and pharmacokinetic parameters) at any visit and
the corresponding percent changes between the two cohorts on different therapy regimens.
Therefore, we combined the two patient cohorts in assessing the utility of quantitative DCE-
MRI for evaluation of response to preoperative therapy.

Table 2 lists the mean = SD whole tumor MRI metric values of the optimal and sub-
optimal response groups and the corresponding ULR C statistics values for discrimination of
the two response groups. Only the absolute pharmacokinetic parameters and the V21% and
V31% changes with C > 0.7, representing fair or better imaging biomarkers, are listed. The
C value (0.69) for V31% RECIST LD change is presented for the purpose of comparison. V1,
V2, and VV21% metrics were obtained before and 2-3 weeks after the start of therapy, and thus,
are potential early predictors of therapy response. The V2 K" parameter was an excellent
(C =0.9) early discriminator of optimal vs. sub-optimal pathologic response, while V1 and
V2 Kep, V1 and V21% K", \/21% Ve, and V21% 1i were fair to good (0.7 < C < 0.8) markers
for early prediction of response. Compared with good to excellent predictive abilities of the
K'" and kep metrics, the V21% change in RECIST LD was just a fair early predictor of
response. Several pharmacokinetic metrics obtained after the completion of
chemoradiotherapy, including V3 kep, K" and ve, and V31% ve, were good to excellent (0.8
< C < 1.0) discriminators of optimal vs. sub-optimal response, whereas the V31% change in
RECIST LD was a poor (C < 0.7) marker of response. For the imaging metrics listed in Table
2 with ULR C values < 0.77, including V21% RECIST LD, the differences between the two
response groups were not statistically significant (P > 0.05).
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Table 2. Evaluation of Pathologic Response (Optimal vs. Sub-Optimal Response)
MRI Metric Optimal Sub-Optimal ULR C value
Mean * 5D Mean 5D P value
V3 k. (min') 0.11+0.03 0.45+0.40 0.0024 0.97
V3 K™ (min) 0.02+0.01 0.21+0.26 0.0012 0.94
V3w, 0.15£0.08 0.36%+0.24 0.021 0.91
V2 K™ (min™) 0.05 £ 0.03 0.20%0.13 0.0020 0.90
V31% v, -52% * 28% 53% £ 92% 0.021 0.84
V21% K'"™™ -38% £ 25% 9% £ 33% 0.038 0.80
V1 k,, (min) 0.32+0.24 0.75%0.43 0.010 0.80
v2k,, {min™) 0.29+0.26 0.68 £ 0.48 0.045 0.78
V31% K™ -68% £ 21% 2% * 75% 0.043 0.78
V3t (s) 1.42+£0.83 0.85+0.84 0.25 0.77
V1K™ (min™) 0.10+ 0.09 0.21+0.16 0.055 0.72
V21% RECIST LD 7% £ 10% -3% + 8% 0.13 0.72
V2i% T, 38% £ 66% 13% £ 43% 0.13 0.71
V21% v, -18% + 42% 15% t 50% 0.16 0.70
V31% RECIST LD -11% % 22% -7% % 8% 0.66 0.69
ULR: univariate logistic regression; SD: standard deviation; P value: two sample t test; V1, V2, and V21% metrics are
bolded as early predictors of therapy response
Table 2: Evaluation of pathologic response (optimal vs. sub-optimal response).

Figure 1 shows examples of V1 — V3 colored tumor K" maps from two soft-tissue
sarcoma patients who had optimal (1A, left column; Patient 13 in Table 1) and sub-optimal
(1B, right column; Patient 6 in Table 1) responses, respectively. The K" color scales are
different for the two patients, but kept the same throughout the three visits for each patient to
demonstrate changes in the longitudinal study. The six panels in Fig. 1 are cropped images
(without zooming) of K" maps overlaid on post-CA DCE-MRI image slices that were
approximately through the center of the tumor. The FOV of DCE-MRI acquisition was kept
the same for all three visits for each patient. Thus, it is rather apparent in Fig. 1 that there was
not only minimal change in the imaging tumor size for each patient but also little difference
in tumor size change between the optimal and sub-optimal responders in the longitudinal
study. However, substantial decrease in tumor K" was observed at V2 compared to V1, and
continued to V3 for the optimal responder, while there were no noticeable K" changes from
V1to V2, and to V3 for the sub-optimal responder.

The Pearson’s correlation coefficient, R, and the P value for statistical significance are
summarized in Table 3 for correlations between the absolute MRI metric values (and percent
changes) and the pathologically measured NP values of the resection specimens. Only the
imaging metrics with statistically significant (P < 0.05) correlations with NP are listed, except
for V1, V2, V3, V21%, and V31% RECIST LD metrics which are listed for comparison.
Figures 2 and 3 show examples of linear regressions between NP and MRI metrics pre-therapy
(Figure 2), at the early stage of therapy (Figure 2), and post-therapy (Figure 3). While the
negative correlations of V1 K™ (Fig. 2A) and kep (Figure 2B), V2 K" (Figure 2C), and V3
K'a"s (Figure 3A), Ve (Figure 3B), and kep (Figure 3C) with NP were statistically significant
(P <0.05), there were no significant (P > 0.2) associations between any RECIST LD measures
and NP.
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Table 3. Pearson’s Correlation of MRI Metric with NP
MRI Metric R P
NI -0.93 <0.0001
V3 kep -0.92 <0.0001
V31% K™ -0.89 0.0001
V3v, -0.75 0.005
V2 K™ -0.62 0.010
V1 kep -0.55 0.012
V31% v, -0.63 0.028
V1K™ -0.45 0.047
V21% RECIST LD 0.31 0.25
V31% RECIST LD -0.20 0.52
V3 RECIST LD 0.19 0.56
V1RECIST LD 0.071 0.76
V2 RECIST LD 0.078 0.77
NP: necrosis percentage of the resection specimen; R: Pearson'’s correlation coefficient; P < 0.05
indicates statistically significant correlation.
Table 3: Pearson’s Correlation of MRI metric with NP

This study shows that changes in tumor functions as measured by quantitative DCE-
MRI are superior to changes in RECIST-based imaging tumor size measurement for early
prediction of soft-tissue sarcoma pathologic response to preoperative therapy, suggesting that
therapy-induced tumor functional changes precede changes in tumor size. These results
suggest that soft-tissue sarcomas with low perfusion and permeability at baseline (pre-
therapy) and/or after one cycle of chemotherapy may have less angiogenesis-induced
abnormal vasculature, and therefore, better drug delivery and response. The potential of
noninvasive functional imaging methods, such as DCE-MRI, for accurate early prediction of
therapy response may have profound importance in the emerging era of precision and
personalized medicine. Early identification of poor responders to a therapy regimen may
allow rapid adjustment in treatment planning and spare these patients from ineffective
therapies and the associated toxicities.
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Figure 1: Visit 1 (V1, pre-therapy), V2 (after two weeks of sorafenib or one cycle
of chemotherapy), and V3 (after completion of chemoradiotherapy) color
parametric K" maps of two soft-tissue sarcomas: an optimal (A, left column,
98% necrosis in resection specimen) and a sub-optimal (B, right column, 30%
necrosis in resection specimen) responder to preoperative therapy. The maps were
generated for tumor ROIs defined on multiple contiguous image slices, and the
ones on the image slices through the central portion of the tumors are displayed
here. For each tumor, the K™ color scale is kept the same for all three visits for
easy visualization of therapy-induced changes. The left and right color scales
correspond to K™ maps in A and B, respectively.
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Figure 2: Scatter plots of pathologically measured necrosis percentage (NP) of the
resection specimen against K" (A) and ke, (B) pre-therapy (V1), and K™ (C) and
RECIST LD (D) after two weeks of sorafenib or one cycle of chemotherapy (V2). The
straight line in each panel represents a linear regression. The Pearson’s correlation
coefficient R and P values for the four imaging metrics are listed in Table 3 and shown
in each panel. The data points are from the initial cohort of 20 patients for the V1 metrics
(A and B) and the 16 patients who continued to have the V2 MRI studies (C and D).
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Figure 3: Scatter plots of pathologically measured necrosis percentage (NP) of the
resection specimen against post-therapy (V3) MRI metrics: (A) K", (B) Ve, (C) kep, and
(D) RECIST LD. The straight line in each panel represents a linear regression. The
Pearson’s correlation coefficient R and P values for the four imaging metrics are listed
in Table 3 and shown in each panel. The data points are from 12 patients who completed
the V3 MRI studies among the initial cohort of 20 patients.

The post-therapy (V3) K", ke, and ve parameters all showed strong negative
correlations with NP of the resection specimens and were excellent markers (ULR C value >
0.9) for discrimination of optimal and sub-optimal responders. However, there was no
significant correlation between V3 RECIST LD and NP. This suggests that a functional
imaging study such as DCE-MRI following preoperative therapy may yield additional
information potentially useful for surgical planning and subsequent management. The
negative correlations of post-therapy K" and ke, with NP are expected, as increased tumor
necrosis is usually associated with decreased perfusion, and thus the DCE-MRI measures of
microvascular properties. The similar relationship observed between post-therapy ve and NP
is, however, intriguing. With cancer cell death and increased necrosis after the preoperative
chemoradiotherapy, the ve value is generally expected to increase with increased necrosis.
The opposite was seen in this study and the probable reason for this is that, though defined as
extravascular and extracellular volume fraction, ve as measured by DCE-MRI is in principle
the putative CA distribution volume fraction. With increased necrosis and decreased viable
perfused tumor area, the CA distribution volume fraction, which was reported as an averaged
value over the whole tumor volume, was presumably decreased as well. It is possible that the
estimated ve value may actually increase with increased necrosis if the DCE-MRI acquisition
time is long enough to allow substantial diffusion of CA molecules into the necrotic area.
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In conclusion, we have demonstrated the utility of quantitative DCE-MRI for early
prediction and evaluation of soft-tissue sarcoma response to preoperative chemoradiotherapy
in 20 patients with lower extremity tumors. Tumor functional changes as measured by
quantitative DCE-MRI parameters such as K" and kep provided better early prediction of
pathologic response outcome than the conventional approach of measuring changes in
imaging tumor size. Post-therapy DCE-MRI parameters, not the RECIST LD metric, were
found to significantly correlate with percent necrosis of the resection specimens. The SSM-
unique ti parameter could be a useful imaging biomarker of metabolic activity that can be
used to evaluate tumor response to therapy.

DCE-MRI Prediction and Assessment of Breast Cancer Response to Neoadjuvant
Chemotherapy

Neoadjuvant chemotherapy (NACT) is increasingly used before surgery to treat
locally advanced breast cancer. Though pathological response is a good indicator of survival,
it can be determined only after surgery. Thus, there is genuine need of noninvasive imaging
method to monitor and provide early prediction of therapeutic response. This allows swift
introduction of alternative treatment for non-responding patients. In addition, accurate
assessment of residual disease following NACT completion improves surgery decision
making such as lumpectomy vs. mastectomy. Conventionally, tumor size measurement is
used to evaluate response. However, changes in tumor size often occur late during treatment
and may over- or under-estimate residual disease.

Quantitative DCE-MRI has been shown effective for early prediction of breast cancer
response NACT [21,25]. However, few have investigated the utility of DCE-MRI for
evaluation of post-NACT residual disease, which can have important implications for surgical
decision making of mastectomy vs. lumpectomy. In this project we compared quantitative
imaging biomarkers estimated from pharmacokinetic (PK) analysis of DCE-MRI data with
imaging tumor size measurement for early prediction of breast cancer NACT response and
evaluation of residual disease, and the standard Tofts model (TM) with the Shutter-Speed
model (SSM) PK analysis within the context of response assessment. Here we report our
results in the first five years of this UO1 project using SSM and TM DCE-MRI for assessment
of breast cancer response to NACT.

A total of 6 breast cancer patients have been recruited for the MRI studies in the past
year, making a total accrual of 65 subjects thus far. They all underwent six-eight cycles of
NACT before surgery. As shown in the study schema, the research DCE-MRI studies were
performed at Visit 1 (V1) - before NACT, at Visit 2 (V2) - after first NACT cycle, at Visit 3
(V3) - at NACT midpoint or before change of drugs, and at Visit 4 (V4) - after NACT
completion, but before surgery. At the time of this report, 47 subjects with 49 independent
primary tumors have completed the longitudinal MRI studies and undergone surgeries, and
their MRI data have been analyzed and correlated with pathological endpoints.

DCE-MRI Data Acquisition and Analysis: Axial bilateral DCE-MRI images with

fat-saturation and full breast coverage were acquired with a 3D gradient-echo TWIST (Time-
resolved angiography WIth Stochastic Trajectories) sequence using a 3T Siemens scanner
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[21]. The TWIST sequence is a k-space undersampling and data sharing gradient-echo
sequence delivering both high spatial and temporal resolution for breast DCE-MRI. Other
details of DCE-MRI acquisition included 10° flip angle, 2.9/6.2 ms TE/TR, a parallel imaging
acceleration factor of two, 30-34 cm FOV, 320x320 matrix size, and 1.4 mm slice thickness.
The total acquisition time was ~ 10 min with 16-20 s temporal resolution. Gd contrast agent
(Prohance®) 1V injection (0.1 mmol/kg at 2 mL/s) was carried out following acquisition of
two baseline image volumes. Tumor ROIs were drawn by experienced radiologists who also
measured tumor size according to well-established (one dimensional) RECIST guidelines.
The ROI and pixel-by-pixel (within ROI) DCE time-course data were subjected to both the
TM and the SSM pharmacokinetic analyses to extract K", ve, kep (= K""/ve), and ti (from
SSM only) parameters. The whole tumor ROI DCE-MRI parameter values were calculated
by averaging the ROI values from each of the image slices covering the entire tumor, weighted
by the pixel numbers within the ROI in each image slice.

Pathology and Statistical Analyses: The pre-therapy biopsy specimens along with
the post-therapy surgical specimens and lymph nodes were analyzed to evaluate pathological
responses. Two pathological metrics [26], RCTD (relative changes in tumor density) and
RCB (residual cancer burden), were computed. Pathologic complete response (pCR) is
defined as RCTD =-1.0 and RCB = 0; non-response (pNR) as RCTD > 0; and partial response
(pPR) as-1.0 <RCTD < 0. Non-pCR includes both pPR and pNR and can be further stratified
into RCB classes based on RCB index values [26]: RCB-I: 0 < RCB < 1.36; RCB-1I: 1.36 <
RCB < 3.28; RCB-III: RCB > 3.28. Since the MRI metrics were measured from the primary
breast tumor only, the in-breast component of RCB was also computed for correlation with
the MRI results.

The pathologic endpoints were correlated with the MRI metrics using the univariate
logistic regression (ULR) analysis to identify imaging biomarkers for early prediction of
response. A ULR C statistics value, a measure equivalent to the area under the Receiver
Operating Characteristic curve (ROC AUC), in the range of 0.9 — 1.0 indicates an excellent
predictor; 0.8 — 0.9, a good predictor; 0.7 — 0.8, a fair predictor; < 0.7, a poor predictor. ULR
analysis and the Spearman’s correlation (SC) were used to correlate MRI metrics with RCB
ranks and numerical values, respectively.

Results and Discussion: 12 patients achieved pathologic complete response (pCR)
(RCB = 0) while the other 35 (37 tumors) were non-pCRs. Table 4 shows the mean £ SD
values of the PK parameters and the percent changes (e.g., V21%: percent change of V2
relative to V1) for the two groups and P values for comparison, as well as the ULR C statistics
values (equivalent to AUC of ROC analysis) for early prediction of pCR vs. non-pCR. Only
the metrics at V3 or earlier and with C > 0.7 (indicating fair or better early predictor of
response) are listed. RECIST LD and its percent changes are listed for comparison. V21%
values of several PK parameters were good (C > 0.8) early predictors of response, with
parameters of both PK models performing equally well. However, even at NACT midpoint
(V3), RECIST LD and its percent changes remained poor (C < 0.7) predictors of response.
Figure 4 shows a column graph of the mean+SD V21% changes of some of these MRI metrics
for the pCR (black column) and non-pCR (gray column) groups. Figure 5 shows
representative K"™"$(SSM) and i color maps of a pCR (1A) and a non-pCR (1B) at V1 and
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V2. Compared to the non-pCR, the pCR tumor had considerable decrease in K" and
increase in t; after only one NACT cycle.

Table 4. Early Prediction of Pathologic Response (pCR vs. non-pCR)
MRI Metric pCR non-pCR ULR C value
Mean+ SD  Mean £+ SD P value
V21% K™(TM) -58% + 17% -13% + 36% 0.006 0.89
V21% K™ (SSM) -65%+17% -16%+43% 0.006 0.89
V21% 1 33% + 38%  -5% + 36% 0.011 0.82
V21% ke (TM) -60% +41% -20% +43% 0.014 0.82
V3ke (SSM) 0.04 +0.02 0.20 + 0.31 0.072 0.77
V2 K™ (SSM) 0.05 +0.03 0.10 £ 0.08 0.040 0.75
V31% K™ (SSM) -75%+12% -47%+36% 0.035 0.75
V2 ke (TM) 0.16+0.14 026+0.14 0.035 0.75
V21% ko (SSM) 51% £ 82% -19% +87% 0.270 0.74
V31% K™ (TM)  -66%+ 17% -38% +37% 0.044 0.74
V2 K™ (TM) 0.03+0.02 0.06+0.04 0.038 0.74
V31% kg, (TM) -77% + 18% -40% + 60% 0.054 0.74
V31% ko, (SSM) B1% +20% -15% +77% 0.086 0.7
V2k ..\R\]p 0.10 + 0.09 0.20+0.15 0.060 0.7
V3 ke (TM) 0.07=005 020=020 0.089 0.72
V3 v, (SSM) 0.71 £0.09 0.63+0.16 0.156 0.71
V3 | 61% £ 91% 9% + 69% 0.089 0.70
V3il% [\1 CISTLD -46% £29% -29% +26% 0.101 0.68
V3 1\1 CIST LD 16.1 £ 10.7 264+ 189 0.116 0.65
V1 RECIST LD 33.3+£20.0 4]1.3 +£23.8 0.295 0.62
V2 RECIST LD 284+ 18.9 36.9+21.9 0.240 0.62
V21% RECISTLD -17% +32% -10% + 14% 0.293 0.51
I'™M metrics are listed in black; SSM metrics in red; and RECIST LD in purple;
K™ and ke, have the unit of min™'; RECIST LD has the unit of mm.
Table 4: Early prediction of pathologic response (pCR vs. non-pCR)

Table 5 lists coefficient R and P values for significant (P < 0.05) SC between V4
imaging metrics and RCB index value, while Table 6 is the Table 2 equivalent for in-breast
RCB. After NACT completion, K" and kep of both models and RECIST LD were positively
correlated with RCB, while 1i was negatively associated with in-breast RCB. The correlation
was generally strengthened when in-breast RCB was used, as the imaging metrics were from
the primary tumor only.

Our results thus far suggest that changes in tumor vasculature precede size changes in
response to NACT. After only one cycle of NACT, the % changes (relative to baseline) or
actual values of quantitative DCE-MRI biomarkers can provide excellent early prediction of
eventual pathologic response to the entire course of NACT, while the RECIST measure of
tumor size is not a good predictor of response at early time point or even the midpoint of
NACT (results not shown here). V21 percent changes of both TM and SSM K" parameters
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are excellent early predictors, suggesting the systematic differences between the two models
are of less concern when % change is used for response evaluation. However, the absolute
SSM parameter values generally offer larger separations of the two response groups (see Fig.
4) than their TM counterparts and thus are more sensitive measures of therapeutic response.
This is most likely due to the incorporation of the exchange effects in the SSM analysis.
Furthermore, SSM analysis allows quantification of tj, a potential imaging biomarker of
metabolic activity [21, 27, 28]. The utility of 7i is clearly demonstrated in early prediction of
response (Table 4) and assessment of RCB (Table 6). The potential of ti as a robust early
predictor of breast cancer therapy response is further supported by our observation that it is
the only pre-NACT imaging metric that correlates with RCB with near statistical significance
(P =0.053).

Table 5. Spearman’s Correlation with RCB Index Value

MRI Metric R P

V4 RECIST LD 0.46 0.0043
V4 K™ (SSM) 0.4] 0.013

V4 K™ (TM) 0.39 0.020

V4 k., (TM) 0.38 0.023

V4 K. (SSM) 0.38 0.023

R: correlation coefficient. TM metrics are listed 1n black:
SSM metrics in red; RECIST LD m purple.

Table 5: Spearman’s Correlation with RCB index value

Table 6. Spearman’s Correlation with In-Breast RCB Index Value

MRI Metric R P

V4 K™ (SSM) 0.60 0.00010
V4 K™ (TM) 0.59 0.00020
V4 RECIST LD 0.52 0.0010
V4 1, -0.39 0.020
V4 k..(SSM) 0.38 0.023
V4 k. (TM) 0.37 0.026

R: correlation coefficient. TM metrics are listed 1in black:
SSM metrics in red; RECIST LD mn purple.

Table 6: Spearman’s Correlation with Breast RCB index value.
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Figure 4: Column graphs of the mean VV21% change values of RECIST LD and several
DCE-MRI metrics (K", kep, and 1, estimated from the TM and SSM pharmacokinetic
analyses) for the pCR (black column) and non-pCR (gray column) patient groups. The
error bar represents the standard deviation (SD). V21%: percent change of MRI metric
at visit 2 (V2, after one NACT cycle) relative to visit 1 (V1, pre-NACT).
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Figure 5: V1 (pre-NACT) and V2 (after one NACT cycle) color parametric maps
of K""(SSM) and ti from a pCR (A) and a non-pCR (B) breast tumor. For each
tumor, the color scale of each DCE-MRI metric is kept the same between the two
visits for easy visualization of NACT-induced changes. There are no noticeable
changes in the parametric maps from V1 to V2 for the non-pCR, while the
substantial decrease in K™"(SSM) and increase in 7; are clearly visible for the pCR.

8§ Specific Aim 2: Investigate the effects of data acquisition and processing schemes on
DCE-MRI biomarkers within the context of assessing therapy response.

Effects of Temporal Resolution on DCE-MRI Prediction of Breast Cancer Response
to Therapy

Pharmacokinetic (PK) analysis of high temporal resolution (tRes) DCE-MRI data has
been shown effective for early prediction of breast cancer response to NACT. However, high
tRes breast DCE-MRI studies are currently limited to research and early phase clinical trial
settings. Due to the trade-off of tRes and spatial resolution (sRes) in data acquisition and
clinical needs for bilateral full breast coverage and high sRes, low tRes (60-120 s) breast DCE-
MRI protocols are commonly used in large-scale clinical trials and clinical practice.
Consequently, because of inaccuracies in PK parameter estimation from low tRes data [29,
30], semi-quantitative analysis (such as uptake slope, etc.) is often employed for low tRes
data. Unlike quantitative PK parameters (such as K") which are direct measures of
biological properties, semi-quantitative metrics are directly related to MR signal change, not
tissue biology, and the values are often dependent on data acquisition protocols and scanner
platforms and settings, making it difficult to compare studies across institutions. There has
been no literature evidence on whether PK analysis of low tRes data can still provide useful
early prediction of breast cancer therapy response despite expected PK parameter errors. Here
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we report our initial results comparing PK analyses of low and high tRes breast DCE-MRI
data for early prediction of NACT response, using data sets from the same patient cohort.

Methods: 15 breast cancer patients enrolled in a multicenter ISPY-2 NACT trial
consented to high tRes (14-18 s) research DCE-MRI (2) at visit 1 (V1, before NACT), V2
(after 1 NACT cycle), V3 (at NACT midpoint), and V4 (after NACT). They also underwent
a low tRes (80-100 s) ISPY-2 DCE-MRI protocol at the same four time points. PK analyses
of the low and high tRes DCE-MRI data were performed using the Shutter-Speed model
(SSM) which takes into account transcytolemmal water exchange kinetics. Tumor mean PK
parameter values were calculated by averaging tumor voxel parameter values from all slices
covering the tumor, which included K", ve, kep (=K"/ve), and the SSM-unique Ti
parameter, mean intracellular water lifetime.

Estimated PK parameters from the low and high tRes data at V1 and V2, and the
percent changes (V21%, V2 relative to V1) were compared, and correlated with pathologic
response status (determined from resection specimens after NACT) to assess abilities for early
prediction of response through ROC analysis. A nonparametric method was used to compare
ROC AUC between results from the two tRes data sets.

Results and Discussion: Following NACT, 4 patients had pathologic complete
response (PCR) while the other 11 had non-pCR. Table 7 lists tumor mean £ SD values of
V1, V2, and V21% PK parameters estimated from the high and low tRes data, showing
statistically significant underestimations of K", ke, and tiand overestimation of ve from the
low tRes data compared to the high tRes data. However, there were no significant differences
in V21% values of these parameters. For example, Figure 6 shows scatter plots of V2 and
V21% K" from the high and low tRes data. Table 8 lists the ROC AUC values of several
DCE-MRI metrics for early discrimination of pCR vs. non-pCR. For each metric there was
no statistically significant difference in ROC AUC between the two tRes data sets.

The findings of K" underestimation and ve overestimation from the low tRes data are
consistent with a previous study [29]. The errors in PK analysis of low tRes data are largely
systematic with PK parameter values changing in the same direction going from low to high
tRes. This is why there are no significant differences in VV21% values, and the likely reason that
DCE-MRI metrics that are good early predictors of NACT response when obtained from the
high tRes data perform comparably well in early prediction when obtained from the low tRes
data (Table 8). This preliminary study suggests that despite expected errors in estimated PK
parameters, PK analysis of low tRes DCE-MRI data could be useful for assessment of breast
cancer therapy response. Since low tRes data is usually collected in large-scale breast cancer
clinical trials, the utility of PK analysis of low tRes data for therapy response evaluation may
have significant impact on future imaging biomarker development, taking advantage of the
large, retrospective database from the past and current trials that include breast DCE-MRI.
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Figure 6: Scatter plots of V2 K" (left) and V21% K" (right) estimated from the
low and high tRes data. The straight line connects data points from the same subject.
pCRs are represented by black circles while non-pCRs by red triangles.

Table 7. Effects of tRes on Estimated DCE-MRI PK Parameters

B B [ B - I j V21 (%)
tRes Ktu ans Ve I'-r|| T Kh ans Ve kr;: - [\-Il Aans Ve kr]l T

[Low | 0.066 | 0.34 | 025 | 0.59 | 0.050 | 0.52 | 0.16 | 0.50 | -14= | 69 | -30 | 4+
; 4 : n : : ; . 43% . : 73%
0.036* | 0.12* [ 0.11* | 0.26" | 0.028* | 0.24* | 0.11* | 0.21* 85% | 53%
[ High | 0.076 | 023 | 035 | 0.73 | 0059 | 038 | 025 | 0.67 | -15+ | 68 | -25 | -44
4 4 t t ¢ 4 + 43 + 54 30
0.038 0,07 0.11 0.27 0.032 0.21 0.16 0.24 | | 99 |

“ttest for low vs. high tRes: *, P < 0.001: #. P < 0.01: S, P >0.9: &, P > 0.5.

Table 7: Effects of tRes on estimated DCE-MRI PK parameters.
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Table 8. Early Prediction of Response
MRI Metrics ROC AUC

Low tRes | High tRes
V21% K™ 1.00 1.00
V21% 1, 1.00 1.00
V21% k., 0.93 0.97
V21% v, 0.93 0.93
N2k, 0.93 0.97
V2 K™ 0.91 0.93
V1 1 0.91 0.88

Table 8: Early prediction of response.

8 Specific Aim 3: Develop software tools that can provide clinicians with imaging metrics
together with clinical and molecular biomarkers to aid clinical decision-making in
evaluation of therapy response

The OHSU Informatics group (Shannon McWeeney, PhD, Jayashree Kalpathy-Cramer,
PhD, Fred Loney, MS, Lara Fournier, MS and Erik Segerdell, BS) continued work on several
tasks pertaining to Aim 3. The activities completed in Year 5 include the following:

Add web application database update to the image data analysis pipeline

Improve imaging pipeline features and scalability

Add ROI and modeling overlays to the Quantitative Imaging Profile (QulIP) image
display (Fig.ure 7)

Investigate alternative image registration methods

Deploy a production QulIP web server instance

Review the QuIP application with imaging scientists and clinicians

Added 16 DICOM studies to TCIA
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Open Source Tool Utilization

OHSU is utilizing the following open source tools in the Quantitative Imagine Pipeline
(Figure 7). XNAT imaging repository platform developed at Washington University;
Nipype, a Python workflow integration framework; ANTS, a diffeomorphic registration
and image mapping toolkit; CTP, the Washington University TCIA image uptake utility;
XTK, an image visualization module; and NVD3, a charting utility.

©® QuIP- Quantitative Imaging Profile
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Figure 7: Quantitative Imaging Profile (QulP) web application.

Collaborations within the OIN Network

1. The OHSU team participated in a multi-center project investigating gradient
nonlinearity bias in measurement of apparent diffusion coefficient across MRI scanner
platforms. As a collaborative study of the QIN Data Acquisition Working Group
(DAWG), this project is headed by Dr. Thomas Chenevert of University of Michigan.
The results of this study have been published in Magnetic Resonance in Medicine in
2016 and Tomography in 2016.
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2. The OHSU PI (Dr. Huang) has initiated a multicenter AIF challenge project within the
MRI WG to evaluate the effects of variations in AIF determination on estimated DCE-
MRI pharmacokinetic parameters, as well as on therapy response assessment. A total
of 9 QIN centers participated in this challenge and quantified AlFs with site-specific
methods from shared pre-therapy prostate and pre- and post-therapy soft-tissue
sarcoma DCE-MRI data. The AIFs were submitted by each center to the managing
center OHSU. Dr. Huang and his team then analyzed the shared data with submitted
AlFs (from multi-centers) and fixed pharmacokinetic model, pre-contrast T1, and
tumor ROI definition to assess the effects of AIF variations only. The analysis of the
shared eleven prostate data sets using the standard Tofts model has been completed
and the manuscript has been published in Tomography in 2016. The same data was
also analyzed by OHSU using the Shutter-Speed model and the results were submitted
as an abstract to the 2017 annual ISMRM meeting. The analysis of AIF variation on
a longitudinal sarcoma therapy response study has been completed and the results were
submitted as an abstract to the 2017 annual ISMRM meeting. We expect to submit the
manuscript on the effects of AIF variation on DCE-MRI evaluation of soft tissue
sarcoma response to preoperative chemoradiotherapy in mid-2017.

3. The OHSU team participated in the T1 measurement collaborative project in the
DAWG, led by Dr. Bachir of Mount Sinai. The goal of the challenge is to assess
reproducibility across scanner platform in T1 measurement using commonly used pre-
contrast T1 determination methods for DCE-MRI, such as the multi-flip angle method
and the inversion-recovery method. A NIST phantom is used for challenge with
known T1 values for the solutions included in the phantom. Data analysis has been
completed and a 2017 ISMRM abstract has been submitted. The manuscript is
expected to be submitted in mid-2017.

4. The OHSU team participated in the ADC mapping challenge of the MRI WG
organized by Dr. Newitt of UCSF. The goal is to evaluate the concordance of ADC
maps generated with scanner manufacturers’ software and tools used by QIN centers.
The initial data analysis has been completed by Dr. Newitt and an 2017 ISMRM
abstract was submitted.

PLANS FOR NEXT YEAR

For Specific Aim 1, we will continue breast cancer and soft-tissue sarcoma patient
accrual, with no modification in the research protocols. The primary focus will be on MRI
data collection, analysis, correlation with pathologic endpoints, and statistical analysis to look
for the best imaging biomarker or combination of biomarkers for cancer therapy response.
For Specific Aim 2, we have evaluated the effect of DCE-MRI data acquisition duration, AIF
quantification, as well as temporal resolution on evaluation of breast cancer response to
NACT. We plan to submit a manuscript on these results in 2017. Additionally, we will
perform similar analyses using the soft tissue sarcoma data and determine if we can draw
similar conclusions with regard to the effects of variations in DCE-MRI data acquisition and
analysis within the context of therapeutic monitoring. For the bioinformatics aim, the Specific

104



Aim 3, we will continue working on Aim 3.2 to integrate imaging and non-imaging
biomarkers in the web-based informatics tool, QuIP, for cancer therapy response evaluation,
and test the tool with clinicians (radiologists and surgical and medical oncologists) for its
utility for clinical decision making.

Collaborations within QIN Network

The OHSU team will be participating in or initiating the following multi-center
challenge projects:

1. DCE-MRI AIF challenge phase Il (MRI WG, Leader: Wei Huang)

2. DSC-MRIDRO (digital reference object) challenge (MRI WG, Leader: Chad Quarles)

3. Effects of k-space under-sampling on quantitative DCE-MRI analysis (DAWG and
MRI WG, Leader: Wei Huang)
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INTRODUCTION

Our research program continues to focus on the development and clinical
implementation of quantitative breast MRI for assessing response to treatment. Neoadjuvant
chemotherapy (NAC) for breast cancer, in which systemic therapy is administered prior to
surgery, has important benefits for patients, including down-staging inoperable cancers and
improving breast conservation rates [1, 2]. It is now well established that women whose
tumor is completely eradicated at the time of surgery (pathologic complete response, or
pCR) have excellent survival rates [3-5]. Conversely, women with substantial residual
disease at surgery, have much poorer outcomes, with recurrence rates of over 50% at 5
years[6]. The problem of identifying ineffective treatment remains one of the most critical
unmet needs in neoadjuvant chemotherapy for locally advanced breast cancer. We are
developing quantitative imaging methods to assess response to treatment in the I-SPY 2
TRIAL, a multi-center phase Il treatment trial using response-adaptive randomization within
breast cancer subtypes to evaluate investigational agents for women with high-risk stage
I1/111 breast cancer [7-9]. The goal of our QIN research is to develop accurate and reliable
breast imaging techniques that can be applied as diagnostic tools for individualizing patient
treatment. Over the past year our QIN efforts have focused on 1) developing advanced DWI
approaches for breast cancer evaluation for introduction into I-SPY 2, 2) beginning
dedicated breast PET studies in I-SPY 2, 3) providing curated image data and outcomes
from I-SPY 1 for public data-sharing and 4) leading a QIN Grand Challenge to identify high
performing imaging biomarkers of response.

PROGRESS OVER THE PRIOR YEAR

8 Advanced diffusion-weighted MRI (DWI) methods for assessing breast tumor
response to neoadjuvant chemotherapy

High spatial resolution breast DWI
We previously developed a high-spatial resolution reduced field of view (rFOV)
DWI sequence to overcome limitations of standard DWI methods for evaluating the breast.

We continue to evaluate this method in comparison to standard DWI1 for measuring response
to treatment. The rFOV sequence utilizes a 2D spatially-selective echo-planar RF excitation
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pulse and a 180-degree refocusing pulse to reduce the FOV in the phase-encode (PE)
direction [10], resulting in improved spatial resolution and reduced off-resonance effects.
We optimized the rFOV HR-DW!I sequence for breast imaging to acquire data with voxel
sizes 5-6 times smaller than standard commercially available single shot echo-planar
imaging (SSEPI1) DWI sequences (STD-DWI) while retaining sufficient SNR for accurate
calculation of ADCs. We showed that the sequence improved image quality compared to
standard ssEPI DWI in breast, as seen in Figure 1 showing a comparison of breast images
acquired with standard (STD) and high resolution (HR) DW!I in a patient with invasive
breast carcinoma [11]. Studies comparing STD-DWI and HR-DW!1 in breast cancer patients
undergoing NAC demonstrated that the lower tumor ADC percentile from HR-DW!I (15"
and 25" percentile) derived tumor ADC histograms have stronger association with final
MRI-measured tumor volume change than that from STD-DWI [12]. We also found an
association between early changes in tumor ADC metrics measured by HR-DWI and
pathologic complete response (pCR). An increasing trend in the area under the receiver
operating curve (AUC) for predicting pCR was found with decreasing ADC percentile.
Additionally, AUCs for the lower percentile tumor ADC were higher than those for early
functional tumor volume (FTV) change (Table 1). Our findings here are consistent with a
previous study showing the sensitivity of lower percentile tumor ADC values to early
treatment changes [12]. The higher AUCs found for ADC metrics versus FTV suggest that
HR-DWI may be of value in evaluating early breast tumor response to neoadjuvant
chemotherapy and support the investigation of this technique in a larger cohort.

Figure 1: Representative DWI (b=0 and b=600) and ADC
maps of an invasive breast carcinoma acquired with HR-
DWI (top row) with voxel size of 4.8 mm?® compared to
STD-DWI (bottom row) with voxel size of 29 mm3. It
shows improved image quality and reduced distortion. The
tumor is visible as a hypointense region in the center of the
breast on the ADC maps.
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Early Treatment Change full cohort [r=20)
ADC Predictors AUC
% Change Mean ADC 061
% Change Sth percentile 067
% Change 15th percentile 0.67
% Change 25th percentile 0.65
%"EF"ar\ge S0th percentile 0.65
% Change 75th percentile 0.55
% Change 95th percentile 057
MRI Tumor Volume AUc
Predictor

% Chng Tumor Vaolume 0.55

Table 1: AUCs for the early percent change in
HR-DWI ADC and tumor volume as predictors
of pCR showing an increasing trend with
decreasing ADC percentile.

Diffusion-tensor imaging (DTI) of the breast

We are also evaluating diffusion-tensor imaging (DTI) as a further refinement of
DWI methods that may carry additional prognostic information for breast cancer response.
DTl and contrast-enhanced MRI were acquired at 1.5 T in 34 patients before treatment
and after 3 cycles of taxane-based therapy (early treatment). Tumor fractional anisotropy
(FA), principal eigenvalues (A1, 12, and 13), and apparent diffusion coefficient (ADC)
were estimated for tumor regions of interest drawn on DTI data. The association between
DTl metrics and final tumor volume change was evaluated with Spearman rank
correlation. DTl metrics were investigated as predictors of pathological complete
response (pCR) by calculating the AUC. Early changes in tumor FA and ADC
significantly correlated with final tumor volume change post therapy (p = -0.38, p =
0.03 and p = -0.71, p < .001, respectively). Pretreatment tumor ADC was significantly
lower in the pCR than in the non-pCR group (p = 0.04). At early treatment, patients with
pPCR had significantly higher percent changes of tumor eigenvalues A1, A2, A3, and
ADC than those without pCR. The AUCs for early percent changes in tumor FA and
ADC were 0.60 and 0.83, respectively. The early percent changes in tumor eigenvalues
and ADC were the strongest DTI-derived predictors of pCR. Although early percent
change in tumor FA had a weak association with pCR, the significant correlation with
final tumor volume change suggests that this metric changes with therapy and may merit
further evaluation. These results were recently published in the QIN Special Issue of
the journal Tomography [13].

8 Breast MRI predictors of NAC response
Optimization of breast MRI biomarkers by cancer subtype

Under its primary aim, ACRIN 6657, the imaging component of I-SPY 1, prospectively
tested the functional tumor volume (FTV) biomarker and found it to be highly predictive of
both pathologic response and recurrence-free survival following NAC [14, 15]. FTV is

113



defined as the image volume with enhancement kinetics exceeding both an early percentage
enhancement threshold (PEt) and a signal enhancement ratio threshold (SERt). Primary
study analysis used empirically determined values for these thresholds. In subsequent
studies, we examined the effect of varying PEt and SERt on prediction of pCR, to determine
if optimization of these parameter thresholds can improve predictive performance [16]. We
also hypothesized that predictive performance varied by cancer subtype and therefore
independent optimization within subtype groups would result in the greatest improvement.
The ACRIN 6657 cohort included women with locally advanced breast cancer (tumor size >
3cm) having up to four DCE-MRI examinations: before NAC (MR1), after one cycle of
NAC (MR2), between the anthracycline-based regimen and taxane (MR3), and after NAC
and prior to surgery (MR4). Patients were stratified into 3 groups by cancer subtypes
defined by hormone receptor (HR), and human epidermal growth factor receptor 2 (HER2)
status: HR+/HER2-, HER2+, and triple negative (TN, HR-/HER2-). MRI-measured FTV
and change in FTV (AFTV) were investigated as predictors of the outcome pCR.

For our optimization study PEt was varied from 30% to 200% in 10% intervals, and
SERt was varied from 0.0 to 2.0 in 0.2 unit intervals. FTV was measured at each
examination (FTVi1, FTV2, FTV3, FTV4) and AFTV was measured relative to the first
examination (AFTV2, AFTVs, AFTV4). For each pair of thresholds (PEt, SERt), the
absolute FTV and AFTVs were calculated and analyzed for prediction of pCR using AUCs.
116 patients from the ACRIN 6657 / I-SPY 1 TRIAL with complete data on all four MRI
visits, HR/HER?2 status, and pCR outcome were included. Mean age was 48 (range 29-69).
The 116 patient cohort was divided into subgroups: 45 (39%) HR+/HER2-; 39 (34%)
HER2+; and 30 (26%) TN. Lower AUCs with less variation were observed in patients in
the HER2+ subgroup than patients with HR+/HER2- and TN breast cancer. When
examining prediction by visit, maximum AUCs were found at later time points in all patient
cohorts. Specifically, maximum AUC was observed for: the full cohort at AFTV3 with AUC
of 0.78 (ClI: 0.69 — 0.87) at (PEt, SERt) = (130%, 0.0); the HR+/HER2- subtype at AFTV3
with AUC of 0.9 (CI: 0.84 — 0.97) also at (PEt, SERt) = (130%, 0.0); the HER2+ subtype at
FTVs with AUC of 0.77 (CI: 0.62 — 0.92) when (PEt, SERt) = (70%, 1.4); and the TN at
FTVa4with AUC of 0.89 (CI: 0.76 — 1) with (PEt, SERt) = (40%, 2.0). The analysis suggests
that MRI thresholds need to be adjusted by breast cancer subtype to improve the predictive
performance. The PEt may need to be set higher in HR+/HER2- than other subtypes, which
may be due to higher background parenchymal enhancement among HR+ patients, and SERt
may need to be set at higher level for TN subtype. These data were recently published in
Tomography [17] and a validation study is currently underway in I-SPY 2, with a larger
patient population.

8§ Dedicated breast PET (dbPET) in I-SPY2

Breast cancer is increasingly recognized to represent a heterogeneous group of
diseases that vary in their treatment response, recurrence risk and overall prognosis [18].
Ever since the first description of breast cancer subtypes based on gene expression profiles
[19], there has been growing emphasis on the molecular characteristics of breast cancer.
While contrast-enhanced MRI depicts breast tumor morphology and vascularity [20],
positron emission tomography (PET) with tumor specific tracers can provide
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complementary molecular information that elucidates the underlying biology of the disease.
Recent advances of organ specific PET scanner have allowed us to incorporate PET into the
clinical workflow of breast imaging. In our ongoing effort to expand our breast imaging
capability to the realm of molecular imaging, we evaluated the use of a dedicated breast PET
(dbPET) to characterize breast tumor behavior and its response to treatment.

A 32 year-old female BRCAL1 gene mutation carrier with bilateral synchronous breast
cancers was imaged with breast MRI (1.5 T) and a new FDA-approved dedicated breast PET scanner
(MAMMI dbPET, OncoVision, Spain) before and after three weeks of neoadjuvant chemotherapy.
The patient had two biopsy-proven invasive ductal carcinomas in the right breast, one of which was
estrogen and progesterone receptor positive, HER2-negative (ER/PR+, HER2-) and the other triple
receptor negative (TN), as well as a TN invasive ductal carcinoma in the left breast. Standard DCE-
MRI was obtained using a dedicated breast coil. The patient also underwent MAMMI dbPET
imaging with a low dose of F-18 FDG (5 mCi) at 45 min post-injection. The same imaging protocol
was repeated after three weeks of chemotherapy.

Prior to treatment, breast MRI showed two malignant masses in the right breast
measuring 4.0 cm (ER+) and 5.3 cm (TN), respectively, in longest diameter. Overall
functional tumor volume (FTV) of both masses, defined as the volume of enhancing tumor
exceeding an early enhancement threshold of 70% above baseline 2°, was 73.2 cm® (Figure
2A). DDbPET showed two FDG avid lesions with the maximum standard uptake value
(SUVmax) of 19.1 for the ER + tumor and 19.5 for the TN tumor (Figure 2B).

After 3 weeks of paclitaxel treatment, MRI showed a decrease in size of the ER+
tumor to 3.2 cm, but there was slight enlargement of the TN tumor to 5.8 cm. Overall FTV
of both masses also increased to 89.5 cm?® (Figure 2C). As MRI appeared to show disease
progression, carboplatin was added to the regimen and dbPET was obtained 1 week later.
DbPET showed a complete resolution of FDG uptake in the ER + tumor and a 22%
reduction of SUVmax in the TN tumor (SUVmax at 15.3) (Figure 2D). Repeat MRI obtained
one week later showed minimal decrease in size of the right breast TN tumor to 5.2 cm and
further decrease in the right ER+ tumor to 2.3 cm.

Within the left breast, baseline MRI showed a 1.2 cm malignant mass with overall
FTV of 0.67 cm® and MAMMI dbPET showed an FDG avid mass with SUVmax of 6.7.
After 3 weeks of chemotherapy, MRI showed residual disease (measuring 0.7 cm with FTV
at 0.12 cm®, whereas dbPET showed no FDG uptake in the left breast mass after 4 cycles of
treatment.

After 12 weeks of paclitaxel chemotherapy, MRI demonstrated marked improvement
of all 3 lesions with a residual ill-defined 3.8 cm TN mass and a 2.2 cm ER+ mass in the
right breast with combined FTV at 1.82 cm®. The left breast mass had resolved completely
on MRI. The patient subsequently completed 4 cycles of doxorubicin and cyclophosphamide
(AC). The final MRI prior to surgery showed a residual 0.8 cm TN mass with surrounding
faint non-mass enhancement and faint non-mass enhancement at the site of the ER+ cancer
(overall FTV at 0.22 cm?®).
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Figure 2: Breast imaging of a 32-year-old female patient with biopsy
confirmed ER+/PR-/HER2- and TN invasive carcinomas in the right breast. A:
Before treatment DCE-MRI showing the malignant lesions with the mapping of
contrast signal enhancement ratio (SER) and overall FTV at 73.2 cm®.  B:
Before treatment MAMMI dbPET imaging with FDG confirmed MRI findings,
showing high FDG avidity in ER+ (blue arrow, SUVmax = 19.2) and TN
(yellow arrow, SUVmax = 19.5) tumors. C: After 3 cycles of treatment, DCE-
MRI showed residual disease in the ER+ tumor and progression of the TN
tumor with the FTV at 89.5 cm®, whereas D: 1 week after, MAMMI dbPET
showed a complete resolution of FDG uptake in the ER+ tumor and reduction of
SUVmax by 22% in the TN tumor.

Pathology from the subsequent right mastectomy revealed two residual foci of
weakly ER+, HER2-negative, high-grade invasive ductal carcinoma measuring 1.5 cm and
0.7 cm. There was also residual high-grade ductal carcinoma in situ, which was present as
scattered microscopic foci less than 1 mm each. Left mastectomy showed no evidence of

residual disease.

This pilot study demonstrates that dbPET may be more sensitive than dynamic
contrast enhanced MRI for evaluating early treatment response, revealing functional
changes that precede anatomic changes at MRI. Further studies involving larger numbers
of patients are underway to validate our initial observations.

published in the journal Clinical Breast Cancer [21].
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§ Data-sharing efforts and TCIA Collections

Over the past year we worked with The Cancer Imaging Archive (TCIA) to provide
three imaging collections for public access. In collaboration with TCIA, ACRIN, I-SPY and
QIN, we developed and implemented MRI data sharing procedures for clinical studies
focused on DCE and DWI of breast cancer. DICOM private attributes were defined and
documented for embedding quality assessment and SER FTV results within the shared
datasets, and a de-identification scheme suitable for our treatment response studies was
developed. The primary effort was to provide highly curated and quality-assessed image
data from the ACRIN 6657/1-SPY 1 trial for public data-sharing. This data was made
available with limited access in August 2015 and became fully public September 1, 2016
[22]. The collection includes images and clinical data on 222 patients with 847 MRI studies.
Protocol compliance and quality assessment enabled curating into multiple, easily
accessible, collection subsets for different levels of analysis including basic radiologic
evaluation, e.g. tumor size, and full SER FTV. Using the developed methods additional
collections were established on TCIA including a 64-patient pilot study for SER FTV
evaluation of treatment response in NAC, and a 13-subject collection for use in the QIN
ADC Mapping Challenge led by Dr. Newitt.

DISCUSSION OF COLLABORATIONS

This UO1 is being conducted in the context of the ongoing multi-center I-SPY
2/ACRIN 6698 Trial integrating molecular biomarkers and imaging to maximize the
effectiveness of neoadjuvant treatment for patients with locally-advanced breast cancer. We
leverage our existing partnerships with the American College of Radiology Imaging
Network (ACRIN) Imaging Core, the National Institute of Standards and Technology
(NIST) and Quantitative Imaging Network (QIN) sites to develop and evaluate a robust
image quality assurance (QA) process for our ongoing and future clinical trials, and to
optimize quantitative image classifiers for prediction of treatment response. In addition to
the face-to-face meeting in April 2016 and regular teleconference with working groups
(WG) and sub-groups, we have been interacting with other QIN sites on a regular basis. In
particular, we have been working closely with Dr. Thomas Chenevert at the University of
Michigan to develop the image quality ranking system and gradient non-linearity correction
(GNC) in breast DWI.

8 Participation in QIN Network Committees and Working Groups

e Dr. Hylton served as Chair of the Executive Committee for the term April 2015-
March 2016. During this time, she worked with QIN program leaders to establish a
Working Group to develop guidelines for managing Challenges and Collaborative
Projects (CCPs). Dr. Hylton continued to lead the Executive Committee Working
Group on Breast MR Metrics of Response (BMMR).

e Dr. Newitt continued to lead the ADC Mapping Collaborative Project under the QIN
MRI Subgroup of the Image Analysis and Performance Metrics Working Group
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(IAPMWG). Dr. Newitt completed his service as Co-Chair of the MRI Subgroup of
the IAPMWG in April 2016 and continues to participate as a member.

e Dr. Wilmes was a central participant in the Data Acquisition Working Group
(DAWG). She led UCSF’s participation and site data acquisition for the multi-center
challenges for 1) Diffusion weighted imaging: Characterization (Phase 1) [23] and
correction (Phase Il) of gradient non-linearity [24] and 2) Assessment of inter-
platform variability of Ty quantification methods used for DCE-MRI in a multicenter
phantom study [25].

e Dr. Ella Jones was a regular participant in the Clinical Trial Design and
Development Working Group (CTDD WG). In 2016, she served as the Vice Chair
of the CTDD WG and co-authored a paper surveying the accrual pattern in clinical
studies involving quantitative imaging [26].

8§ Participation in QIN Challenges

UCSF investigators led two QIN Challenges/Collaborative Projects (CCPs) and were
also major participants in two additional CCPs, as described below.

8 The Breast MRI Metrics of Response (BMMR) Challenge

A QIN-sponsored challenge for evaluation of Breast MRl Metrics of Response
(BMMR) was designed in 2016 by a QIN Executive Committee working group led by Dr.
Hylton, implementing the challenge and collaborative project procedures developed by the
QIN in 2015. The objective of the challenge was the prediction of recurrence free survival
time (RFS) for patients with invasive breast cancer undergoing neoadjuvant chemotherapy,
utilizing serial DCE-MRI studies taken over the course of therapy. The BMMR challenge
opened in May 2016 and ran through October 2016 and was the 1% QIN challenge to be
performed under the new QIN guidelines for CCPs. The BMMR Challenge used MRI data
from 162 ACRIN 6657/I-SPY 1 patients, annotated with RFS outcome and breast cancer
subtype defined by hormone receptor (HR) and HER2 receptor status. Separate data on 64
patients with RFS outcomes from a UCSF pilot neoadjuvant breast cancer study was
provided as a training data set. Both training and test data sets were made available to
Challenge participants on TCIA. The challenge was managed in collaboration with Dr,
Jayashree Kalpathy-Cramer through the QINLABS website. Three QIN groups (U. Chicago
(M. Giger), Moffitt Hospital (J. Drukteinis) and MGH (J. Kalpathy-Cramer)), and one non-
QIN group (U. Pennsylvania (D. Kontos)) submitted results for evaluation. Three other
groups (Stanford, U. Washington, and OHSU) participated in development of the challenge
but did not complete analysis of the test phase data. Statistical analysis of the challenge
results was performed by members of the ACRIN Biostatistical Center (Zheng Zhang and
Helga Marques of the Brown U. Center for Statistical Sciences). The BMMR Challenge
results are currently being prepared for publication and will be presented at the 2017 QIN
face-to-face meeting.
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8 QIN ADC Mapping Collaborative Project: Multi-site Concordance of DWI Metrics

The ADC Mapping CCP, led by Dr. David Newitt of UCSF was undertaken to
examine the variability in apparent diffusion coefficient (ADC) measures resulting from
different post-processing software implementations utilized by researchers across the NCI
Quantitative Imaging Network. Participating QIN sites included UCSF, University of
Michigan-1, BNI, BWH, JHU, Mount Sinai, MCW, MGH, OHSU, University of Michigan-
3, University of Washington and Vanderbilt. A secondary aim of the ADC Mapping
Challenge was to evaluate the feasibility and practical challenges involved in centralized
analysis of multi-center ADC data. MRI data from both phantom [27] (Ph) and in vivo
breast (Br) DWI was analyzed, including data from three major MRI scanner manufacturers:
Siemens, Philips and GE Medical Systems (Table 2). The breast MRI studies [28] were
curated and de-identified at UCSF and shared via TCIA [29] in a private collection for this
CCP. Phantom data was provided by U. Michigan via the NCIPHub [30]. Eleven QIN sites
calculated parametric maps using 12 DWI analysis platforms, with analysis implementations
using IDL, Matlab, 3D Slicer, OsiriX, AFNI, C++ and QIBAPhanl.3, and file formats
DICOM, NIFTI, NRRD and Matlab. Manufacturers' software (scanner-generated) DICOM
ADC maps were also evaluated where available. All comparative and statistical analyses
were done by D. Newitt and J. Gibbs at UCSF. For comparisons, all maps were converted to
a modified-DICOM format and scaling factors were set in the meta-data to produce ADC
maps in common units of 10°® mm?/sec. ROIs were defined as shown in Figure 3 and applied
to the parametric maps yielding mean values of the diffusion metrics. Concordance was
evaluated from the percent difference of each measurement from the median value for all
QIN sites. Pairwise within-subject coefficient of variation (wCV) was calculated for all site
pairs and metrics to establish groupings of similar (wCV<0.1%) results.

4 b-value, 3 direction ADC4 1cm circles

Phdb 0,500,900, 2000 GEMS, SM, PM
QIBA diffusion 1 40, 403 ADCiron 13 vials
phantom

Brop 2 Dvale 3direction 8 0,800 GEMS,SM,PM  ADC2  multi-slice tumor

bilateral axial breast

101, 102, 103

4b-value, 3 directi 8 ADC4

Brdb bih&:f{;xial'ﬁi;? 0,100, 600, 800  GEMS, SM, PM multi-slice tumor
201-208 ADC3,,,,

PerfFrac
* Manufacturers: General Electric Medical Systems (GEMS); Siemens Medical (SM); Philips Medical (PM)

@ DWI Parameter Definitions:
ADC<n> (n=# b-values) mono-exponential ADC

ADCyijow mono-exponential ADC using only highest and lowest b-values
ADC3; 0y mono-exponential ADC using 3 highest b-values
PerfFrac fraction of b=0 signal attributed to fast-decaying perfusion component

Table 2: Protocol and analysis metric descriptions for data sets included in
ADC Mapping Challenge.
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Figure 3: ROI definitions for PVP phantom scans (left) and in vivo
breast scans (right). The breast image shows a single representative
slice of the multi-slice tumor ROI.

Results

All 12 platforms were able to produce mono-exponential ADC maps for the Br2b
and Br4b groups, and perfusion-suppressed ADC3siow Values for Br4b. 8 platforms provided
perfusion-fraction maps for the Br4b studies. All sites were able to handle all multi-vendor
DICOM image sets, but interpretation of the full directional data from the GEMS scanners
(Br4b, IDs 203, 204) was challenging for several sites due to unfamiliarity with this format,
requiring assistance from UCSF. All maps were centrally analyzable, but required a variety
of manipulations including scaling, slice order reversal, and masking of NaN values,
illustrating the necessity of adoption of a uniform DICOM standard for parametric maps
[31]. Preliminary analysis was completed in Fall 2016, and submitted as an abstract for the
2017 ISMRM meeting. Sample results for the 4 b-value breast ADC are shown in Figure 4.
Inter-site wCV tables revealed eight of the sites were grouped into 2 separate groups: sites
[1, 4, 13] with wCV<0.01% and sites [3, 5, 6, 8, 9] wCV<0.1%, while the other 4 sites and
the scanner-generated maps showed more individualistic behavior. ADC values differed
2.8+0.2% between the two groups and up to 5% for non-grouped sites. The Philips scanner
map had a 28% error due to inaccurate scaling information in the DICOM. Phantom results
showed similar groupings amongst analysis implementations, though with smaller
differences between the groups: RMS percent difference in ADC values for all phantom ROI
of 0.29%, 0.30%, 0.62% for GEMS, Siemens, and Philips scans respectively. Full results
will be submitted for publication in 2017.
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Figure 4: Sample results: Percent difference from median values
for all sites for the mono-exponential ADC from the 4 b-value
breast scans. Horizontal bars indicate the 2 groups of sites with
close to identical results as measured by the wCV. Scanner-
generated results are shown at the far right.

2.0

8 AutoPERCIST Challenge

In our effort to incorporate PET into the workflow of breast imaging, we recognized
the need for accurate objective measurements of standard uptake values (SUVs), required
by PERCIST 1.0, to evaluate FDG uptake and tumor response to treatment. We sought to
collaborate with Drs. Richard Wahl (Washington University) and Jeff Leal (John Hopkins
University) to assess the AutoPERCIST software to semi-automatically identify and
measure reference tissue (liver), set disease threshold values and calculate SUVs (peak,
max, mean, volume and total lesion glycolysis). Using the latest version of AutoPERCIST,
we were able to accurately identify and measure breast cancer patient’s primary breast
tumor and axillar lymph node (Figure 5). We also participated in a multicenter reader
variability study of AutoPERCIST through the CTDD WG. Sixteen sites including six
international institutions participated in this study. Thirty paired sets of anonymized FDG
PET-CT images were downloaded for evaluation and up to 5 tumor lesions from each PET
image will be selected. All selections will be recorded and sent to the central database at
Johns Hopkins Image Response Assessment Team for quality control.

8 DWI Gradient non-linearity correction Challenge: Phase | and Phase |1

Our group participated in a multi-site MRI data challenge led by Tom Chenevert’s
group at University of Michigan to improve the accuracy of diffusion weighted imaging
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(DWI1). Gradient non-linearity in DWI introduces a significant spatial bias in apparent
diffusion coefficient (ADC) values. In the DAWG Phase | project, our site and others
acquired DWI data from an imaging phantom with known ADC value for multiple locations
within the MRI bore. From these data, GNL bias was characterized and “corrector
functions” were generated [23]. In the Phase Il project, our group was one of a subset of
initial participants that acquired DWI data in a different phantom to validate the corrector
functions derived in Phase I. This work demonstrated that the GNL correction resulted in
increased quantitative accuracy in measured ADCs across multiple sites and MRI scanner
vendors [24].

Figure 5: Screenshots from AutoPERCIST. A:
Automatic identification of the liver as a reference
organ. B: Measurement of the primary breast tumor
and the axillar lymph node.

8 T1 mapping Challenge: Assessment of inter-platform variability of T1 quantification
methods used for DCE-MRI in a multicenter phantom study

Our group participated in a multi-site MRI data challenge led by Bachir Taouli’s
group at Mt. Sinai hospital to evaluate different MRI T1 mapping methods for accuracy and
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variability. To this end we implemented standard T1 mapping protocols provided by the
challenge and acquired data in a phantom of known T1 values using the prescribed
sequences as well as our local site protocol. These data were provided to the challenge and
in combination with data from other imaging sites, were used to determine the variability of
differer;g T1 mapping sequences and which sequence is the most accurate for calculating T1
values =°.

ACTIVITIES OUTSIDE THE QIN NETWORK
8 The Cancer Imaging Archive (TCIA)

We worked with investigators at TCIA and the ACRIN Imaging Core Lab to enable
the transfer of ACRIN 6657 image data and to ensure that appropriate patient de-
identification and DICOM standards for QI are incorporated. We implemented specific
capabilities to support the archival of derived images and metadata associated with the
tumor volumetric analysis used to generate the primary imaging endpoint, functional tumor
volume (FTV) for ACRIN 6657, as well as for storing results from QA/QC evaluations.

8 American College of Radiology Imaging Network (ACRIN)

To improve image quality assurance, we collaborated with the ACRIN Imaging Core
to develop the image QA/QC program for the I-SPY2/6698 trial. The resulting DWI quality
ranking system has been implemented as part of the image review and analysis process used
to generate the primary study endpoint for the trial.

§ NIST and Industry

We are collaborating with the National Institute of Standards and Technology
(NIST) and two industrial partners, High Precision Devices, Inc. (HPD) and The Phantom
Laboratory through the SBIR Phase | award mechanism. We previously worked with NIST
to design and prototype a universal breast MRI phantom that could be used in multi-center
clinical trials for standardization and quality control of breast DCE and DWI data [32, 33].
Based on specifications provided by UCSF, the next generation of prototype phantom is
being designed by both industrial partners. These two prototypes are compatible with most
major breast MRI coils and magnet systems, and contain compartments with materials
mimicking the MRI properties of normal fibroglandular, adipose breast tissue and breast
tumor, with a representative range of T1, T2 and ADC values. In addition, geometrical
objects for evaluation of image distortion and resolution are in place. In conjunction with
the final physical design and single-site testing at UCSF, we will develop comprehensive
image acquisition protocols and measurement methods to efficiently monitor breast-imaging
critical parameters including T1 and ADC measurements, image distortion, fat suppression
and SNR. The phantom and associated protocols will then be evaluated in a pilot multicenter
study at 3-5 I-SPY 2 clinical centers. Additionally, in collaboration with the QIN Data
Acquisition Working Group (DAWG) and Image Analysis and Performance Metrics
Working Group (IAPMWG), we plan to design and execute a phantom-based challenge
focused on breast-specific imaging using the finalized phantom.
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PLANS FOR NEXT YEAR

Our renewal application received an Impact Score of 20 and is pending. If funded,
our continuing UO1 program will focus on the clinical evaluation of advanced QI methods in
I-SPY 2. Through our experience with ACRIN 6698, we encountered a number of issues
that pose limitations to the quantitative use of DWI in the NAC setting, including systematic
errors in acquired data due to gradient non-linearity and Bo inhomogeneity, and variability in
image quality and consistency. We propose to address these in the ongoing U01 project and
to perform more in-depth and robust evaluation of breast DWI for assessing NAC response
in I-SPY 2. We plan to introduce improvements to both the DWI data acquisition methods
and diffusion quantification approaches. Through continued collaboration with the National
Institute of Standards and Technology, we will utilize the universal breast MRI phantom to
implement a phantom-based quality control (QC) process at the participating I-SPY 2
clinical centers. We will also implement vendor-specific GN correction for all breast DWI
data in I-SPY 2. We will continue collaborative efforts begun under ACRIN 6698 to
improve diffusion quantification approaches and develop DWI-based metrics that can be
used in combination with DCE metrics to improve predictive performance of imaging. The
project will be conducted in the clinical context of the ongoing I-SPY 2 trial, allowing us to
measure the impact of each proposed refinement, as well as the overall effectiveness of DWI
for predicting response and survival.
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UO01CA166104: Advancing Quantification of Diffusion MRI for Oncologic
Imaging

University of Michigan (1)

Thomas L. Chenevert, Ph.D., Brian D. Ross, Ph.D., Craig J. Galban, Ph.D.
and Dariya Malyarenko, Ph.D.

INTRODUCTION

The overarching goal of this project is to provide for standardized implementation
and clinical validation of advanced quantitative diffusion-weighted MRI (gDWI) analytical
techniques for quantification of tumor diffusion values across multiple MRI systems in order
to improve use in multi-site cancer imaging trials [1]. This research effort is focused on
identification and mitigation of significant technical impediments to DWI as a quantitative
imaging (QI) metric for cancer patients. Activities are aligned with three specific objectives
involving strategic collaborations within the NCI Quantitative Imaging Network (QIN),
Imbio, LLC (industrial partner), the National Institute of Standards and Technology (NIST),
Eastern Cooperative Oncology Group and the American College of Radiology Imaging
Network (ECOG-ACRIN), and the Imaging and Radiation Oncology Core (IROC). The
major goals of this U01 research effort are focused on an integrated series of three Specific
Aims involving image data transfer and analysis with quantitative software testing (Aim 1),
data acquisition quality assurance and system characterization (Aim 2), removal of technical
bias (Aim 3) and statistical evaluation (Aim 1). Scans will be obtained for site/system
certification and quality control as described in Aim 2. Diffusion MR clinical data will
undergo bias removal as described in Aim 3 followed by generation of histogram and voxel-
wise parametric response map (PRM) metrics using the proposed advanced software
algorithms described in Aim 1. The image data source for ACRIN 6702 & 6698 trials is the
TRIADvV4 application. Deliverables by Aim are as follows:

SAIM 1

To develop and evaluate a reproducible and robust computational environment for
quantification of diffusion-weighted MR images using data collected from the ISPY-2 breast
cancer trial.

For this QIN effort, diffusion-PRM will be evaluated using a novel computing
platform allowing DICOM data to be securely uploaded and processed through a web
browser. This will enable easy collaboration between Imbio and UM QIN investigators. All
software under this grant proposal will be developed and tested in accordance to Imbio’s
quality system that ensures standardization of quantitative measures. This approach will be
undertaken using a semi-automated spatial alignment of serial data. Image registration will
be performed using a multi-layered approach. Rigid body registration is first performed
followed by a geometric warping interpolant, i.e. B-spline, algorithm used for mapping the
tumor volumes from interval examinations onto the tumor volume from the pre-therapy
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anatomical image, which is defined by the user. Registration will be based on the
optimization of mutual information between two image data sets, allowing for multimodal
registration, and implemented through the use of automatically determined control points.

§ AIM 2

To devise the next generation DWI phantom for absolute quantitation that spans the
tissue ADC range and incorporates internal MR-thermometry; and to extend QA/QC metrics
to include characterization of systematic bias for ongoing multi-center breast cancer trials.

Through QIN and ACRIN collaborations, we provide QA/QC services and facilitate
incorporation of developed quality assurance methods utilizing an ice water diffusion
phantom in ongoing multi-center ACRIN 6698 and 6702 clinical trials. Acceptable
performance of each newly added MR system will be confirmed upon entry to the study, and
reaffirmed bi-annually or after significant hardware/software upgrades to each system. Our
developed uniform data structure format (regardless of vendor-specific DICOM) will be
used for data screening for protocol compliance testing and data reduction. Each QA/QC
DWI scan is performed in four passes in rapid succession such that system noise & short-
term instability artifact level are measurable for each pixel by variance over these passes.
QA procedures will be amended to include the long-tube ice-water phantom distribution
among participating sites, as well as implementation of uniform quality assurance protocol
for routine assessment of systematic spatial GNL bias on relevant scanner platforms.
Analogous to the multi-center DWI phantom study, a detailed phantom preparation and
QA/QC scan protocol will be provided with each phantom set. Reported performance
metrics will include measures of random noise and bias over FOV, as well as DWI
directional spatial uniformity coefficients, and scanning protocol compliance.

§ AIM 3

Enhancement of predictive power for quantitative diffusion metrics by retrospective
correction of DW-MRI gradient nonlinearity (GNL) errors in multi-center therapy-response
trials.

Our proposed GNL bias correction approach will follow the recently described
algorithm, based on system characterization from regular QC measurements on the ice water
diffusion phantom (Aim 2). This correction can be implemented independent of proprietary
information on gradient design. This aim will include (1) system GNL and SNR evaluation
(data from Aim 2); (2) modeling of system-specific nonlinearity tensors; (3) construction of
digital 3D maps for DW bias; (4) application of corrector maps to patient DWI-ADC data
from ongoing clinical trials (data from Aim 1); (5) performance evaluation for quantitative
population statistics (e.g., fDM and histogram metrics) with and without bias correction.
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DISCUSSION OF PROGRESS
8 Progress Toward Next Generation DWI Phantom and QA/QC

A formal collaboration has been established with NIST scientists to develop an
ambient temperature diffusion phantom based on polyvinylpyrrolidone (PVP) that offers
absolute quantitative diffusion coefficients tunable by PVP concentration, long-term
stability, no toxicity, and spans the tissue ADC range 0.4->2.5(x10-3mmz2/s). This builds on
an existing temperature-controlled PVP-based DWI phantom design
(http://www.nist.gov/pml/div686/grp08/biomagnetics.cfm#) that has become “a standard”
since endorsed by QIBA (http://www.rsna.org/giba/ ) and is commercially available
(http://hpd-online.com/MRI-phantoms/php ). UM investigators were deeply involved in its
design and understand its two key limitations: (a) it requires ice-water temperature control to
achieve absolute quantification, thus phantom preparation is relatively tedious with limited
duration for use (<1-2hr) , and (b) 0°C PVP solutions only span half the tissue ADC range.
Our proposition is to use PVP solutions at ambient temperature thereby eliminating phantom
preparation while achieving the full relevant tissue ADC range. However, this approach
now requires determination of absolute temperature internal to the phantom. To achieve
this, a temperature-sensitive chemical probe insert, combined a single-shot low bandwidth
EPI (LB-EPI) sequence will provide an estimate of temperature based on spatial separation
of chemical moieties visible as ghosts on the image. When deployed in the field, we believe
an image-based read-out of internal temperature using a standard sequence with parameters
set to maximize spatial separation of chemical shift ghosts (i.e. low bandwidth) would be
less dependent on shim quality and operator skill than single-voxel spectroscopy. NIST has
been contracted to provide essential calibration of chemical shift vs temperature of candidate
probes chemically designed for: (a) long T2; (b) temperature sensitivity; and (c) comparable
signal between chemical moieties. The calibration curve (Figure 2A) performed at 500MHz
(11.7T) of a pH-adjusted t-butanol with dilute deuterium provides excellent NMR properties
and reasonable temperature-sensitivity. Figure 2B illustrates temperature read-out via LB-
EPI performed on a clinical 1.5T (64MHz) system. A software routine was developed to
automatically analyze LB-EPI to convert spatial shift (via cross-correlation) to chemical-
shift, thus temperature. Magnetic field-dependent bias discovered in our fiber-optic
temperature probe (used for independent confirmation) was recently rectified and new
batches of chemically-designed probes are being evaluated.
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Figure 2A: Chemical shift vs temperature calibration performed at 500MHz on pH-
adjusted t-butanol + deuterium sample. The deuterium improves shimming to narrow
line width (inset), thus improves calibration precision. Once calibration is available, fit
coefficients are used in conversion of low-bandwidth EPI chemical shift “distance” into
internal phantom temperature when scanned on standard clinical system.
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Figure 2B:(a) Low-bandwidth EPI, to increase sensitivity to chemical shift
difference between —OH and -CH2, hence improve temperature sensitivity;
(b) DWI of PVP phantom containing chemical temperature probe; and (c)
corresponding ADC map spanning (0.3 to 2.0)x10 mm?/s.
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In parallel to work on this next generation DWI phantom, QA/QC software tools,
fabrication and delivery of DWI ice-water phantoms, and Site Certification services have
been established with aim to improve uniformity and quality of DWI in clinical trials. To
date, these services have been utilized in four Oncology trials: ACRING6698 (Breast);
ACRING6701 (Prostate); ACRIN6702 (Breast); NRG-BNOO1 (Brain). Over 200 DWI
phantom datasets have been analyzed. Approximately 15% failed certification tests due to:
significant protocol violations; high ADC non uniformity due to gradient non linearity; and
low SNR. Figure 2C illustrates the automated DWI QA/QC analysis output (Fig 2C (2))
used for system certification report (Fig 2C (b)) for one NRG-BNOOL1 trial site.

NRG BMN0O1 MRI Diffusion Phantom Site Qualification Test Report

y o Bu vt froom Ba avalastion of S ics Ve Dolugon I Prarigan

Figure 2C: (a) Sample output of DWI phantom analysis to assess ADC bias, random error,
gradient non linearity and DWI SNR which form the basis for (b) the site/system certification
report to qualify for the advanced imaging arm of the NRG-BNOO1 trial.

The NRG-BNOOL1 trial also involves dynamic susceptibility contrast (DSC) perfusion
MRI for which we lack a dynamic phantom, therefore human subject DSC series are
assessed for quality using: whole-brain SNR estimated via voxel-wise signal stability from
pre-injection dynamics; peak change in signal upon bolus passage; and inspection of whole-
brain leakage-corrected rCBV histogram (Figure 2D).
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Figure 2D: Quality is assessed on each DSC series via (a) a SNR estimate using variance over
pre-bolus timepoints measured for each voxel, averaged over the brain; (b) peak DSC
contrast due to bolus passage; (c) a representative leakage-corrected rCBV map and (d) the
whole-brain histogram of rCBVcorr.

8 Progress Toward Gradient Nonlinearity Correction

During the previous UO1 cycle, our team has designed and launched a QIN-wide
multi-center “phase 1” collaborative project within Data Acquisition Work Group (DAWG)
to obtain empiric descriptors of gradient nonlinearity (GNL) along primary magnet
directions on representative MRI systems utilized in clinical trials. As a result of “phase 1”
project, channel-specific GNL was characterized for ten distinct gradient systems by three
vendors [2]. In Year 1 of UO1 renewal project, based on “GNL phase 1” results, the system-
specific nonlinearity tensors were modeled using previously developed empiric approach
[3], and the corresponding empiric 3D diffusion weighting bias maps were derived for six
representative systems (e.g., Figure 3A), two from each vendor (GE, Siemens and Philips).
The follow-up GNL correction validation “phase 2” project was launched within QIN
DAWG to validate the empirically derived GNL correctors using independent phantom
(FBIRN, 1.5% agar) scans outside of the (spatially limited) “phase 1” measurements
performed with different DWI phantom (ice-water tube). In addition to test scans using
arbitrary (orthogonal) DWI directions at two arbitrary off-center locations within the bore
with substantial (predicted) GNL bias (> 10 %), the participating QIN sites obtained a
“reference” measurement at bore isocenter representing the true diffusion coefficient free of
GNL bias. The retrospective empirical correction was then applied to “test DWI” DICOM
by our team, blinded to “reference DWI”. The empirical GNL correctors were also
compared to vendor design GNL characteristics provided for several systems. A convenient
procedural simplification for isotropic phantom medium was that direction-average DW bias
correctors are independent of DWI schema (LAB or non-LAB) and could be applied directly
to ADC maps. Degree of similarity of ADC histograms from reference and corrected off-
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center locations were used as a figure of merit for the retrospective correction. The
performed correction improved uniformity of diffusion weighting for all systems at least
three-fold, which lead to seven-fold gain in ADC precision and two-fold reduction of cross-
site variability (Figures 3B and 3C). These results confirmed feasibility of centralized GNL-
bias correction in multi-site trial setting warranted by general stability of system-specific
GNL. The results of this project were published in QIN special issue of Tomography [4].

Figure 3A: Screen shots of 3D Slicer volume rendering (FOV = 60 cm?) for empirically modeled (based on
generic map (a)), Sl component of nonlinearity tensor (b) and corresponding gradient channel 3D corrector map
(c) of one of the QIN systems. The empiric 3D model in (b) was obtained by re-scaling of generic model in (a)
according to GNL characteristics of Sl channel measured during “phase 1" of QIN DAWG project. Same window
leveling and anatomic orientation (denoted by R, 5, A letters) was used for (a-c).

The automated retrospective correction tools were developed to recast the static
(empiric) 3D correctors for arbitrary scan geometry as recorded in DICOM. These tools
would help streamline analysis of multiple data sets from clinical trials. Although, the
developed empiric correctors appear sufficient to remove the bulk of observed GNL bias,
these correctors are only approximations of actual bias, best predicted based on system
design coefficients known to vendors ([5], Figure 3B). Along with the finite accuracy of
empiric GNL scaling, finite contribution from local shim (revealed during “phase 1” project
[2]) and EPI distortion errors were identified as the main sources of residual ADC error.
Another limitation of the proposed “retrospective” GNL correction approach is related to the
type of DICOM data available from ongoing clinical trials. The clinical trials typically store
only trace-DWI DICOM, which would preclude channel-specific GNL corrector application,
desired especially for anisotropic tissue [2]. Nevertheless, for majority of breast DWI data
targeted by this UO1, the assumption of nearly isotropic tissue diffusion is valid, and
direction-average corrector approach should be viable for ADC maps [5].
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PLANS FOR NEXT YEAR

§ Aim 2

We believe significant absolute temperature error stems from uncertainly in the
calibration data, therefore we have altered our apparatus to allow simultaneous direct (i.e.
non-MR) and NMR/MRI temperature measurement. The goal of this component of the
proposal is to identify, fabricate, calibrate, and implement chemical systems that can be used
as internal thermometers to measure absolute temperature in the MRI environment, using
image features. To date, we have designed and implemented several systems having water,
and methyl or methylene resonances with long T2 times. The dual frequency mixtures allow
internal calibration and absolute temperature accuracy to approximately 1-2 °C in clinical
MRI systems at 1.5 at 3.0 T. To improve this accuracy, we will explore the ability of
chelates of the lanthanide metals europium, praseodymium, and thulium to create enhanced
temperature sensitivity due to paramagnetic induced chemical shifts. These metals have
short electron T1 times and have been used previously as chemical shift reagents to with
minimal line broadening.

§ Aim 3

In Year 2 of the project, toward Aim3, we plan to identify a representative DWI data
set from ACRIN 6698 breast clinical trial, acquired on (multiple) characterized systems with
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validated GNL correction. The longitudinal phantom QC data for the corresponding systems
will be analyzed to ensure consistency with the empirically modeled GNL bias and to
establish SNR thresholds for retrospective GNL correction. The appropriate permissions will
be obtained to request the de-identified DWI DICOM from the data managing center
(UCSF) for retrospective correction for trial subjects scanned on the corresponding systems.
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CA 160045: Objective Decision Support Environment for Clinical
Trials

Mayo Clinic

Bradley Erickson, M.D., Ph.D.

INTRODUCTION

The goal of our grant is to apply machine learning techniques to objectively
identify those imaging features that best characterize tumors--either tumor biology or
therapy response. In particularly, we aimed to develop virtual biopsy technology that will
enhance the clinical decision making process in brain cancer by providing tools for
investigation of image-based therapy response assessment. We anticipate this project will
impact clinical trials by enabling identification of superior outcome measures using
objective algorithmic selection methods.

There is significant potential for Machine Learning (ML) to improve how we use
imaging in clinical trials to assess therapy. Multi-spectral MRI processing is not new, but
using ML methods to identify more complex relationships than simple linear ones could
be important, and is novel in the therapy assessment and Radiogenomics space. There
has been relatively little work focusing on the estimation of the information content of
features in medical images

The specific deliverables for the grant include:

1. Alibrary of easily applied tools for computing both widely used standard features
and biologically relevant features from DICOM images. We expect this library
should be usable by QIN community.

2. An interactive tool for applying several FS methods to identify the most
informative features and best performing machine learning methods for the
selected feature set. We expect this tool should be usable by QIN community.

3. A family of decision support applications for three clinical situations.

DISCUSSION OF PROGRESS

8 Automated Segmentation of hyperintense regions in FLAIR MRI

Brain tumor segmentation is a challenging task with many researchers and
competitions focusing on creating and evaluating newly developed algorithms. In 2012,
the brain tumor image segmentation benchmark (BRATS) competition (1,2) was
established as part of the MICCAI conference and since then has been the “gold
standard” for brain segmentation algorithm testing.
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The brain tumor segmentation algorithms commonly described in the literature
usually exploit classical image analysis techniques or pattern recognition techniques (3—
5) with the more recent approaches utilizing deep convolutional neural networks (6-13).

Each MRI series (image type) reveals different information about the tumor. For
instance, T1-weighted (T1w) post contrast acquisitions reveal information regarding the
enhancing part of the tumor, while fluid-attenuated inversion recovery (FLAIR)
acquisitions capture the edema part of the tumor. Lesion size in FLAIR images is an
important clinical parameter for patient assessment and follow-up. Manual estimation of
the volume of the lesions in FLAIR images is time-consuming and highly user-
dependent.

Autoencoders have recently been gaining attention for their ability to perform
segmentation tasks in medical images (14-16). One advantage of autoencoders against
other deep learning approaches is the use of decoders that enables estimation of features
suitable for pixel-wise classification (16).

Over the past year, our team focused on accurate quantification of the abnormal
signal areas in the FLAIR acquisitions in glioma patients. For the purpose of this study,
we utilized convolutional autoencoders trained on the publically available BRATS
dataset and evaluate the accuracy on a dataset where three expert segmentations were
available. Figure 1 captures the main idea of an autoencoder and its application to image
segmentation. The primary concept is that the autoencoder learns how to reconstruct the
segmented desired output (namely the segmentation mask). The encoder layer consists of
7 convolutional layers. The convolutions are used to produce the feature maps. In
addition, a rectified-linear non-linearity (ReLU) is applied followed by maxpooling with
a 2 x 2 window. The resulting output is sub-sampled by a factor of 2. Max-pooling
achieves translation invariance, accounting for small spatial shifts. The decoder
component consists of a hierarchy of decoders, one corresponding to each encoder. Of
these, the appropriate decoders use the max-pooling indices received from the
corresponding encoder to perform non-linear up-sampling of their input feature maps.
This allows for improved boundary delineation (16). The high decoder output is
forwarded to a trainable soft-max classifier which classifies each pixel independently.
The number of input channels is the number of classes (in our case, tumor or not tumor)
and the output of the sigmoid classifier is a 2 channel image of probabilities. The
predicted segmentation corresponds to the class with maximum probability at each pixel.
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Input Encoder Decoder Output

— L= — Y
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Figure 1: The overall architecture of the developed convolutional
autoencoder. Tumor regions were assigned to a value of 1, while
surrounding tissues were assigned to a value 0.
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Comparison of the proposed method and the three manual segmentations

available against the STAPLE algorithm is shown in Table 1.

Measure | Statistic User 1 User 2 User 3 | Proposed
Jaccard Mean 0.923 0.840 0.758 0.785
SD 0.051 0.077 0.057 0.095
Max 1.000 1.000 0.865 0.917
Min 0.760 0.550 0.649 0.458
Median 0.931 0.856 0.747 0.821
Q1 0.901 0.815 0.711 0.729
Q3 0.957 0.879 0.809 0.849
Dice Mean 0.959 0.911 0.861 0.876
SD 0.029 0.048 0.037 0.066
Max 1.000 1.000 0.928 0.957
Min 0.864 0.710 0.787 0.629
Median 0.964 0.922 0.855 0.901
Q1 0.948 0.898 0.831 0.843
Q3 0.978 0.935 0.895 0.919
FPF Mean 0.079 0.198 0.190 0.291
SD 0.055 0.135 0.111 0.210
Max 0.253 0.819 0.460 1.181
Min 0.000 0.000 0.020 0.090
Median 0.070 0.164 0.169 0.219
Q1 0.044 0.136 0.100 0.172
Q3 0.101 0.227 0.275 0.370
TPF Mean 0.993 0.996 0.899 0.995
SD 0.032 0.015 0.062 0.016
Max 1.000 1.000 0.994 1.000
Min 0.793 0.923 0.720 0.931
Median 1.000 1.000 0.895 1.000
Q1 1.000 1.000 0.860 1.000
Q3 1.000 1.000 0.956 1.000

Table 1: Comparison of the proposed method and the three manual segmentations available
against the STAPLE algorithm.
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Figure 2 captures the probabilistic output generated from the autoencoder for an
input image.

Original Propabilistic Output

Figure 2. Probabilistic output of the proposed system for a case in our validation
dataset. As depicted (right panel) tumor areas appear to be brighter than
surrounding tissue.

The proposed automated system is indistinguishable from expert derived
segmentations in its ability to perform glioma segmentation. This approach will be useful
for alleviating the inherent variability of human derived tumor delineation thereby
improving the reproducibility of image-derived biomarkers.

8 Grunt--a Flexible Pipeline Technology

Docker (https://www.docker.com/) is an open source technology that allows one
to capture a complete execution environment as a file that can then be executed on any
Docker host platform (which can be LINUX, MacOS or Windows Server). This is much
like virtual machine technology, but has much lower computing requirements.

In research, we frequently think of ‘pipelines” where a series of tools are applied
to a dataset, producing a final output at the end of the pipe. With Docker technology, it is
feasible to connect a number of tools (Dockers) together that might otherwise not be
compatible. One minor challenge to this approach is providing access to the image files
to process, and the result, in a secure and controlled fashion. Security is increasingly
recognized as an important part of proper research computing, and others working on
pipelines have largely ignored security, and we believe that will become a critical error.

To leverage Dockers while addressing the security issue, we propose deploying
the image analysis algorithms as web application and interact with them though a
RESTful Application Programming Interface (API). We have extended an open source
software tool called Grunt (https://githuib.com/Mayo-QIN/grunt). The aim of Grunt is to
simplify the creation and deployment of web apps utilizing Dockers with an easy and
well-documented connection method.
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The only documentation needed is a description of the endpoints of the RESTful
api basically the description of the required algorithm inputs. Grunt can be configured
based on configuration files (yml or cli- - enables compatibility with existing tools like
Slicer)). The configuration files consist of multiple services described as endpoints of the
RESTful api.

By deploying the service through a RESTful api also enables the researched to
leverage cloud architectures. Since one institution can create the grunt based app publish
it in a private or public cloud and subsequently potential collaborators would be able to
stream the data to the service and retrieve the results. A very crucial requirement for
creating automated pipelines. Grunt also contains a web interface where users can check
the jobs running. Furthermore a job scheduler is provided for long running jobs with
functionality for monitoring and notification when the jobs are finished.

8 Predicting MGMT methylation status utilizing machine learning

Glioblastoma multiforme tumors (GBMs) with Methylguanine methyltransferase
(MGMT) promoter methylation can be expected to respond better to an alkylating agent
like temozolomide(17). In addition, MGMT methylation may be considered as a
predictive biomarker for a patient’s desirable response to radiation therapy. Several
reports in the literature indicate that MGMT promoter methylation is associated with
longer survival(18). However, while determination of MGMT methylation status has
been standard of care for some time, an accurate result is not always obtained due to the
requirement of large tissue specimens.

A retrospective study of 155 GBM patients with known MGMT methylation
status was conducted. Co-occurrence and run length texture features were calculated and
both support vector machines (SVMs) and random forest classifiers (RFCs) were used to
predict MGMT methylation status.

The best classification system (an SVM-based classifier) had a maximum area
under the ROC curve (AUC) of 0.85 (95% CI: 0.78 to 0.91) using four texture features
(correlation, energy, entropy, and local intensity) originating from the T2-weighted
images, yielding at the optimal threshold of the ROC curve a sensitivity of 0.803 and a
specificity of 0.813 (Tables 2, 3).

Results show that supervised machine learning of MRI texture features can

predict MGMT methylation status in preoperative GBM tumors, thus providing a new
noninvasive imaging biomarker.
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# Classifier Window | Gray Level
Selected parameter filter size A,
Features (estimator)
(GL)
0.82
10 %0 3 16 95% CI:0.662 to 0.849
0.7
! 10 3 64 95% CI:0.521 to0 0.732
0.756
1 1 12
8 0 3 8 95% CI:0.432 to 0.798
0.84
! 100 5 32 95% ClI:0.757 to 0.892

Table 2: Results from random forest classifier (RFC) with feature
extracted from T2 images (best performing system is in bold).

Se Ie#cted Sfasrii:teerr Windqw Gray Level A,
Features (estimator) filter size
(GL)
C:10.0, 0.83
4 c:0.1 8 16 95% ClI: 0.637 to 0.867
C: 10.0, 0.85
4 c: 0.01 8 82 95% CI:0.782 to 0.913
C: 1.0, 0.78
4 o: le-03 8 64 95% CI: 0.594 to 0.804
C: 1.0, 0.78
4 o:1.1e-03 ° 16 95% Cl:0.633 to 0.821
C:1.0, 0.8
4 c: 1.0 5 16 95% CI: 0.512 to 0.822
C:10.0, 0.76
8 o: le-04 5 16 95% ClI: 0.422 to 0.824
C:100.0, 0.75
4 c: le-02 ° 64 95% Cl:0.410 to 0.816

Table 3: Results from support vector machine (SVM) with feature
extracted from T2 images (best performing system is in bold).
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IMAGE ANALYSIS TOOLS FOR LOW GRADE GLIOMAS

We have developed a complete software package which includes several brain
image analysis tools such as rigid, nonrigid, and atlas image registration, bias field
correction, skull striping, and semi-automated segmentation algorithm for low grade
glioma (LGGs) (19) and shared it publicly for other QIN members
(https://github.com/aqqush/LGG_Software). We have also developed a deep learning
based classification approach for predicting chromosomal arms 1p/19q deletion from
MRI images (Akkus et al. 2016). Furthermore, our work on fully-automated
segmentation of LGGs in pre- and post- operative images using deep learning and
assessment of LGGs progression are still ongoing.

8§ Semi-automated Segmentation of Preoperative Low Grade Gliomas

Segmentation of pre-operative LGGs from magnetic resonance imaging is a
crucial step for studying imaging biomarkers. However, segmentation of LGGs is
particularly challenging because they rarely enhance after gadolinium administration.
Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-
defined tumor boundaries, and limited number of image types. To overcome these
challenges we propose a semi-automated segmentation method that relies only on T2-
weighted (T2W) and optionally post-contrast T1-weighted (T1W) images. First, the user
draws a region-of-interest (ROI) that completely encloses the tumor and some normal
tissue. Second, a normal brain atlas and post-contrast T1W images are registered to T2W
images. Third, the posterior probability of each pixel/voxel belonging to normal and
abnormal tissues is calculated based on information derived from the atlas and ROI.
Finally, geodesic active contours use the probability map of the tumor to shrink the ROI
until optimal tumor boundaries are found. This method was validated against the true
segmentation (TS) of 30 LGG patients for both 2D (1 slice) and 3D. The TS was
obtained from manual segmentations of three experts using the Simultaneous Truth and
Performance Level Estimation (STAPLE) software. Dice and Jaccard indices and other
descriptive statistics were computed for the proposed method, as well as the experts’
segmentation versus the TS. We also tested the method with the BraTS datasets, which
supply expert segmentations. For 2D segmentation vs. TS, the mean Dice index was 0.90
+ 0.06 (standard deviation), sensitivity was 0.92, and specificity was 0.99. For 3D
segmentation vs. TS, the mean Dice index was 0.89 + 0.06, sensitivity was 0.91, and
specificity was 0.99. The automated results are comparable with the experts’ manual
segmentation results. We present an accurate, robust, efficient, and reproducible
segmentation method for preoperative LGGs.

8 Predicting Chromosomal Arms 1p19q Codeletion from MRI images

In this study, we predict the 1p/19g chromosomal arm deletion from MR images
using convolutional neural networks (CNN), which could be a noninvasive alternative to
surgical biopsy and histopathological analysis. Our method consists of three main steps:
image registration, tumor segmentation, and classification of 1p/19q status using CNN.
We included a total of 159 LGG subjects (57 nondeleted and 102 codeleted) and
preoperative postcontrast-T1 (T1C) and T2 images. The T1-weighted images were
rigidly registered to the T2 images. For all images, the image where the tumor had the
largest cross-sectional area as well as the slice immediately above and below were
segmented using the semi-automated tool that we developed above. We divided our data
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into training, validation, and test sets. The training data was balanced for equal class
probability. We used data augmentation, including random translational shift, rotation,
and horizontal and vertical flips to increase the size of the training set at each epoch.
Finally, we evaluated several configurations of a multi-scale CNN architecture until
training and validation accuracies became consistent. We also compared the performance
of our method to the performance of a classical machine-learning algorithm using
support vector machine (SVM) classifier with greedy feature selection. Using seven
selected features (from intensity-based features, local binary patterns, Gabor filters,
Laplacian of Gaussian, gray-level co-occurrence matrix, and boundary sharpness) the
SVM classifier was trained and tested on the same data. The multiscale CNN overfits
the original (limited size) data when data augmentation is not used. The training accuracy
was 100% for both the training and validation sets, but remained below 80% for the test
data. The results of the best performing configuration on the unseen test set were 96%
(sensitivity), 82% (specificity), and 89% (accuracy). The results of the SVM on the test
set were 80% (sensitivity), 82% (specificity), and 81% (accuracy). Multi-scale CNN,
which learns a hierarchy of complex features directly from raw image data with their
self-learning capability, provides promising results for predicting 1p/19q status
noninvasively based on T1C and T2 images.

PLANS FOR NEXT YEAR

Our aim for the last year of our grant is to fully focus on deep learning and more
specifically in its application in segmentation and prediction of genomics utilizing MRI
data. We have obtained a large collection of LGGs from UCSF used in a recent paper
that has genomic data. Furthermore we are planning to compare the performance of the
deep learning architectures with traditional machine learning approaches.

We are also planning to extend the functionality of the Grunt pipeline work with
BIDS group to ensure that our tool is compatible with the pipeline tools available in

QIN.
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1 U01 CA172320-04: Evaluation of HCC Response to Systemic Therapy
with Quantitative MRI

Icahn School of Medicine at Mount Sinai

Bachir Taouli, MD

INTRODUCTION
§ Specific Aim 1

Develop a framework for quality control (QC) in functional MRI of the liver in
patients with hepatocellular carcinoma (HCC).

§ Specific Aim 2
Validate a quantitative multiparametric scoring system combining measurements of
MR diffusion, perfusion and hypoxia against histopathologic measures of tumor

grade/cellularity, aggressiveness, angiogenesis and hypoxia in human HCC.

Specific aims 1 and 2 are as initially stated, and not modified.

§ Specific Aim 3

Validate new imaging response parameters based on multiparametric quantitative
MRI in patients with advanced HCC treated with sorafenib in an independent study. We
have slightly modified specific aim 3 by changing the treatment from sorafenib to Yttrium
90 radioembolization.

Updated specific aim 3 reads as follows: Validate new imaging response parameters
based on multiparametric quantitative MRI in patients with advanced HCC treated with Y90
radioembolization in an independent study. Rationale for the modification: we have decided
to switch to radioembolization, as it is a more effective treatment than sorafenib.

DISCUSSION OF PROGRESS
§ Specific Aim 1

Data on repeatability has been reported last year and published (1-3).
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§ Specific Aim 2

R1 and R2* measurement under oxygen and carbogen challenge: data already
reported last year and published in (1).

IVIM DWI results and correlation with DCE-MRI: data already reported last
year and published in (2).

DCE-MRI quantification with Tofts model vs. shutter-speed model: data already
reported last year and published in (3).

8 New Data

Quantification of HCC tumor heterogeneity using mpMRI [manuscript
submitted]

Introduction: Many studies that employ mpMRI to assess/predict tumor response
use central tendency parameters, such as mean or median, over entire regions of interest
(ROIs) to determine longitudinal changes in tumor tissue after treatment (5). However, such
analysis may not represent the exact tumor status, given the intrinsic heterogeneous tumor
composition (5). Heterogeneity analysis of tumor MRI measurements may provide accurate
markers of tumor heterogeneity at the genetic, cellular and molecular levels (5) and thereby
allow for a better understanding of tumor characteristics that affect treatment. HCC lesions
are known to exhibit substantial intra- and inter-tumor heterogeneity, due to a large variety
in etiological and genetic backgrounds and the longtime development of the disease (6).
Tumor heterogeneity poses a significant challenge for treatment stratification. While
morphological and genetic heterogeneity in HCC lesions has been assessed previously (7),
imaging reports on HCC heterogeneity are extremely limited (8). Tumor imaging
phenotypes, including histogram features, potentially correlate with the underlying genotype
and subsequently noninvasive imaging, including MRI, can be used as a surrogate for
genomics and transcriptomics (radiogenomics) (9). Recently, there has been considerable
interest in immunotherapy of a wide variety of cancers, including HCC (10). The success of
such treatment heavily depends on tumor expression of immunotherapy targets, such as
immune checkpoints. Identification of imaging features that correlate with gene expression
of immunotherapy targets potentially allows for noninvasive prediction of immunotherapy
outcome at baseline.

Purpose: To quantify tumor heterogeneity in HCC using mpMRI, and to report
preliminary data correlating quantitative MRI parameters with histopathology and gene
expression in a subset of patients.

Materials and Methods: We included 32 HCC patients (M/F 26/6, mean age 59y)
who underwent mpMRI including DWI, BOLD, TOLD and DCE-MRI. Histogram
characteristics [central tendency (mean, median) and heterogeneity (standard deviation,
kurtosis, skewness) MR imaging parameters] in HCC and liver parenchyma were compared
using Wilcoxon signed-rank tests. Inter-tumor heterogeneity was assessed using the
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coefficient of variation between histogram features across tumors. Histogram data was
correlated between MRI methods in all patients and with histopathology and gene
expression in 14 patients.

Results: 39 HCC lesions were assessed (mean size 4.4+3.3 cm). HCCs exhibited
significantly higher intra-tissue heterogeneity vs. liver with all MRI methods (P<0.042).
Inter-tumor heterogeneity was significantly higher for kurtosis and skewness vs. mean
parameters (P<0.001). While there were significant correlations for central tendency
parameters between MRI methods and with each of histopathology and gene expression,
heterogeneity parameters exhibited additional complementary correlations between BOLD
and DCE-MRI and with histopathologic hypoxia marker HIF1a and gene expression of Wnt
target GLUL, pharmacological target FGFR4, stemness markers EPCAM and KRT19 and
immune checkpoint PDCD1.
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Figure 1: 54 year-old male patient with HBV cirrhosis and HCC. A)
Representative magnified parametric maps (DCE-MR imaging, BOLD, TOLD
and ADC) of a large (8.3 cm) HCC. Location of the tumor within the liver is
indicated by the white arrow on the T.-weighted image (bottom row, right). A
distinct region in the anterior portion of the tumor of high arterial flow (F,) and
low R* was observed, reflective of high tumor perfusion and normoxia (black
arrow in F and R>* pre O, maps). The posterior portion of the tumor displays low
F. and high R»*, suggestive of poor perfusion and hypoxia (white arrow in F, and
R.* pre O, maps). B) Histograms of F., Rx* pre Oz, Ry pre O, and ADC in the
same lesion. The extensive heterogeneity observed in the parameter maps of F,
and R.* pre O, is also reflected in the histograms, as illustrated by the fat tails
and pronounced skewness, indicated by the black arrows. ADC = apparent
diffusion coefficient, ART = arterial fraction, DV = distribution volume, F,,
arterial flow, F, = portal flow, F; = total flow, MTT = mean transit time, R; =
longitudinal relaxation rate, R,* = transverse relaxation rate.
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Figure 2: Heatmaps of correlations between mean, median, SD, kurtosis and skewness
of MR imaging parameters in 39 HCC lesions (in 32 patients). Significant correlations
(P<0.05) are colored according to the scale bar. A combined heatmap of all significant
correlations between MR imaging features is shown on the right, illustrating additional
information provided by heterogeneity parameters (SD, kurtosis and skewness).
Significant correlations between DCE-MR imaging and BOLD were for example only
seen for heterogeneity parameters and not for central tendency parameters (mean and
median). ADC = apparent diffusion coefficient, ART = arterial fraction, DV =
distribution volume, F,, arterial flow, F, = portal flow, F; = total flow, MTT = mean
transit time, R1 = longitudinal relaxation rate, Ry* = transverse relaxation rate.

Conclusions: Histogram analysis combining central tendency and heterogeneity
mpMRI features is promising for noninvasive HCC characterization on the functional,

histologic and genomics level.
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§ Specific Aim 3

We have enrolled so far 5 patients with HCC treated with radioembolization. Patients
underwent mpMRI before and 6 weeks after treatment. We will look at the perceptive value
of baseline, early follow-up and changes in parameters as possible markers of response at 6-
12 months. Results will be analyzed after at least 10 patients are enrolled.

DISCUSSION OF COLLABORATIONS

Within the Network: 1) we are in the process of submitting a manuscript assessing
involving a QIN challenge involving multicenter quantification of T1 mapping in vitro, used
for DCE-MRI purposes. 2) We have collaborated in several challenges: the DWI linearity
challenge, the ADC challenge, and the prostate AlIF challenge.

Other Institutions Outside the Network: we have an ongoing collaborating with NYU
(Daniel Sodickson’s group) on the use of radial GRASP sequence for perfusion acquisition.
Data analysis showed major truncation artifacts in the arterial input function. We are looking
for solutions to this.

Industrial: we are collaborating with Siemens to test new sequences including DWI,
DCE-MRI (using k-space sharing) and 3D T1 mapping.

PLANS FOR NEXT YEAR

Continue patient recruitment for specific aim 3 in patients treated with
radioembolization.
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INTRODUCTION

A major impediment to the development of new therapies for glioblastoma (GBM) is
a lack of biomarkers to quantitatively monitor response. Standard of care diagnostic images
(contrast-enhanced T1 weighted MRI and T2-weighted/FLAIR) are used to guide surgical
resection and radiation therapy planning, While these images are excellent images to
differentiate higher grade gliomas from the lower grade gliomas, they do not show entirety
of the infiltration of GBMs. Proton magnetic resonance spectroscopic imaging (MRSI),
which can characterize regions of brain based on levels of various metabolites and other
substances, is a candidate imaging modality for defining high risk regions that are not
identified by standard MRI. Metabolites that can be evaluated include: choline (Cho), a
peak reflecting cell membrane synthesis that is elevated in highly proliferating, non-necrotic
gliomas; creatine (Cr), an energy metabolite; and N-acetyl aspartate (NAA), a healthy
neuronal biomarker that is decreased as healthy tissue is displaced. Early studies established
that the MR spectra of GBMs differ significantly from normal brain, with increased levels of
Cho, and decreased levels of NAA.

DISCUSSION OF PROGRESS
8§ Correlation Between sMRI Cho/NAA with Histology

We have been developing an advanced spectroscopic technique we have termed
spectroscopic MRI (sMRI), which combines advanced imaging technologies such as 3D
whole brain echo-planar spectroscopic imaging (EPSI) and acceleration acquisition
technologies with a new clinical platform for registering spectroscopy data with standard of
care images, enabling easy visualization and an efficient clinical workflow. We have been
using sMRI in various clinical studies at Emory to demonstrate it’s superiority compared
with standard imaging alone to identify the entirety of GBMs, including non-enhancing
infiltrative tumor. Based on a recently completed clinical study to correlate SMRI and
histology in tumor samples collected via stereotactic biopsy-manner (Emory IRB00051663),
we learned that the Cho/NAA ratio showed significant correlations with tumor cell density
as determined via histological analysis (p = 0.82, p < 0.001). (Cordova et al. published in
Neuro-Oncology 2016)
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sMRI Biomarkers vs
SOX2 (glioma marker) Density

NAA -0.50  0.01*

Cho 0.63  5E-4*
Cho/NAA  0.82  <I1E-4*
DWI-ADC .17 0.40

Figure 1. A normalized metric of tumor infiltration, SOX2 (glioma marker)
density, identifies tumor outside of conventional imaging and exhibits striking
correlations with SMRI biomarkers. Though no obvious abnormality can be found
on preoperative T1w-CE or T2w imaging in this patient, a striking elevation in
Cho/NAA on sMRI suggests substantial tumor infiltration. Statistically significant
correlations were seen between various normalized metabolic markers and SOX2
density with Cho/NAA exhibiting the strongest association

8 Correlation Between sMRI Cho/NAA with Recurrence Pattern

Based on data from the control arm of our current UO1 study (Emory IRB00055973),
SMRI Cho/NAA ratio map before RT treatment initiation matched well with contrast-
enhancement at sites of tumor recurrence and exhibited an inverse relationship with
progression-free survival (Cordova et al. published in Neuro-Oncology 2016). Figure 2
shows the zoom-in view of recurrence case that Cordova et al. published in the QIN special
issue of Tomography 2016)

The 40-year-old male shown in Figure 2 exhibited a striking anterior tail of
Cho/NAA elevation outside of the T1w-CE lesion that passed along the posterior horn of the
left lateral ventricle before surgery. This metabolic abnormality continued to grow through
the duration of RT, ultimately resulting in subependymal invasion along the trajectory of the
Cho/NAA elevation. This patient underwent salvage surgery, which histologically
confirmed GBM tumor at recurrence site. This case also exhibited T1w-CE lesion
morphological changes that approached a Dice coefficient of unity, or perfect agreement,
when compared to pre-RT Cho/NAA 2X NORM volume (ADice: +19.0%, AMED: -
35.6.0%). This increase in agreement accounts for an addition of 12.9 cm?® of tumor in the
pre-RT Cho/NAA 2X NORM volume from preRT to recurrence. These exciting results will
be reported in the future once confirmed with other similar cases.
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Pre-RT @ recurrence

Figure 2. Abnormalities in Cho/NAA describe regions at high risk for recurrence before
RT in GBM. The contour illustrates the regions that exhibit a Cho/NAA
abnormality > 2-fold higher than normal contralateral brain co-registered with T1w-CE
taken before RT (left) and at the first recurrence after RT (regions of tumor recurrence -
blue contour). Though no T1w-CE abnormality was found before RT, preRT Cho/NAA
abnormality ( ) clearly shows infiltration of subependymal space that becomes
contrast-enhancing 4 months later. Red contour was where 60 Gy (CTV60) was applied
for RT. The fusion of 2.0-fold Cho/NAA abnormalities to the CTV60 resulted in a target
covering a significantly larger proportion of the recurrence.

8 Development of Web-based spectroscopic MRI Clinical Interface

There is widespread agreement that MR spectroscopy can provide valuable
information without the need for exogenous contrast agents, however the infrastructure
needed to incorporate SMRI into the clinical workflow is lacking. We have been developing
a web-based sMRI clinical interface for analysis, visualization and integration of SMRI data
into patient management. This “scanner-to-clinician” platform is designed to provide
quantitative, expedient, and objective analysis to integrate SMRI into routine clinical usage,
including diagnosis and therapy planning (radiation or surgery). In addition, this user-
friendly tool can be highly valuable in the sMRI-based diagnosis and evaluation of
numerous other neuropathologies aside from cancer, including hypoxic-ischemic injury,
multiple sclerosis (and other demyelinating diseases), inborn errors of metabolism, and
neurodegenerative diseases, such as Alzheimer’s.
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Figure 3. We have developed an imaging technology known as “spectroscopic
MRI,” which can detect changes in tissue metabolism. This helps us monitor the
response to therapy in patients by tracking the changes in the metabolism of
tumor cells without the need for any injected contrast agents. SMRI clinical
interface is an easy-to-use web application for visualization and collaborative
treatment planning using sSMRI. The left image shows a 51 year old female
diagnosed with glioblastoma before standard care treatment, and the right image
shows the same patient after. Unfortunately, she did not respond to chemo &
radiation, and the sMRI highlights the corresponding metabolic response (red
represents tumor infiltrative activity, blue represents healthy tissue).
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Figure 4: The image shows a 28 year old female diagnosed with GBM who was treated
with HDAC inhibitor, an investigational drug being tested in the current U01 study, in
addition to standard chemo and radiation therapy. The left image is before treatment and
the right image is 4 weeks after treatment completion. As the sMRI highlights, the
metabolic changes show that she positively responded to the therapy (red represents
tumor infiltrative activity, blue represents healthy tissue, and lack of metabolite signals
represents necrosis).
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COLLABORATIONS WITHIN THE NETWORK

Our current project is a two-site clinical study, with the Emory team collaborating
with Johns Hopkins. The sMRI clinical interface has been shared between these sites, and is
in the process of expanding testing to the University of Miami and New York University.
We hope to deploy this technology with several QIN sites later in 2017.

PLANS FOR NEXT YEAR

We plan to continue with patient enrollment for our clinical study at two sites. We
will continue to develop easier (automated) quality control components to display and report
the reliable sMRI results: we are now focusing on developing spectral quality filter to
eliminate the voxels with poor quality spectra or poor fitting.

Our sMRI resolution is 108 microliters and the scan time for 3D whole brain SMRI
for 6 different metabolite maps takes 15 mins. We have purchased a new Siemens Prisma 3T
scanner with 32 channel head coil array that will be available for use in February 2017. We
are working together with Dr. Maudsley at University of Miami (consultant) and Siemens to
implement the same advanced sMRI sequence on Prisma. We anticipate a 40% signal-to-
noise ratio improvement while maintaining the same spatial coverage as our current systems.

PUBLICATIONS AND PRESENTATIONS FROM QIN
INVOLVEMENT

8 Manuscripts published directly as a result of this grant

Cordova, J.S., Shu, H.G., Liang, Z., Gurbani, S. S., Cooper, L.A.D., Holder, C.A. Olson,
J.J., Kairdolf, B., Schreibmann, E., Neill, S., Hadjipanayis, C.G., Shim, H. (2016) Whole-
brain, spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients.
Neuro-Oncology, Neuro-Oncology, 18(8): 1180-9. PMC4933486

Cordova, J.S., Gurbani, S. S., Olson, J.J., Liang, Z., Cooper, L.A.D., Shu, H.G.,
Schreibmann, E., Neill, S., Hadjipanayis, C.G., Holder, C.A., Shim, H. (2016) A systemic
pipeline for the objective comparison of whole-brain spectroscopic MRI with histology in
biopsy specimens from grade 111 glioma. Tomography, 2(2): 106-116. PMC4968944.

Cordova, J.S., Kandula, S., Gurbani, S. S., Zhong, J., Tejani, M., Kayode, O., Patel, K.,
Prabhu, R., Schreibmann, E., Crocker, 1., Holder, C.A., Shim, H., Shu, H.G. (2016) The
impact of integrating volumetric whole-brain spectroscopic MRI into radiation treatment
planning for glioblastoma. QIN special issue, Tomography 2(4): 366-73.

Schreibmann, E., Cordova, J.S., Gurbani, S., Holder, C.A., Cooper, L.A., Shu, H.G., Shim,

H. (2016) Automated segmentation of high resolution 3D wholebrain spectroscopic MRI for
glioblastoma treatment planning. Medical Physics 43(6) 3428.
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8 National meeting education session presentations directly as a result of this grant

We organized several CME sessions during SNMMI mid-Winter meeting in
Orlando. One of them was First-in-Human MR Molecular Imaging that included our
research talks. In addition, we organized several sessions during SNMMI 2016 Annual
Meeting in San Diego including CME Categorical Whole day Session and a NCI Cancer
Imaging Program (CIP) Quantitative Imaging Network (QIN) session.

8 National Presentations directly as a result of this grant
Invited Lectures at the National Meetings:

Shim H. et al “IDH mutation detection in gliomas” — Society of Nuclear medicine mid-
Winter meeting, a continuing education session, Orlando, January 2016

Shu H. et al. “Spectroscopic MRI identifies infiltrating margins in glioblastoma for 5-ALA
fluorescence-guided surgery” - Society of Nuclear medicine mid-Winter meeting, a
continuing education session, Orlando, January 2016

Barker, P. et al. “Tumor tutorial” — International Society of Magnetic Resonance in
Medicine, a continuing education session, Singapore, May 2016

Barker, P. et al. “Brain Tumor Spectroscopy” — American Society of Neuro-Radiology,
SAM session, Washington DC, May 2016

Shim H. et al “Overview of cancer metabolism: glucose and amino acids” — Society of
Nuclear medicine Annual meeting, a continuing education session, San Diego, June 2016

Shu H et al. “1. Critical unmet needs for treatment planning imaging in brain tumor patients;
2. Spectroscopic MRI for brain tumor patients” - Society of Nuclear medicine Annual
meeting, a continuing education session, San Diego, June 2016

Shu H. et al. “Feasibility of whole brain, high resolution spectroscopic MRI for glioblastoma
tumor imaging” — American Society for Radiation Oncology, Boston, September 2016

Shim H. et al. “Molecular Imaging mini-course: Clinical application of molecular imaging —
Neuro” RSNA Refresher Course, Chicago, December 2016

Invited Lectures at the Academic Centers:

Shim H. et al. “The use of high resolution 3D whole brain MR spectroscopic imaging in the
management of brain tumor patients”, Cedars Sinai Hospital, February 2016

Shim H. et al. “Critical unmet needs for treatment planning imaging in GBM patients &
spectroscopic MRI”, Cedars Sinai Hospital, June 2016
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Shim H. et al. “Critical unmet needs for treatment planning imaging in GBM patients &
spectroscopic MRI”, Mount Sinai, July 2016

Shim H. et al. “Critical unmet needs for treatment planning imaging in GBM patients &
spectroscopic MRI”, New York University, July 2016

Barker, P. et al. “Brain Tumor Spectroscopy”, German Cancer Research Center in
Heidelberg, Germany, August 2016.

Shim H. et al. “The use of high resolution 3D whole brain MR spectroscopic imaging in the
management of brain tumor patients”, Georgia State University, October 2016

Shim H. et al. “Improved whole brain spectroscopic MRI to guide radiation dose escalation
for glioblastomas”, University of Pennsylvania, Radiology Grand Rounds, December 2016

Shim H. et al. “Improving cancer patient management through drug discovery and whole

brain spectroscopic MRI” Seoul National University Hospital, Nuclear Medicine Grand
Rounds, December 2016
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U01 CA176110: Quantitative Perfusion and Diffusion MRI
Biomarkers to Measure Glioma Response

Medical College of Wisconsin

Kathleen M. Schmainda, Ph.D.

INTRODUCTION

The overall goal of this project is to develop and validate both standard and novel
perfusion-weighted MRI (PW1) and diffusion-weighted MRI (DWI1) biomarkers to monitor
treatment response for both therapeutic clinical trials and standard of care treatment patients
with brain tumors. This goal addresses an urgent need for better ways to monitor targeted
therapies, for which standard measures of enhancing tumor volumes are no longer sufficient.
Two PWI methods will be characterized for clinical trials. The first more wide-spread DSC
(dynamic susceptibility contrast) approach provides tumor rCBV (relative cerebral blood
volume) measurements obtained after a pre-load of contrast agent and corrected for
confounding contrast agent leakage effects. The second approach, while less-proven has
high-potential to become the most comprehensive perfusion solution. It consists of using a
dual-echo gradient-echo spiral method, which enables the simultaneous collection of both
DSC (dynamic susceptibility contrast) and DCE (dynamic contrast enhanced) perfusion data
using only a single dose of contrast agent and incorporates comprehensive correction for
leakage effects [1-3]. In addition, we will continue to explore the potential of DWI methods
for the evaluation of treatment response, specifically by computing changes in the apparent
diffusion coefficient (ADC) across time and creating functional diffusion maps (fDM)
within non-contrast-agent-enhancing regions.

While both PWI and DWI have demonstrated great promise for treatment
monitoring, studies defining their test-retest repeatability, necessary for use of these
techniques in clinical trials, are lacking, and thus represent the focus of Aim 1. In addition,
early results suggest that hybrid PWI/DWI maps will likely provide the most complete
assessment of treatment response, a hypothesis that will be tested in Aim 2. Finally, in order
to make the optimized PWI/DWI technology and workflow available in a robust and cost-
effective manner for clinical trials and standard practice, Aim 3 involves the development of
a commercial integrated image analysis platform for use in large-scale multi-center clinical
trials.

DISCUSSION OF PROGRESS
§ Specific Aim1

Manuscripts: Published and in Progress
Perfusion Repeatability: In collaboration with Massachusetts General Hospital,

another QIN member, we published two papers describing the repeatability of DSC-pMRI
methods [4, 5], and their dependence on post-processing methods, as well as the minimum
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number of patients need to power a clinical trial [4]. The results show that when ordered by
the RC, methods utilizing post-processing leakage-correction and AR2*(t) techniques
largely offered superior repeatability. Across processing techniques the standardized
RCBV[6] estimates were less variable (13-20%) than normalized rCBV (nRCBYV) (24-67%)
estimates. It was also found that normalization of rCBV rather than AIF deconvolution (to
estimate an ‘absolute’ value of CBV) resulted in a more repeatable measurement.[5]

Significance: Knowledge of the repeatability of DSC-MRI perfusion
methods has been lacking. These first reports providing this information are
important for clinical translation and use in clinical trials.

SPICE: We recently published a paper describing the theory and initial feasibility
of the dual-echo sequence, which has been renamed SPICE (spiral perfusion imaging with
consecutive echoes) [7]. This paper appeared in the December 2016 issue of the journal,
Tomography, includes a detailed mathematical description of the novel SPICE perfusion
imaging acquisition and post-processing method.  This method can be used to
simultaneously acquire DSC- and DCE-MRI data with only a single dose of gadolinium
contrast agent. It also does not require the collection of a precontrast T1 map for DCE-MRI
processing and eliminates confounding contrast agent effects due to contrast extravasation.

Significance: We are hopeful that the publication of the theory
underlying SPICE will motivate more groups to adopt dual-echo sequences
for perfusion.

Prostate AIF Challenge: Dr. Peter LaViolette, Co-Investigator on this grant, has
participated in the arterial input (AIF) challenge headed by Wei Huang from Oregon Health
Science University (OHSU) by applying independent component analysis to extract the
AlFs automatically. He processed both prostate cancer and sarcoma datasets and submitted
them to the host institution. This study was recently published [8].

Significance: There was good consistency across DCE parameter
estimations using a variety of AIF tools. Only the ICA tool, contributed by
Dr LaViolette, showed the greatest discrepancy.

Ongoing Experimental Studies

SPICE vs DSC-MRI study: We completed the study to compare SPICE-derived
rCBV maps to DSC-derived rCBV maps. The results demonstrated that the rCBV values
are comparable in both low-grade and high-grade tumors. This is further proof that the
SPICE method may provide similar information, yet be superior to standard methods since it
requires only a single dose of Gd contrast agent while also providing additional (ie DCE)
perfusion metrics. An initial submission of the manuscript was not accepted. A primary
concern of the reviewers was the extra leakage-correction analysis and comparisons that
were included. (We had data to show the importance of preload to standard DSC-MRI.)
However, this secondary comparison is not necessary for the validation of SPICE and served
only to confuse the readers. It will therefore be removed and the manuscript submitted to
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another journal and will focus more on the rCBV comparison and applications. In the
interim we decided it was important to get a description of the basic theory and feasibility
published, which resulted in the SPICE manuscript described above. A revised paper of the
comparison will be submitted in 2017 Q1.

Significance: The validation of SPICE is quite timely given the
many discussions regarding the optimal dose of contrast for DSC studies in
the context of using the least amount possible. With SPICE this discussion
will eventually become a non-issue since all data can be acquired with a
single dose of contrast agent. Publication of this work will also move us
closer towards a QIN network goal of distributing the acquisition and post-
processing software to all interested QIN sites for further evaluation.

Collection of double-baseline SPICE and diffusion data: Double-baseline data
will be collected in patients with high-grade brain tumors within a short time-interval during
which no change in tumor status is presumed to occur. As described previously, the
prospective collection of the SPICE repeatability data has been delayed due to an upgrade of
our GE MRI system, which made a current version unworkable. The sequence and image
reconstruction software have now been revised and recompiled for the GE 3T clinical
platform as well as the GE 3T research MRI. This software upgrade together with the
purchase of a power injector and the hiring of a certified radiology technologist for the
research GE 3T MRI system enables us to perform many more add-on research studies. The
number of SPICE datasets collected has increased tremendously over the past two months
such that we should be able to easily complete this study during this next funding cycle.

Significance: Previous studies to determine the repeatability of
diffusion have not been performed and thus is the focus of the planned
studies. At the same time, the repeatability of SPICE, the new perfusion
imaging method will be undertaken.

§ Specific Aim 2
Manuscripts: In progress

Using Perfusion and Diffusion MRI to Distinguish Tumor from Treatment
Effect: We demonstrated that normalized and standardized rCBV values could be used to
distinguish tumor from treatment effect (TE). Forty-eight tissue samples from sixteen brain
tumor subjects were spatially correlated with pre-surgical MRI, which included DSC-MRI
and DWI [9]. Biopsy locations were determined via a StealthStation® S7™ surgical
navigation unit (Medtronic, Minneapolis, MN). Pathologic diagnosis confirmed 11 samples
with pure treatment effect and 37 samples with pure GBM. All perfusion metrics
distinguished treatment effect from GBM while ADC did not (Table 1). Of particular note,
the normalized rCBV threshhold determined by us is comparable to the threshold
determined by Dr Leland Hu (QIN associate member) at Barrow Neurological Institute in
Phoenix Arizona. A manuscript describing this work was submitted to the journal,
Radiology, but not accepted. It is being revised for submission in another journal.
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Table 1: Image parameter results for distinguishing tumor from treatment
Parameter P-Value Threshold Specificity Sensitivity AUC
ADC 0.066
sRCBY 0.001 = 3575 au. 909 T84 0870
nRCBY 0.0002 =113 au. 909 811 0902
nRCBF 0.0005 =103 au. 818 mT 0853

Table 1: Image parameter results for distinguishing tumor from treatment.

Significance: This study is a first step towards addressing the
longstanding need for a method to accurately distinguish true treatment
response from pseuodprogression or pseudoresponse. Given the consistency
of results between two institutions, it appears that this is a good approach to
develop test further and possibly become the basis of a new QIN network
challenge.

Fractional tumor burden (FTB) maps to predict treatment response: Using the
thresholds obtained for nRCBV (or sSRCBYV), fractional tumor burden (FTB) maps can be
created to spatially visualize the portion of enhancing tumor that is treatment effect or GBM
(Figure 1). Preliminary results, shown in Figure 2, demonstrate that FTB may serve as an
important marker useful for treatment management decisions. In this group of patients with
newly diagnosed GBM, and after undergoing chemo-radiation therapy, only FTB was useful
for distinguishing both PFS and OS. A similar result was found for patients treated with
bevacizumab (not shown). This work has been submitted as two separate abstracts for the
2017 International Society of Magnetic Resonance in Medicine meeting. In addition, a
manuscript describing these FTB results is being prepared for journal submission in early
2017.

Figure 1. FTB overlay
map for a patient with
mixed GBM and
radiation effect The
nRCBV threshold was
used to create the FTB
overlay with red areas

indicating tumor and

white areas indicating
treatment effect.
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Significance: These results demonstrate that rCBV metrics provide
information relevant to treatment evaluation, and can be used to create
fractional tumor burden (FTB) maps, which are demonstrating promise as a
new biomarker for evaluating treatment response.
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Figure 2. Owerall survival (OS) and progression-free survival (PFS) stratified by (a)
methylation status (b) median rCBV and (c) fractional tumor burden (FTB) less than and
greater than 75%. In this cohort of 22 patients newly diagnosed with GBM only FTB showe d
the ability to statistically differentiate outcome.

Radiomic Profiling: Additional studies using diffusion MRI and radiomic profiling
demonstrate promise to distinguish tumor from TE and predict prognosis. This work, led by
co-investigator Dr Peter LaViolette is described in detail in two recently published journal
articles [10, 11].

Significance:  These results demonstrate that diffusion MRI

continues to play in role in understanding treatment response and together
with other parameters, via radiomic profiling, can predict prognosis.
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DSC-MRI Challenge: A DSC Challenge was undertaken to boost confidence in
DSC-MRI post-processing across sites and platforms. The purpose of this challenge was to
reach consensus regarding the post-processing of DSC-MRI data through a comparison of
multi-site/multi-platform analyses of a shared brain tumor patient data set. A total of 49
low-grade (n=13) and high-grade (n=36) glioma DSC-MRI datasets were uploaded to the
cancer imaging archive (TCIA). All glioma grades were confirmed by histopathology within
41 days following the DSC-MRI study. The datasets were co-registered with T1w images
and included a predetermined AIF, necessary for the determination of CBF, ROIs of whole
brain for efficient DSC processing, normal appearing white matter (NAWM), for the
creation of normalized parameter maps, normal appearing cerebral cortex (NACC), as well
as enhancing tumor ROIs. Seven sites using seven different software (SW) platforms
provided median ROI values for 18 different normalized rCBV (nRCBV), 2 standardized
rCBV (sRCBV) and 12 normalized CBF (nCBF) metrics. As listed in Table 2, there was
excellent concordance across sites and platforms and each could statistically distinguish
low-grade from high-grade glioma. However, the thresholds that gave the best sensitivity
and sensitivity varied from 1.3 to 1.7. But with a nRCBV of 1.45 all platforms had a
sensitivity and specificity of at least 80%. This work was submitted as an abstract for the
2017 International Society of Magnetic Resonance in Medicine meeting. In addition, a
manuscript describing theses results is being prepared for journal submission in early 2017.

Significance: These results demonstrate that DSC-MRI methods
can be used more routinely, with confidence, for the evaluation of adult
primary brain tumor.

Table 2: Linn’s Concordance Correlation Coefficient
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§ Specific Aim 3
IB Rad Tech

IB Rad Tech is a customizable workflow wizard developed by our industrial
collaborator, Imaging Biometrics (IB), to service many different “work in progress”
workflows such as those being developed by QIN members. (See:
http://69.162.134.80/~imagingb/files/9914/3050/6176/1B_Clinic.pdf) It was recently
enhanced with longitudinal processing capability, allowing the generation of comparison
data for multiple patient time points.

The core processing library used by IB Rad Tech was enhanced by the additional of
several DWI-based outputs, including alpha-diffusion and IVIM parameter maps. This
technology was tested as part of one of the diffusion MRI challenges led by Dr David
Newitt. It is being further revised in response to feedback resulting from the participation.
This functionality has not yet been exposed in the IB Rad Tech workflows, but is planned to
be implemented during year four. Meanwhile, IB Rad Tech 2.0 is expected to be released as
an FDA-cleared and CE-Marked product late in 2016 or early in 2017.

In addition, a workflow for the creation of FTB (fractional tumor burden maps) as
described under Specific Aim 2, has been developed. It was used entirely for the processing
described and will thus make it seamless to distribute the workflow to others for testing and
use.

Significance:  Having parallel development of an industrial
platform ensures efficient and timely translation of the most proven
technologies for widespread use in both the research and clinical
communities.

PLANS FOR NEXT YEAR
§Specific Aiml

Characterize the repeatability of DSC and DEGES PWI and DWI (fDM) parameters
in primary brain tumors.

e Revise and submit SPICE comparison paper with a working title of “Spiral Perfusion
Imaging with Consecutive Echoes (SPICE) for the Simultaneous Mapping of DSC- and
DCE-MRI Parameters in Brain Tumor Patients using a Single Dose of Gadolinium
Contrast.”

e Increase prospective data collection using SPICE sequence on both the clinical and
research 3T MRI systems.

e Complete diffusion and perfusion MRI repeatability studies.

e Initiate new perfusion QIN network challenges, which may include the determination of
AIF for DSC-MRI studies and/or the ability of each site to distinguish tumor from
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treatment effect with the upload of a new patient dataset with the appropriate diagnostic
information.

§ Specific Aim 2

To prospectively determine the ability of pMRI and DWI to predict treatment

response in glioblastoma patients.

Revise and submit the “Tumor versus Treatment Effect” paper.

Submit manuscript describing fractional tumor burden (FTB) results in patients treated
with chemo-radiation therapy and bevacizumab therapy. This may be one or two
separate papers.

Complete and submit the “DSC-MRI Platform Challenge” paper.

Begin to evaluate the role of FTB in distinguishing pseudoprogression and
psuedoresponse from true response.

Continue to evaluate the role of diffusion, and in particular the different diffusion
approaches (IVIM, flow-compensated diffusion, and RSI (restricted spectrum imaging))
for treatment evaluation.

Continue to evaluate radiomic profiling for the detection of response, prediction of
outcomes and, of great interest, the ability to detect tumor that is “invisible” with
standard imaging.

Specific Aim 3

To develop a commercial integrated PWI/DWI image analysis platform for use in large-
scale multi-center multi-platform clinical trials.

Re-analyze the data from the (Dr David Newitt) DWI challenge. In particular, the IVIM
metrics need to be recalculated using the newly incorporated/modified Imaging
Biometrics plugins.

Finish the dual-echo (ie SPICE) post-processing plugin tools. Test these tools on both
SPICE and EPI-based dual-echo datasets. Accomplishing this task will position us well
for a possible dual-echo DSC challenge.

MRI processing and workflows. Test standard methods and models against the “fixed
T1” model, which has been recently incorporated. Initial results show that this may
provide more useable DCE parameter maps.

Finalize testing on the deltaT1 standardization workflow. Upon completion Imaging
Biometrics plans to initiate another QIN challenge regarding tumor image segmentation.
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Monitoring of Bladder Cancer
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INTRODUCTION

Bladder cancer is a common type of cancer that can cause substantial morbidity and
mortality among both men and women. Bladder cancer causes over 16,870 deaths per year
in the United States [1]. It is estimated that 79,030 new bladder cancer cases will be
diagnosed in 2017. Early diagnosis and treatment of these lesions is important to reduce
the morbidity, mortality and their attendant costs compared to diagnosis at a later, more
symptomatic stage that might involve deep invasion and/or metastasis.

Correct staging of the bladder cancer is crucial for the decision of neoadjuvant
chemotherapy treatment and minimizing the risk of under-treatment or over-treatment [2-8].
Only patients with stage T2 to T4 of muscle-invasive operable urothelial carcinoma of the
bladder are recommended for treatment with neoadjuvant chemotherapy. If the response to
chemotherapy can be estimated with sufficient accuracy and precision, it is possible to
identify those patients that do not respond, stop the treatment early, and seek alternative
treatment [8]. CT is an effective non-invasive modality for measuring primary site gross
tumor volume (GTV) and the addition of MRI is on the rise. GTV has been used as a
biomarker for predicting treatment outcome of bladder tumors [9]. Other pathological
information and diagnostic test (bimanual evaluation, cystoscopy) results and
immunohistochemical biomarkers are also useful for staging and treatment response
monitoring. Although CT and MRI are promising methods for evaluation of a variety of
bladder cancers, the time and costs required for the clinicians to outline cancer margins on a
large number of CT and MRI slices for each case makes it difficult to advocate the use of
this method for GTV estimation of every patient and of every pre- and post-treatment tumor
evaluation.

The goal of this project is to develop a novel multimodality quantitative image
analysis tool for bladder cancer (QIBC) to assist radiologists in estimation of GTV and
analysis of image characteristics, thereby improving the efficacy of image biomarkers. The
QIBC will be designed to use either one or more than one modalities from CT and MRI.

Another goal of this project is to develop novel decision support systems CDSS-S
and CDSS-T for bladder cancer staging and for monitoring of bladder cancer treatment
response based on multi-modality image-based, pathology-based and immunohistochemical
biomarkers. The proposed QIBC, CDSS-S and CDSS-T have the potential to provide non-
invasive, objective, and reproducible decision support, thereby reducing the subjectivity and
variability in these processes. In order to achieve these goals we are performing the
following specific tasks: (1) to collect a database of multi-modality MR, CT exams of
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bladder cancers for development, training and testing of the QIBC and CDSS algorithms; (2)
to develop advanced computer vision techniques to quantitatively estimate bladder GTV and
image characteristics; and (3) to develop predictive models using machine learning
techniques to combine multimodality image based, pathological and immunohistochemical
biomarkers for cancer staging and determination of non-responders.

In addition, although we will focus on the specific application to the bladder tumors
in this project, we plan to design the image analysis and decision support tools in a modular,
expandable, and re-trainable framework. The software packages will be versatile and can be
adapted to other tumor types or imaging modalities in the future by proper retraining with
case samples of the tumor type of interest and expansion of the decision support tools as
needed. Therefore, the development of the QIBC, CDSS-S and CDSS-T will potentially
benefit not only the bladder tumor patients but also patients with other types of tumors that
require staging and monitoring of treatment response.

DISCUSSION OF PROGRESS

§ Specific Aim 1: Data Collection

During the current time period of the project we have collected additionally 102
CTU bladder cancer cases from CTU examinations performed at University of Michigan.
This includes 81 pre- and post- neoadjuvant chemotherapy treatment cases with clinical
stage larger than T1, and 21 cases of which the clinical stage were called T1 and did not
underwent neoadjuvant chemotherapy treatment. As a result we have collected in total 226
CTU bladder cancer cases: 132 pre- and post- neoadjuvant chemotherapy treatment cases
and 94 cases of clinical stage T1. For each patient, the images are downloaded from the
PACS system. The treatment records, pathology reports, and the clinically estimated
treatment outcome after completion of the chemotherapy, are collected from patient files.
All collected images and clinical information are stored into our CAD Lab information
infrastructure (CADii). At present all patients undergo 3 cycles of chemotherapy. After
completion of the chemotherapy treatment, the patients undergo radical cystectomy. The
gold reference standard for the chemotherapy treatment outcome is determined by
histopathology findings after radical cystectomy. Our clinical co-investigators marked each
lesion and provided descriptors seen on the images. Two radiologists have manually drawn
3D outlines as gold standard for 171 cases.

In addition, we are part of a team which has started prospective collection of
pathological information, diagnostic test results, immunohistochemical biomarkers, and CT
scans from bladder cancer patients after the first cycle of chemotherapy. The protocol for
data collection is approved by IRB. We have started the data collection. We have full access
to the collected data. So far we have collected 13 cases. This will be very valuable dataset
allowing us to develop tools for very early prediction of response to treatment.

182



8 Specific Aim 2: Design of quantitative image analysis tool (QIBC) for evaluation of
bladder GTV and image characteristics

For both decision support systems CDSS-S and CDSS-T, an important component is
to quantify the bladder gross tumor volume (GTV) and image characteristics. During the
current time period of the project we have continued the development of a quantitative
image analysis tool for bladder cancer, QIBC, specifically designed for these applications.
We have been exploring further the use of a deep learning convolution neural network (DL-
CNN) in QIBC. The details of the QIBC design and evaluation of the segmentation of the
bladder lesions and bladder wall thickenings are presented in the following:

Segmentation of Inner and Outer Bladder Wall using Deep-Learning
Convolutional Neural Network in CT Urography

We have explored the use of a deep-learning convolutional neural network (DL-
CNN) to segment the bladder wall. This task is challenging due to differences in the wall
between the contrast and non-contrast-filled regions, significant variations in appearance,
size, and shape of the wall among cases, overlap of the prostate with the bladder wall, and
the wall being extremely thin and occasionally invisible compared to the overall size of the
bladder.

Methods: We trained a DL-CNN to distinguish the bladder wall from the inside of
the bladder and the outside of the bladder using neighborhood information. A training set of
about 240,000 regions of interest (ROIs) (Figure 3) were extracted from training cases for
which the boundaries of the inner and outer wall of the bladder had been manually drawn.
Half of the 16x16-pixel ROIs were determined to include the bladder wall and the other half
were selected to exclude the bladder wall with some being inside the bladder wall and the
rest outside the bladder entirely. The DL-CNN trained on these ROIs was applied to the test
cases slice by slice to generate a bladder wall likelihood map where the gray level of a given
pixel represents the likelihood that a given pixel would belong to the bladder wall. In
addition, we used the DL-CNN likelihood map as an energy term in the energy equation of a
cascaded level sets method to segment the inner and outer bladder wall (Figure 1 and Figure
2). A data set of 173 cases collected as described in Specific Aim 1 was used in this study.
The data set was randomly split into two independent sets of training (81 cases) and testing
(92 cases). Of this data set, 79 of the training cases and 37 of the test cases were hand
outlined for both the inner and outer wall and used in this study. The DL-CNN segmentation
with level sets was compared to these 3D hand-segmented contours as a reference standard.
The accuracy of the segmentation was evaluated with four performance metrics: average
volume intersection %, average % volume error, average absolute % volume error, and
average distance. These performance measures were applied to the inner and outer wall
contours independently. We compared the outer wall contours to the bladder segmentation
contours based on our previous method. We also evaluated the accuracy of the bladder wall
segmentation by the average bladder wall volume intersection %, average % bladder wall
volume error, and average absolute % bladder wall volume error.
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CTU Scan
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* Level
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Figure 1: Flowchart of DL-CNN segmentation that shows generation of a
bladder wall likelihood map and use of level sets to obtain inner and outer wall
contours. The DL-CNN likelihood map was used as an energy term in the
energy equation of a cascaded level sets method.

Figure 2: Example of bladder
segmentation. The blue contour is
for the outer wall and the pink
contour is for the inner wall. (a) The
DL-CNN effectively follows the
inner and outer wall with slight
over-segmentation of both. (b) The
DL-CNN under-segments the inner
contour, but successfully segments
the thickened wall pointed to by the
arrow.

(b)
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(b)

Figure 3: Subset of 240,000 ROIs used to train the DL-CNN. Each ROI is
16x16 pixels. (a) ROIls that are labeled as within the bladder wall. (b) ROIs that
are labeled as outside the bladder wall.

Results: For the training set, the inner wall contour achieved the average volume
intersection %, average % volume error, average absolute % error, and average distance of
90.0£8.7%, -4.2+ 18.4%, 12.9£13.9%, and 3.0£1.6mm (Table 1). For the test set, the inner
wall achieved values of 86.9+£9.6%, -8.3+37.7%, 18.4+33.8%, and 3.4+1.8mm respectively.
For the training set, the outer wall contour achieved the values of 93.7£3.9%, -7.8+11.4%,
10.3£9.3%, and 3.0+1.2mm respectively. For the test set, the outer wall contour achieved
values of 87.5+9.9%, -1.2+20.8%, 11.9+£17.0%, and 3.5£2.3mm respectively (Figure 4). The
outer bladder wall segmentation was compared to the bladder segmentation based on our
previous method in Table 2. If the segmented bladder wall was evaluated with the average
bladder wall volume intersection %, average % bladder wall volume error, and average
absolute % bladder wall volume error, the values were 61.0+11.4%, -13.7+49.1%, and
34.5+£37.3%, respectively, for the training set, and 54.6+10.4%, 10.7+28.0%, and
25.1+15.8%, respectively, for the test set. The direct measurement of the bladder wall
obtained less accurate results because slight deviations of the wall contour would lead to a
much larger % error due to the much smaller wall volume compared to the inner and outer
bladder volume.

Conclusions: A DL-CNN with level sets can effectively segment bladder walls
from the inner bladder and outer structures despite a lack of consistent distinctions along the
inner wall. The outer wall segmentation was improved compared to our previous method
and the DL-CNN was also able to segment the inner bladder wall with similar results.

(QIN Publications and Presentations: #10).
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Figure 4: Histograms of the (a,b) volume intersection %, (c,d) volume % error, and
(e,f) average distance for the training and test sets, respectively for the inner and outer

bladder wall segmentations
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Inner Inner Testin Outer Outer
Training J Training Testing
Volume 90.0 + 8.7 86.9+ 9.6 937+39 | 87.5+99
Intersect %
0,
Volume % 424184 834377 -7.8+114 | -12+208
Error
Absolute
Volume % 129+ 13.9 18.4 + 33.8 10.3+9.3 | 11.9+17.0
Error
Aye rage 3.0+16 34+18 3.0+12 35+23
Distance (mm)

Table 1: Performance metrics for inner and outer bladder wall.

Training Testing -
Training .
Volume Volume Testing Volume
Method . - Volume %
Intersection | Intersection E % Error
% % rror
DL-CNN LS| 93.7+39 87.5+9.9 -7.8+11.4 -1.2+20.8
Previous 86.5+6.4 77.6£12.0 7391 18.0+£12.5

Table 2: Comparison between current and previous DL-CNN outer
wall contours for volume intersection % and volume percent error.
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Segmentation of Bladder Cancer for Treatment Response Assessment using
Deep-Learning Convolution Neural Network

In this study, we applied DL-CNN to bladder lesion segmentation. The DL-CNN
was trained to recognize the patterns in the regions that were inside and outside of the
bladder lesion and generate a lesion likelihood map. Minor refinement on the likelihood map
was performed by level sets to obtain the segmented boundaries of the bladder cancer.

Methods: A data set of 62 cases was collected as described in Specific Aim 1. All
of the patients in the data set had undergone CT examination before and after chemotherapy.
The data set contained 64 tumors. A reference standard for the computerized segmentation
was obtained via 3D hand-segmented contours of the bladder tumors in the pre- and post-
treatment CTs by two radiologists (reference standard 1 and reference standard 2,




respectively). The DL-CNN by Krizhevsky et al. called cuda-convnet [10, 11] was used. The
neural network was trained to classify regions of interests (ROIs) on 2D slices as being
inside or outside of the bladder cancer. Details on the DL-CNN can be found in the literature
[12]. The DL-CNN was trained with the pre-treatment scans of the cases. For each axial
slice of the cases, a large number of overlapping 16 x 16-pixel ROIs were extracted from the
region including the cancer marked by the radiologist. If more than 80% of an ROI was
within the hand-outlined bladder cancer, the ROI was labeled as being inside of the cancer,
whereas the ROI had to be completely outside of the cancer in order for it to be classified as
being outside the cancer. ROIs not labeled as either inside or outside of the cancer were
excluded. Figure 5 shows an example of ROIls obtained from a CT slice. The number of
ROIs within the two classes was balanced, resulting in approximately 65,000 ROIs. The
output of the DL-CNN can be interpreted as the likelihood of an input ROI being classified
into one of the two categories. Leave-one-case-out cross-validation was employed for this
study. In each of the leave-one-case-out partitions, all ROIs associated with a case were
removed and the DL-CNN was trained using the remaining ROIs. For each leave-one-case-
out partition, the trained DL-CNN network was applied to the removed case to generate the
bladder cancer segmentation likelihood map. Figure 6 shows the bladder cancer likelihood
map for the CT slice shown in Figure 5. The DL-CNN was applied to the CT scan for both
the pre- and post-treatment scans for each bladder cancer case.

(@) (b)

Figure 5: An axial slice of a pre-treatment CT scan from a training case. (a) Cropped
CT slice centered at the bladder. (b) Radiologist’s hand-outline of the cancer overlaid
on the CT slice. (c) ROIs extracted from this slice. The yellow ROI shows the size of a
16 x 16-pixel ROI. The ROIs are partially overlapping. The blue ROIs are labeled as
inside the bladder cancer. The pink ROIs are labeled as outside the bladder cancer for
training the DL-CNN.
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Figure 6: Bladder Cancer likelihood map of the CT slice shown in Figure 5.
Regions that are highly likely to be bladder cancer have higher intensity
values. The VOI that was used for this lesion is shown in blue. For
demonstration purposes, the bladder cancer likelihood map was generated in
the region around the entire bladder.

As seen in the example of Figure 6, the likelihood map identifies the bladder tumor
region very well but the tumor boundary is not sharply demarcated. 3D and 2D level sets,
are used to perform minor refinements to the contour. A 3D level set is applied to the initial
segmentation surface, and the segmentation on each slice is further refined by a 2D level set.
Details on the level sets used can be found in the literature [13]. Figure 7 shows the final
contour of the bladder cancer on the CT slice from Figure 5 using the likelihood map shown
in Figure 6. Segmentation performance was evaluated by comparing quantitatively the
automatic segmentation results to the 3D hand-segmented contours. The average minimum
distance, and the Jaccard index [14] between the hand-segmented contours and computer
segmented contours were calculated.

Figure 7: Bladder cancer segmentation on the CT slice shown in
Figure 1 using the bladder likelihood map shown in Figure 6.
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Figure 8: Examples of segmentations of bladder tumors in pre-treatment (a, c, €)
and post-treatment (b, d, f) CT scans. The DL-CNN segmentation is shown in
light blue. The AI-CALS segmentation is shown in pink. The hand outline is
shown in dark blue. (a) DL-CNN segmentation with AI-CALS segmentation and
hand outline for the cancer shown in Figure 5. Both computer methods segmented
the lesion reasonably. (b) The cancer shrunk due to treatment, and became a part
of the bladder wall. The DL-CNN under-segmented the cancer, not extending
enough into the bladder wall. AI-CALS over-segmented the lesion, leaking into
the bladder. (c) The DL-CNN segmentation outlined the cancer relatively
accurately, while the AI-CALS segmentation leaked. (d) In this post-treatment
scan, the cancer along the bladder wall was reasonably segmented by DL-CNN,
while the AI-CALS was unable to follow the shape and leaked into the bladder.
(e) Both DL-CNN and AI-CALS segmented the bladder cancer reasonably well,
but the AI-CALS slightly under-segmented the cancer. (f) The bladder cancer
responded to treatment, thus had shrunk considerably, making the segmentation
difficult. Both the DL-CNN and the AI-CALS under-segmented the lesion.
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Results: Examples of DL-CNN segmented bladder cancer on pre- and post-
treatment CT scans, along with the AI-CALS segmentation, are shown in Figure 8. The
segmentation performance measures of both the DL-CNN and AI-CALS methods compared
with reference standard 1 are presented in Table 3. For all lesions, the difference in the
average minimum distance was statistically significant with a p-value of 0.001, while the
difference in the Jaccard index approached significance with a p-value of 0.058. The
differences in the pre-treatment lesion segmentation performances were statistically
significant with p-values of less than 0.001 and 0.015 for the average minimum distance and
the average Jaccard Index, respectively. The differences in the post-treatment lesion
segmentation performances did not reach statistical significance. The segmentation
performance measures of the DL-CNN and AI-CALS methods compared with the two
reference standards averaged over the pre-treatment lesions, post-treatment lesions, and both
pre- and post-treatment lesions for a subset of 29 cases are presented in Table 4. None of the
differences reached statistical significance for this subset of cases.

Conclusions: Our results demonstrate that DL-CNN is useful for 3D segmentation
of bladder cancers for a variety of bladder cancer shapes and sizes. The DL-CNN and the
AI-CALS methods were able to automatically segment the cancers, with results similar to
those of the radiologists. This study suggests that computerized segmentation of bladder
cancers using DL-CNN has the potential to assist in the assessment of tumor volume of
bladder cancer by providing the more accurate 3D information without the extensive effort
of manual segmentation. (QIN Publications and Presentations: #3)

DL-CNNvs | AI-CALSvs Table 3: Lesion segmentation
p-value . .

Rs1 Rs1 evaluation using reference
Average standarc_i 1 (RS1). The results are
minimum Pre- 48+23mm | 61+36mm | 0.001* shown in groups of pre-treatment,
distance | treatment post-treatment, and both pre- and
post-treatment lesions (126
AVDIST treF;‘:fT;m 46+18mm | 49+26mm | 0.389 lesions). The p-values from
Student’s two-tailed paired t-test
Both | 47:21mm | 55232mm | ooor- | for the differences between the
DL-CNN and the AI-CALS
Jaccard Pre- | 395+17.1% | 347+158% | 0015 segmentation methods are also
index | treatment shown. Some  post-treatment
Post- lesions were determined to have
JACCARD™| " | 326+17.8% | 327+144% | 0936 shrunk completely by radiologist,
thus no segmentation  was

Both 36.3+17.7% | 33.8+15.1% | 0.058 performed

* Statistically significant at p < 0.05
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Table 4: Lesion segmentation
DL-CNN vs| AI-CALS |DL-CNNvs| AI-CALS .
RS1 vs RS1 RS2 vs RS2 evaluation reSL_JIt_s for a subset
of 29 cases divided into pre-
Average
minimum ¢ Ptre- t 4.8+ 1.8 mm| 5327 49+34mm|4.5+1.9mm treatment, post-treatment, and
distance [ reormen mm both pre- and post-treatment
post, asis lesions (58 lesions) between
AVDIST treatment 43+17mml m_m ) 47+31mm|49+3.7mm hand_segmented reference
18203 standards (RS1, RS2) by two
Both 4.6 +1.8mm| mm 48+32mm|4.7+2.9mm different readers for DL-CNN
Jaccardindex| . P |as3zgsn| 2 fa68+03% [s28+125% and . the AI-CALS
treatment 14.1% segmentation methods. None
of the paired differences
D Post- 29.8 + 329+

JACCARD treatment 17.7% 14.8% 28.8 +19.7%28.6 + 18.2% between the two methods
s5e | 377+ reached statistical significance
Both 158% | 1520 |3TBELERBTIEILA - for this subset, probably due to

the small sample size.

8§ Specific Aim 3: Design of CDSS-S and CDSS-T decision support systems to assist
clinicians in staging and monitoring of treatment response of bladder cancer.

During the current time period of the project we have continued the development of
the decision support systems for bladder cancer staging and treatment response monitoring.

Specific Aim 3.1: Design of computer decision support system (CDSS-S) for
bladder cancer staging.

Correct staging of bladder cancer is crucial for the decision of neoadjuvant
chemotherapy treatment and minimizing the risk of under-treatment or over-treatment. At
clinical staging, approximately 30% of patients are under-staged or over-staged. Subjectivity
and variability of clinicians in utilizing various diagnostic information may lead to
inaccuracy in staging bladder cancer. An objective decision support system that merges the
information in a predictive model based on statistical outcomes of previous cases and
machine learning may assist clinicians in making more accurate and consistent staging
assessments.

We have continued the design of CDSS-S. During the current time period of the
project we have developed a CDSS-S to stage bladder cancer based on different machine
learning techniques. The details of the CDSS-S design and evaluation are presented in the
following:

Methods: A data set consisting of 84 bladder cancer lesions from 76 CTU cases
collected as described in Specific Aim 1, was used to train and test the classifier. The cases
were grouped into two classes based on pathological stage >T2 or below T2, which is the
decision threshold for neoadjuvant chemotherapy treatment clinically. There were 43
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cancers below stage T2 and 41 cancers at stage T2 or above. All 84 lesions were
automatically segmented using our previously developed auto-initialized cascaded level sets
(AI-CALS) method. Each lesion was marked with a bounding box by a radiologist. This box
served as the input to our 3D AI-CALS automated segmentation system. The segmentation
of bladder lesions can be challenging as some lesions are very small, subtle in contrast, or
have irregular boundaries. Additionally, lesions are sometimes located in the non-contrast
enhanced region of the bladder and the contrast between the lesion boundary and the
surrounding background is very low.

Morphological [15] and texture features [16, 17] were extracted. The morphological
features included gray level features, contrast features, and the lesion volume. The texture
features included filtered Disarthy East-West and Horizontal direction features, and the gray
level radial gradient direction features. The features were divided into subspaces of 26
morphological features only, 65 texture features only, and a combined set of 91
morphological and texture features.

The data set was split into Set 1 and Set 2 for two-fold cross validation. The cancers
were evenly and randomly split into two sets with 42 cancers each by balancing the number
of cancers of each class. Set 1 consisted of 22 cancers below stage T2 and 20 cancers stage
T2 or above. Set 2 consisted of 21 cancers below stage T2 and 21 cancers stage T2 or above.
The average size for cancers of stage <T2 and >T2 in Set 1 were 26.4+17.3 mm and
45.6+19.1 mm, respectively (Figure 9). The average size for cancers of stage <T2 and >T2
in Set 2 were 27.3+10.8 mm and 40.6+17.3 mm, respectively (Figure 9). Stepwise feature
selection was used to select the most effective features. A linear discriminant analysis
(LDA), a neural network (NN), a support vector machine (SVM), and a random forest
(RAF) classifier were used to combine the features into a single score. In the first fold, Set 1
was used for feature selection and for training of the classifiers. The trained classifiers were
then tested on Set 2. In the second fold, feature selection and classifiers’ training were
performed on Set 2 and then tested on Set 1. The classification accuracy was quantified
using the area under the ROC curve (A;) for both the training and test sets.

Set1 Set 2

o
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- T2 = >T2
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Figure 9: Distribution of tumor sizes for Set 1 and Set 2. (a) Set 1: The
average tumor sizes of stage < T2 and > T2 were 26.4+17.3 mm and
45.6+19.1 mm respectively. (b) Set 2: The average tumor sizes of stage
< T2 and > T2 were 27.3+10.8 mm and 40.6 £17.3 mm respectively.
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Results: The performance of the classifiers based on different machine learning
techniques, the LDA, NN, SVM, and RAF is summarized in Table 5. Different feature
spaces containing the morphological features, the texture features, and the combined set of
both morphological and texture features were used for classification. The features selected
with LDA were used in the SVM and NN classifiers. The LDA classifier with
morphological features achieved a training A; of 0.91 on Set 1 and a test A; of 0.81 on Set 2.
For training on Set 2 it achieved a A; of 0.97 and a test A, of 0.90 on Set 1. The selected
features on the training sets included volume, a contrast feature, and gray level features. The
test A; of the NN for Set 1 and Set 2 was 0.88 and 0.91 respectively. The SVM achieved test
A; of 0.88 on Set 1 and test A; of 0.90 on Set 2. The test A; of the RAF for Set 1 and Set 2
was 0.83 and 0.88 respectively. The distribution of the discriminant scores from the four
classifiers for testing on Set 1 and Set 2 in two fold cross-validation in the morphological
feature space are presented in Figure 10. It can be observed that most of the classifiers were
able to provide a relatively good separation between the two classes.

LDA NN SVM RAF
N f L . - . . . . .
Feature Type Fue:?jrre(s) Training | Testing |Training | Testing | Training | Testing | Training | Testing
Morphological
Features
Training (Set 1)
Testing (Set 2) 4 0.91 0.81 0.96 0.91 0.95 0.9 1 0.88
Training (Set 2)
Testing (Set 1) 4 0.97 0.9 0.98 0.88 0.97 0.88 1 0.83
Texture Features

Training (Set 1)
Testing (Set 2) 2 0.91 0.88 0.95 0.92 0.92 0.89 1 0.97
Training (Set 2)

. 7 1 0.91 1 0.89 1 0.91 1 0.89
Testing (Set 1)

Combined Features

Training (Set 1)
Testing (Set 2) 3 0.92 0.9 0.97 0.95 0.92 0.89 1 0.96
Training (Set 2)

. 7 1 1 .91 1 2 1
Testing (Set 1) 089 09 09 086

Table 5: Summary results for LDA, NN, SVM and RAF classifiers in morphological,
texture, and combined feature spaces.

By using the texture features the LDA classifier achieved a test A; of 0.91 on Set 1
and a test A; of 0.88 on Set 2. When trained on Set 1 and Set 2 the LDA classifier selected
subsets of the filtered Disarthy East-West direction features, the filtered Disarthy Horizontal
direction features and the gray level radial gradient direction features. The test A; of the NN
classifier for Set 1 and Set 2 was 0.89 and 0.92, respectively. The SVM classifier achieved
test A; of 0.91 on Set 1 and test A; of 0.89 on Set 2. The test A; of the RAF classifier for Set
1 and Set 2 was 0.89 and 0.97, respectively.
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Figure 10: Distribution of the classifiers discriminant scores for testing on
Set 1 and Set 2 in two-fold cross validation using the morphological features.
(@) LDA (Set 1) A, =0.90, (b) LDA (Set 2) A, =0.81, (c) SVM (Set 1) A; =
0.88, (d) SVM (Set 2) A, =0.90, (e) NN (Set 1) A, =0.88, (f) NN (Set 2) A,
=0.91, (9) RAF (Set 1) A; = 0.83, (h) RAF (Set 2) A, = 0.88.
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When the morphological and the texture features were combined, the LDA classifier
achieved a test Az of 0.89 on Set 1 and a test A; of 0.90 on Set 2. When trained on Set 1 and
Set 2 the LDA classifier selected a contrast feature, subsets of the filtered Disarthy
Horizontal direction features, and subsets of the gray level radial gradient direction features.
The test A; of the NN classifier for Set 1 and Set 2 was 0.91 and 0.95, respectively. The
SVM classifier achieved test A; of 0.92 on Set 1 and test A; of 0.89 on Set 2. The test A; of
the RAF classifier for Set 1 and Set 2 was 0.86 and 0.96, respectively. The test ROC curves
for all of the classifiers when tested on Set 1 and Set 2 in the two fold cross-validation in the
different feature spaces are shown in Figure 11.

The classifiers achieved slightly higher A; values in the texture feature space than in
the morphological and combined feature spaces; however, the differences did not achieve
statistical significance. Examples of bladder cancers with stages > T2 or < T2 with the
corresponding computer outlines and classifier scores are presented in Figure 12.

Conclusion: Staging of bladder cancer is crucial in minimizing the risk of under-
treatment or over-treatment. The performance of the LDA classifier in staging different
bladder cancer lesions shows promise in assessing bladder cancer stage using quantitative
image analysis from CTU. Our preliminary results demonstrate the feasibility of an image-
based predictive model that can assist with bladder cancer staging. (QIN Publications and
Presentations: #7)

Specific Aim 3.2: Design of computer decision support system (CDSS-T) for
bladder cancer treatment response monitoring.

Early assessment of therapeutic efficacy and prediction of treatment failure would
help clinicians decide whether to discontinue chemotherapy at an early phase before
additional toxicity develops, and thus improve the quality of life of a patient and reduce
unnecessary morbidity and cost. The ultimate goal is to improve survival for those with a
high risk of recurrence while minimizing toxicity to those who will have minimal benefit.
Therefore, development of an accurate and early predictive model of the effectiveness of
neoadjuvant chemotherapy is important for patients with bladder cancer.

We have continued the design of CDSS-T by merging (1) image biomarkers
obtained by QIBC, and (2) changes in descriptors of local tumor tissue characteristics. We
designed predictive models using the image biomarkers and local tumor descriptors to
distinguish between bladder cancers that have fully responded to chemotherapy and those
that have not, based upon analysis of pre- and post-treatment CT images. We evaluated
three unique predictive models, which employ different fundamental design principles: 1) a
pattern recognition method (DL-CNN), 2) a more deterministic radiomics feature based
approach (F-SL), and 3) a bridging method between the two, which extracts features from
image patterns (F-ROI). We studied both the properties of the different predictive models
and the relationship between these different radiomics approaches. We also compared the
performance of the models in predicting a complete response of bladder cancer to
neoadjuvant chemotherapy with that of expert physicians. The details of the study are
presented below.
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Figure 11: ROC curves for testing on Set 1 and Set 2 in two-fold cross
validation for LDA, SVM, NN, and RAF classifiers: Left column: testing on
Set 1, right column: testing on Set 2. (a) and (b) morphological features; (c)
and (d) texture features; (e) and (f) combined features.
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@)
LDA =-1.85; SVM =-0.95;NN = 0.04: RAF =0.28  LDA =-2.44; SVM =-1.50; NN = 0.05: RAF =0.20

@
LDA = 746, SVM = 2.13;NN =1.00: RAF =0.86 LDA = 1.62; SVM = 1.73; NN = 0.91: RAF =0.54

LDA = 3.42; SVM = 1.50: NN = 1.00: RAF =0.82  LDA =-0.97: SVM =-0.55; NN = 0.33: RAF = 0.69

Figure 12: Examples of bladder cancers with stages > T2 or < T2. The blue outlines
represent the AI-CALS segmentation. The reported scores are test scores for the LDA,
SVM, NN, and RAF classifiers based on the morphological features. The two cases in
(a)(b) and (c)(d) both contained is a T1 stage cancer that was properly classified with low
scores from all classifiers. (e)(f) is a T3 stage case that was properly classified with high
scores from all classifiers. (g)(h) is a T2 stage case that was properly classified with high
scores from all classifiers. (k)(l) is a case that was clinically identified as T1 pre-surgery
but was identified as a T2 stage cancer post-surgery. The classifiers classified the cancer
as >T2 with high scores. (m)(n) is T2 stage cancer that was incorrectly identified by the
LDA, SVM, and NN classifiers with low scores and correctly identified by the RAF with a
high score.
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Methods: A training data set of 82 patients with 87 lesions who underwent pre-
and post-neoadjuvant chemotherapy CTU scans was collected as described in Specific Aim
1. Using the 87 lesions, 104 pre- and post-treatment lesion pairs were generated, and 27% of
the training set patients had TO cancer stage after neoadjuvant chemotherapy. TO stage
corresponds to a complete response to treatment. An additional 41 patients with 43 lesions
were collected as a test set. Fifty-four pre- and post-treatment pairs were generated from the
42 lesions, and 22% of the test set lesion pairs had TO cancer after neoadjuvant
chemotherapy. Cystectomy was performed at the end of treatment, and the cancer stage after
treatment was used as the reference standard to determine if a patient responded to
treatment. Bladder lesions in the CTU scans were segmented using our Auto-Initialized
Cascaded Level Sets (AI-CALS) system.

Regions of interests (ROIs) were extracted from within the segmented lesions from
corresponding pre- and post-treatment scans of a patient and were paired together in
multiple combinations to generate pre-post-treatment paired ROIs (Figure 13). We trained a
DL-CNN to distinguish between bladder lesions that were diagnosed as stage TO post-
treatment and those that were greater than stage TO. The “per-lesion” score was obtained by
using the average value among the ROI scores associated with the lesion.

Pre-
Post-

treatment

treatment

T3 T2

(a) (c)

Figure 13: Creating ROIs to train the DL-CNN. (a) ROIs were generated by
combining regions from the pre- and post-treatment scan lesions. In this example,
the pre-treatment stage was T3, and the post-treatment stage was T2. Therefore, the
ROI was labeled as being greater than stage TO after treatment. (b) ROI of a case
that was stage T3 pre-treatment and stage TO after treatment. (c) ROI of a case that
was stage T2 pre-treatment and stage T4 post-treatment. Therefore, the ROI was
labeled as greater than stage TO after treatment.

A radiomics-feature-based analysis was applied to the segmented lesions (RF-SL)
to build a classifier for the prediction of complete responders to chemotherapy. Ninety-one
features were extracted from every segmented lesion, which included morphological
features, gray level features, texture features, and gradient field features. For every temporal
lesion pair, the percent change between each radiomics feature extracted from the pre- and
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post-treatment lesion was calculated. The percent change of each of the feature values
before and after the treatment was calculated. Feature selection was performed and a random
forest classifier (RAF) was trained to use the selected radiomics features to predict the
likelihood of the post-treatment lesion being TO stage.

Radiomic features from paired ROIs (RF-ROI) were also used to build a classifier
for the prediction of complete responders to chemotherapy. Gray-level and texture features
were extracted from the paired ROIs used for the DL-CNN. Thirty-eight features, including
gray-level histogram statistics, and run length statistics features, were calculated for every
ROI. The “per-lesion” features were generated by averaging the feature values among the
ROIs associated with the lesion. Similar to the RF-SL model, feature selection was
performed and a RAF classifier was trained to use the selected radiomics features to predict
the likelihood of the post-treatment lesion being TO stage.

An observer performance study with two experienced radiologists was also
performed independently, in which the radiologist estimated the likelihood of stage TO after
viewing each pre-post-treatment CTU pair. ROC analysis was performed and the A, was
calculated for the DL-CNN and radiologists’ estimates.

Results: Table 6 shows the performances for the DL-CNN, RF-SL, and RF-ROI
methods, along with the radiologists’ results for the test set. Figure 14 shows the ROC
curves for the DL-CNN, F-SL, and F-ROI methods, and the radiologists for the test set. The
test A, values for prediction of TO disease after treatment were 0.73 + 0.08, 0.77 + 0.08, 0.67
+ 0.08 for the DL-CNN, F-SL, and F-ROI methods, respectively. The two radiologists had
A; values of 0.76 + 0.08 and 0.77 + 0.07 on the test set. None of the pairwise differences in
the methods reached statistical significance.

DL-CNN | RF-SL |RF-ROI |Radiologist 1| Radiologist 2

077+ | 069
AUC |0.73+0.08 0.08 0.08 0.76 +0.08 0.77 £ 0.07

DL-CNN: Deep-learning convolution neural network

RF-SL: Features extracted from segmented lesions

RF-ROI: Features extracted from pre- and post-treatment paired ROIs
The area under the curve (A;) is shown with the standard deviations

Table 6: Performances of bladder cancer treatment response assessment on the test
set.
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Figure 14: Test set ROC curves for the three models and two
expert radiologists. The results from the test set for prediction of TO
stage after neoadjuvant chemotherapy for the three models. The
differences between any pairs of A, values did not reach statistical
significance.

Examples of the treatment response prediction of pre- and post-treatment case pairs
are shown in Figure 15. Given the fact that in some instances the computer models were
correct about complete tumor responses and the radiologists were incorrect, we speculate
that use of one or more of these models alongside a radiologist might improve the
radiologist’s ability to identify patients who responds fully to chemotherapy. In cases like
that in Figure 15(d), radiologists will generally decide that the case is a non-responder
because they see residual bladder wall thickening, which is an indicator of cancer. If the
computer models suggested that there was a high likelihood of TO after treatment in this
case, it might lead the radiologists to re-evaluate their decision, and, possibly come to a
different (and correct) conclusion. Of course, it is also possible for the computer models to
sway a radiologist’s decision in the wrong direction. Further study of the accuracy of the
computer models in tandem with radiologist assessment is needed to determine whether or
not such decision support systems will improve radiologist performance in treatment
response assessments for bladder cancers.

Conclusion: This study indicates the potential of using DL-CNN and image features

obtained by QIBC, as well as the changes in the descriptors of local tumor tissue
characteristics from the pre- and post-treatment CT of patients who have undergone
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neoadjuvant chemotherapy for bladder cancer has the potential to assist in assessment of
treatment response. (QIN Publications and Presentations: #4, #8, and #9)

(d)
Figure 15: Examples of pre- and post-treatment bladders and their predictions. (a) The
computer methods and the radiologists correctly predicted the treatment outcome for this
case, which was a non-responding, progressive disease that went from stage T2 before
treatment to T3a after treatment. (b) In this stable disease case (stage T3), the computer
methods and the radiologists correctly identified the case as non-responding. (c) This case
fully responded, going from stage T2 to TO, and the computer methods and the
radiologists correctly predicted the treatment response. (d) A full-responding case, going
from stage T3 to TO. The computers correctly predicted the response, while the
radiologists did not. The region around the right ureterovesicular junction was
asymmetrically thickened, which might have misled the radiologist to assess that cancer
was present. The pre-treatment scan is on the left and the post-treatment scan is located on
the right of each pair. The box on the pre-treatment scan represents the location of the
lesion as marked by one of the radiologists.

COLLABORATIONS WITHIN THE NETWORK
We are actively involved in the collaboration activities within the QIN.
8 QIN committees and working groups
We participate in the QIN committees (the Executive Committee and the
Coordinating Committee) and in the QIN working groups (PET-CT working subgroup,
Image Analysis Performance Metrics working group, Bioinformatics/IT & Data Sharing

working group, and Clinical trial Design & Development working group). Dr. Hadjiyski
serves as a chair of PET-CT working subgroup.

202



8 QIN Grand Challenges

We also participate in two grand challenges organized within the PET-CT working
subgroup: (1) Use of NLST as a dataset for assessing lung nodule interval change, and (2)
CT Feature Comparison Study. We are very enthusiastic about this QIN opportunity,
because this allows to test our tools on a different modality and different type of lesions
(lung nodules) as well as to compare the tools to the systems of the other QIN participants in
the challenges. We actively participate in the data analysis and the publications preparation
related to the challenges, which resulted in a joint publication in the QIN Special issue of
Tomography. (QIN Publications and Presentations: #11)

§ Computer demonstrations at the QIN face to face meeting

We also have participated in the live computer demonstrations at the Face to Face
meeting in April 2016 and have demonstrated our GUI and QIBC segmentation tool. We are
also very enthusiastic about this QIN opportunity, because (1) it was possible to present our
tool to the other members of QIN, (2) we got very useful feedback from the experts in the
field and (3) it allowed discussions for potential collaboration for integration of our GUI in
Slicer.

PLANS FOR NEXT YEAR

In the next year we will continue to collect CTU pre- and post- neoadjuvant
chemotherapy treatment cases. We also will continue the prospective collection of
pathological information, diagnostic test results, immunohistochemical biomarkers, and CT
scans from bladder cancer patients after the first cycle of chemotherapy. Our clinical
collaborators will continue to annotate and outline the bladder lesions. We will concentrate
our efforts to continue the development of our segmentation bladder lesion system (QIBC)
and the decision support systems for bladder cancer staging (CDSS-S) and treatment
response monitoring (CDSS-T) with a larger data set. We also will continue to extract
additional 3D morphological and texture radiomic descriptors, define new descriptors, and
use machine learning methods for the design of the predictive model to predict the cancer
stage and to combine the descriptors in a “combined response index” as a predictor of the
treatment response.
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INTRODUCTION

Despite concerns over radiation dose, CT continues to be widely used for assessing
response to therapy in many clinical trials settings. There have been significant developments
which allow the reduction of radiation dose from CT, including advances in iterative
reconstruction techniques, detector technologies and others that promise significant dose
reductions (50-60%) to patients, while maintaining clinical image quality. While these
technologies should be investigated wherever possible in a clinical environment, their effects
on quantitative measures extracted from CT images are unclear and need to be investigated
before they are deployed in clinical trials. Simply reducing tube current time product (mAs)
will increase image noise, which may increase variability in quantitative measures. Size
measures may be affected differently depending on the anatomic region; lung lesions
(typically high contrast objects) may be affected differently from liver lesions (typically lower
contrast). Peak values measured when contrast enhanced studies are used may also respond to
dose reductions differently. In addition, because new iterative reconstruction methods reduce
noise, they often also smooth the image somewhat, which may affect size and density (e.g.
average HU) measures. Therefore, this application proposes to systematically investigate the
effects of radiation dose reduction methods on quantitative metrics used in clinical trials. The
goal is to determine how far we can decrease dose under different conditions before we
increase variance to unacceptable levels in the context of using quantitative measures to assess
response to therapy.

We have proposed two specific aims to carry out this research. In the first aim, we
proposed to create a collection of cases that represent a range of low dose acquisition and
reconstruction scenarios in specific quantitative imaging tasks. This is being accomplished
using a calibrated dose reduction simulation method (noise insertion tool) and then
reconstructing images under a variety of dose reduction levels and reconstruction methods. In
the second specific aim, we are extracting quantitative Imaging measures from these
reconstructed image data sets and analyzing the variance of quantitative measures across dose
levels and reconstruction methods. The overall goal is to provide guidance to the QIN, and
clinical trials in general, regarding the use of both standardized protocols and the use of dose
reduction methods, with the ultimate goal of determining the levels of dose reduction that
yield acceptable levels of measurement variance in several assessment tasks/environments.
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DISCUSSION OF PROGRESS

Since the beginning of the project period, we have made progress on a number of
projects. These are reported below.

8 The Effects of Radiation Dose and Reconstruction Method on Tumor VVolumetrics

A study into the effects of radiation dose level and reconstruction method on
estimating the volume of lesions observed on CT was published in Medical Physics (Young
et al, Medical Physics, May 2015). In this study, we analyzed the effects of radiation dose
level and reconstruction method on measured lesion volumes of lung lesions in cancer
patients. We used the original dose level (approximately 20 mGy) and then simulated reduced
dose levels of 25% 10%, and 3% of the dose of our clinical protocol. Simulated reduced-dose
data were reconstructed with both conventional filtered backprojection (B45 kernel) and
iterative-reconstruction methods (SAFIRE: 144 strength 3 and 150 strength 3). Three lab
technologist readers contoured “measurable” nodules in 33 patients under each of the different
acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules,
17 were used to estimate repeatability with our clinical reference protocol, as well as interdose
and inter-reconstruction-method reproducibility.

The clinical-dose repeatability experiment yielded a mean proportional difference of
1.1% and SD of 5.5%. The inter-dose reproducibility experiments gave mean differences
ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-
method reproducibility experiments gave mean differences of 2.0% (144 strength 3) and -0.3%
(150 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter-
reconstruction-method mean/SD pairs were (1.4%, 6.3%) and (-0.7%, 7.2%) for 144 strength
3 and 150 strength 3, respectively. Analysis of representative nodules confirmed that reader
variability appeared unaffected by dose or reconstruction method.

Lung-nodule volumetry was shown to be extremely robust to the radiation-dose level,
down to the minimum scanner supported dose settings. In addition, volumetry was robust to
the reconstruction methods used in this study, which included both conventional filtered back
projection and iterative methods.

8 The Effects of Radiation Dose and Reconstruction Methods on Lung Lesion Density
and Texture Based Features

Following the above effort, we investigated the effects of radiation dose level and
reconstruction method on other features of interest to the Quantitative Imaging community,
namely those based on density and texture (local variations). So using the lesions identified
and analyzed in the Young study described above (and previously contoured as well), we
extended the analysis to features extracted from the nodule contours. Our study had two major
components. In the first component, a uniform water phantom was scanned at 3 dose levels
and images were reconstructed using both conventional filtered back-projection (FBP) and
iterative reconstruction (IR) methods with four kernels for each method for a total of 24
different combinations of acquisition and reconstruction conditions (4 FBP reconstructions
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and 4 IR reconstructions at each of 3 dose levels). Example water phantom images are shown
in Figure 1. In the second component, raw projection data (sinogram data) was obtained for
33 lung nodules from patients scanned as part of our clinical practice. For the nodule cases,
low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose
level and then reconstructed using one FPB kernel and 2 IR kernels for a total of 12 conditions
(4 dose levels and 3 reconstructions at each dose level). Examples of these are shown in Figure
2.

For the water phantom, spherical regions of interest (ROI) were created at multiple
locations within the water phantom on one reference image obtained at a reference condition.
For the lung nodule cases, the ROI of each nodule (represented as a three dimensional
boundary) was obtained using semi-automated contouring methods with manual editing
allowed from images obtained at a reference condition. All ROIs were then applied to their
corresponding images constructed at different conditions. For 17 of the nodule cases, repeat
contours were performed to assess repeatability. For all ROIs, both histogram (8 features) and
gray level co-occurrence matrix based texture features (34 features) were computed. For the
lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP
reconstruction using the BA45f Kkernel; feature values calculated under all other
acquisition/reconstruction conditions were compared to this reference condition. In order to
measure the stability of features across different combinations of acquisition and
reconstruction parameters, a Q measure was introduced, which is defined as the ratio of
reproducibility (across acquisition/reconstruction conditions) to repeatability (across repeat
contours) of each feature.

‘ SGLDM Intensity Entropy

@ ®) © @ ©

Figure 1: (Images from Figures 1 and 2 of Lo et al, Med. Phys. 2016). CT images of a
water phantom illustrating differences in appearance and HU value distribution across
different dose levels and reconstructions for: (a) Original clinical dose with iterative recon
(126 Str 5); (b) Reference condition — Original dose, FBP recon (B45 kernel) and (c)
Simulated reduced dose with sharp FBP recon (B70). The next plots show feature valuess
from these water phantom ROIs across different dose/reconstruction conditions, where the
points and whiskers indicate the mean and the standard deviation of the feature value,
respectively. The y-axes are the mean feature value at each condition and the x-axes are
the various dose/reconstruction conditions. These are shown for: (d) mean intensity value
and (e) Spatial Gray Level Dependence Matrix texture value Intensity Entropy. These
plots show that the mean intensity value is stable across conditions, while this texture value
varies substantially across conditions.
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Figure 2 (Images from Figures 4 and 5 of Lo et al, Med. Phys 2016) describing nodules
used in [26] and specifically describing CT images of a lung nodule illustrating differences
in appearance and HU value distribution across different dose levels and reconstructions
for: (a) Original clinical dose with iterative recon (144 Str 3); (b) Reference condition —
Original dose, FBP recon (B45 kernel) and (c) Simulated reduced dose FBP recon (B45).
The overlaid red lines are the histogram of HU values within the nodule. Similar to Figure
1 above, the next plots show feature valuess from these lung nodules across different
dose/reconstruction conditions. These are shown for: (d) mean intensity value and (e)
SGLDM texture value Intensity Entropy. These plots also show that the mean value is
stable across conditions, while this texture value again varies substantially across
conditions.

(a) (b)

The water phantom results demonstrated substantial variability among feature values
calculated across acquisition and reconstruction conditions, with the exception of the mean
value of the density (mean HU of the region) which was robust across all conditions. Features
calculated from lung nodules demonstrated similar results with histogram mean as the most
robust feature (Q <= 1), having a mean and standard deviation Q of 0.37 and 0.22 respectively.
Surprisingly, the other two histogram features that are also quite robust were standard
deviation and variance. Some of the GLCM measures were also quite robust across different
conditions, namely diff. variance, 35 sum variance, sum average, variance and mean. As
expected, the histogram mean is the most robust feature in our study. The effects of acquisition
and reconstruction conditions on GLCM texture features vary widely, though there was a trend
toward features calculated based on the sum of the product of intensities and probability being
more robust in general, with a few exceptions.

The conclusion of this work was that care should be taken to account for variation in
density and texture features if a variety of dose and reconstruction conditions are used for the
quantification of lung nodules in CT, otherwise a change in quantification results may be more
reflective of acquisition and reconstruction conditions than the nodule itself. Preliminary
results of this work were presented at AAPM in July 2015 and a peer-reviewed manuscript
was published this past year (Lo et al, Medical Physics, 2016).

§ Extensions to Previous Software and Data Collection Efforts

During the current project period, we have: (a) extended the capabilities of our
software that reads sinogram data from Siemens Scanners to read several different formats
(.IMA, .CTD and .PTR) as well as reading the files from the newest CT scanner from Siemens
—the Dual Source Definition Force (adding to our capabilities to read data from the Sensation
64, Definition AS); (b) extended the software that adds noise to sinogram data and simulates
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specific amounts of radiation dose reduction. The new capabilities reflect an improved
capability to both characterize and model the effects of reduced electronic noise in newer
scanners with advanced detector technologies. This will be critical as we move to lower and
lower doses in more modern scanners where the electronic noise might provide a substantial
limit to dose reduction; (c) Extended our collection of anonymized image data. These datasets
represent a wide range of reduced dose acquisition levels as well as reconstruction methods
(both conventional filtered back projection —FBP — as well as scanner provided iterative
reconstruction methods (Siemens Safire or Admire).

Our current inventory of raw data (sinogram) from different clinical protocols
includes:

Protocol Name Total # of Cases
NLST Low Dose Lung Cancer Screening 481
Low Dose Lung Cancer Screening (Current) (to date) 583
Routine Chest (Diagnostic) Cases 99
Renal Cell Carcinoma (3 phase) (to date) 27
Table 1: Description of raw data inventory for different types of scans. Note: “NLST”
cases were acquired with fixed tube current protocols (see Cagnon et al, Academic
Radiology, 2006). “Current” cases were acquired with tube current modulation
(CareDose4D, Siemens Healthcare).

8 Lung Nodule Detection for Reduced Dose CT Scanning

For the low dose Lung Cancer Screening Cases obtained during the NLST, we have:
(@) an inventory of 481 cases; (b) using our noise addition software, we have simulated
reduced dose acquisitions for all cases at both 50% of the original dose (~1 mGy) and 25% of
the original dose (~0.5 mGy); (c) and all 3 dose levels (original and 2 reduced dose levels)
have been reconstructed using conventional Filtered Back Projection (FBP) on the Siemens
scanner. Of these 481 cases, 82 had at least one nodule (prevalence of 17%) and 399 did not
(83%). A total of 118 nodules were identified: 27 nodules (23%) corresponded to LungRADS
category 4 based on size and composition, while 18 (15%) corresponded to LungRADS
category 3 and 73 (61%) corresponded to LUngRADS category 2. The lungs were segmented
semi-automatically, and all images and segmentations were input to an in-house CAD
algorithm trained on higher-dose scans (75-300 mAs). CAD findings were compared to a
reference standard generated by an experienced reader. Nodule- and patient-level sensitivities
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were calculated along with false positives per scan, all of which were evaluated in terms of
the relative change with respect to dose. Nodules were subdivided based on size and solidity
into categories analogous to the LungRADS assessment categories, and sub-analyses were
performed.

For solid nodules > 8 mm, patient-level median sensitivities were 100% at all three
dose levels, and mean sensitivities were 72%, 63%, and 63% at original, 50%, and 25% dose
respectively. Overall mean patient-level sensitivities were 38%, 37%, and 38% at original,
50%, and 25% dose. These low sensitivities were primarily due to the prevalence of smaller
nodules and non-solid nodules in our reference standard. The mean false-positive rates were
3, 5, and 13/case.

This work showed that CAD sensitivity decreased very slightly for larger nodules as
dose was reduced, indicating that reducing the dose to 50% of original levels may be
investigated further for use in CT screening. However, the effect of dose was small relative
to the effect of the nodule size and solidity characteristics. The number of false positives per
scan increased substantially at 25% dose, illustrating the importance of tuning CAD
algorithms to very challenging, high-noise screening exams. This work has been presented at
both AAPM and RSNA conferences and was just accepted for publication and is in press at
Medical Physics with an expected publication date of Feb. 2017.

8 Open Source Image Reconstruction Software (wFBP) and Creation of an Image
Acquisition/Reconstruction Pipeline

One of the issues that we have been running into in our research is just the size and
scale of the problems we are trying to address in terms of the numbers of cases (quite large
for the NLST cases) and the number of dose levels and reconstruction kernel settings we wish
to analyze. Though we have been successful in reconstructing raw projection data at the
scanner on which the data was originally acquired, clinical CT scanners are not designed for:
(@) high throughput of raw projection data files and subsequent reconstructions; (b) multiple
versions of the same patient dataset (at different reduced dose levels); (c) batch mode
processing for a large variety of reconstruction conditions such as different reconstruction
kernels and slice thicknesses. So, we developed an open source implementation of a
commonly used reconstruction method referred to as weighted Filtered Backprojection
(wWFPB). Our implementation was based on the original article published by Stierstorfer et al
(Physics and Biology, 2004). Our project successfully implemented the wFBP algorithm on a
medium cost GPU and showed excellent image quality and computational performance. This
approach will help us overcome many of the limitations described above in that this can be
done in batch mode with multiple prospective reconstructions performed over a relatively
short period of time. This work is critical in the development of our image
acquisition/reconstruction pipeline (described below). This work was published in Medical
Physics as a technical note and available online at
http://scitation.aip.org/content/aapm/journal/medphys/43/3/10.1118/1.4941953

With the availability of an offline, GPU implementation of image reconstruction, we
were able to create a pipeline that is capable of high throughput processes for our research.
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Specifically, the raw data reading modules, the noise addition (simulating reduced dose
acquisitions) and wFBP reconstruction engine have been organized into a fully automated
pipeline (Figure 3) that take the raw data files and creates the desired set of image datasets
that represent a range of dose levels, slice thicknesses and reconstruction kernels for wFBP.
These datasets will be used (see future plans) in large scale investigations into the effects of
acquisition and reconstruction parameters on quantitative imaging tasks.

Acquisition and Reconstruction Pipeline
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Data
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Raw Data
(sinogram)

“ Raw Data Noise
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Figure 3: Diagram illustrating the components and data flow for the image
acquisition/reconstruction pipeline, which takes raw projection (sinogram) data and
creates image datasets that represent a range of image acquisition and reconstruction
parameter settings.

The operation and control of the Pipeline was designed to be fully automatic and
provide a high-throughput system for the creation of a large number of image datasets
representing a wide range of acquisition and reconstruction conditions. To accomplish this,
the initial system uses an HT condor computation environment which allows the queuing of
jobs (using HTCondor queuing) with python control script to initiate each job and execute
each step. We are currently developing the ability to execute all steps in one system (linux
based machine with GPU capabilities). Initial performance benchmarks indicate that on a
system with 4 GPUs (e.g. a “Deep Learning” system from NVIDIA), a performance of 1.25
minutes per case/condition. Table 2 illustrates the expected benefits from the pipeline
implemented on a 4 GPU system using an example comparing our previous experience with
481 NLST cases reconstructed at 3 dose levels (1 thickness, 1 kernel) (Young et al, Med. Phys.
2017) to the performance we expect to get with the described pipeline with 500+ UCLA lung
cancer screening cases we have collected to create datasets that represent 3 dose levels
(original plus two simulated reduced doses), 3 slice thicknesses (0.6, 1 and 2mm) and 3
reconstruction kernels (smooth, standard and sharp). Thus, the high throughput, batch mode
processing used here will allow us more than 2 orders of magnitude increase in throughput,
which provide a much broader exploration of the acquisition and reconstruction parameter
space than is currently achievable.
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Cases Dose Thicknesses | Kernels | # Datasets Time to

Levels Create
481 NLST (scanner 3 1 1 1,443 ~ 6 months
recon)
500 UCLA screening
cases (Acg/Recon 3 3 3 13,500 11.25 days

Pipeline)

Table 2. Illustration of increased throughput from Acquisition\Recon Pipeline
described in Figure 3 when implemented on a 4 GPU system compared to throughput
when using current conventional approach.

8 Automating Phantom Assessment for Clinical Trials Using Quantitative Imaging

One of this issues for clinical trials that seek to use quantitative imaging methods is to
assure that the acquisition and reconstruction parameters specified are indeed being used at
each participating site. Preferably this should be done prospectively to avoid having to exclude
a case because of technical differences. In addition, trials may also desire to have some
assurance that the CT scanner is performing well (e.g. is calibrated) prior to scanning subjects.
In some trials, the use of a phantom (test object) is used to evaluate both of these objects
(protocol adherence and system performance under the desired protocol). However, the use
of phantoms can be a burden as each site has to scan the phantom according to the protocol
and then someone (e.g. a central site) has to read and evaluate the phantom scan. Through our
extensive experience with clinical trials in CT, we have developed standardized processes for
evaluation phantoms scanned on CT scanners at participating sites.

Recently, we have developed methods to perform these assessments automatically.
While the assessment seems reasonably straightforward, there are several issues that needed
to be addressed including: (a) the heterogeneity of available CT phantoms at sites (each
manufacturer supplies a QC phantom, but they are quite different between manufacturers), so
identification of the phantom is a first step; (b) phantom scanning may or may not include the
entire phantom or just the water portion of the phantom, so identification of the water region
needs to be done. (c) the manufacturers report some (but not all) technical parameters in the
DICOM headers and there is heterogeneity in how these values are reported, especially in the
context of modern scanners using Automatic Exposure Control (e.g. Tube Current
Modulation) systems and iterative reconstruction methods.

This approach that we developed was based on several computer vision techniques as
well as registration methods (e.g. automatically matching the submitted phantom to one of the
known types of phantoms). Further analysis was needed to correctly identify the image on
which the desired analysis was to be performed. Then the desired analyses (e.g. water
calibration, scan field homogeneity) were designed to be performed automatically. Finally, an
analysis of the DICOM headers was designed with manufacturer-specific analyses to account
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for different reporting schemes and then compared to the scanner specific properties spelled
out in the trial’s protocol documents. We have presented this work at the AAPM conference
in 2016 and are preparing a peer-reviewed publication (target submission date is 1% quarter
2017).

§ Participation in QIN PET-CT Group “Feature Challenge”

The UCLA QIN team participated in the CT Image Feature Challenge (coordinated by
Moffit QIN). We submitted a limited set of feature data (15 features, one from several different
categories) to participate in this challenge. The purpose of this study was to investigate the
sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate
comparisons across different feature types and features computed by different
implementations of feature extraction algorithms. The concordance correlation coefficients of
the features were calculated as a measure of their stability with the underlying segmentation.

This study showed that 68% of the 830 features in this study had a concordance CC of
0.75. Pairwise correlation coefficients between pairs of features were used to uncover
associations between features, particularly as measured by different participants. A graphical
model approach was used to enumerate the number of uncorrelated feature groups at given
thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups,
respectively, providing a measure for the features’ redundancy. This work resulted in a peer-
reviewed publication in the special issue of the journal Tomography
(DOI:10.18383/j.tom.2016.00235 .

PLANS FOR NEXT YEAR

During the next year we will extend our work in several different ways as described
below.

8§ Construction of a Pipeline for Open Source Image Reconstruction Software (wWFBP)

The first activity will be to extend the pipeline described above (illustrated in Figure
3) by bringing it together with two other components to create a tightly integrated, high
throughput system (illustrated in Figure 4). The image acquisition/reconstruction pipeline
will create inputs to the segmentation/CAD/Quantitative Imaging feature pipeline that will
identify anatomic and pathologic structures and extract features of interest. A performance
evaluation pipeline will compare the extracted results (e.g. detections or feature values) to
reference condition results (e.g. radiologist markings, feature values obtained under a
reference condition) and evaluate performance metrics across acquisition and reconstruction
conditions (e.g. changes in feature values across dose levels and/or reconstruction conditions).
This is all being designed for high throughput performance for large numbers of cases and
with a wide variety of acquisition and reconstruction parameters.
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Figure 4. Diagram illustrating the relationship and workflow between the different
components of the overall pipeline. This will allow evaluation of large numbers of
cases with a range of acquisition and reconstruction parameter settings.

8§ Extension of Image Reconstruction Capabilities

We also plan to extend our image reconstruction capabilities beyond wFBP to an
iterative reconstruction algorithm while allowing the reconstructions to be performed in batch
mode using a computationally efficient approach. This will allow us to create a wide range of
simulated reduced dose scans reconstructed under a wide variety of approaches (conventional
WFPB and iterative), which will allow us to assess the robustness of quantitative features being
extracted from image data.

8 Perform Analysis on 3-Phase Kidney CT scans to evaluate Renal Cell Carcinoma
(RCC)

We have been collecting raw projection data from patients undergoing our RCC
protocol and we have been reviewing medical records to establish diagnoses on these scans.
In coming year we plan to evaluate the effects of dose reduction and reconstruction method
on the ability to distinguish cell types in RCC using methods already published by our
investigators This will further extend our work to go beyond just volume and texture to
quantitative features that are derived from contrast enhancement (functional features). We
hope to be able to publish our results on iterative reconstruction methods, automated phantom
QA as well as contrast uptake information in RCC during the coming reporting period.

216



LIST OF QIN PUBLICATIONS AND PRESENTATIONS

§ Published in Peer-Reviewed Journals

1. J. Kalpathy-Cramer, B. Zhao, L. Lu, D. Goldgof, D. Cherezov, S. Napel, S.
Echegaray, M. McNitt-Gray, J.C. Sieren, J. Uthoff, B. Driscoll, I. Yeung, L.
Hadjiiski, Y. Balagurunathan, R. Gillies, D. Goldgof. Radiomics in of lung nodules:
a multi-institutional study of robustness and agreement of imaging features.
TOMOGRAPHY, December 2016, Volume 2, Issue 4: 430-437
DOI:10.18383/j.tom.2016.00235

2. P.Lo, S.Young, H. J. Kim, M. S. Brown, & M. F. McNitt-Gray, “Variability in CT
lung-nodule quantification : Effects of dose reduction and reconstruction methods on
density and texture based features”, Medical Physics, 4854(43).
http://doi.org/10.1118/1.4954845
(NOTE: Selected to be highlighted under the Editors' Choice column for the
Medical Physics Scitation and medphys.org websites for the August issue.

3. J. Hoffman, S. Young, F. Noo, & M. F. McNitt-Gray, “Technical Note:
FreeCT_wFBP: A robust, efficient, open-source implementation of weighted filtered
backprojection for helical, fan-beam CT”, Medical Physics, 43(3), 1411.
http://doi.org/10.1118/1.4941953.

4. S.Young, H.J. G. Kim, M. M. Ko, W. W. Ko, C. Flores, M. F. McNitt-Gray,
“Variability in CT lung-nodule volumetry: Effects of dose reduction and
reconstruction methods”, Medical Physics, 42(5), 2679. do0i:10.1118/1.49189109.

5. D. Chong, H. J. Kim, P. Lo, S. Young, M. F. McNitt-Gray, F. Abtin, J. G. Goldin,
M. S. Brown, “Robustness-driven feature selection in classification of fibrotic
interstitial lung disease patterns in computed tomography using 3D texture features”,
IEEE Transactions on Medical Imaging, 35(1), 144-57.
http://doi.org/10.1109/TMI.2015.2459064.

§ In press

1. S.Young, P. Lo, H. J. Kim, M. S. Brown, J. Hoffman, W. Hsu, W. Wahi-Anwar, C.
Flores, G. Lee, F. Noo, J. Goldin, and M. F. McNitt-Gray, “The Effect of Radiation
Dose Reduction on Computer-Aided Detection (CAD) Performance in a Low-Dose
Lung Cancer Screening Population”, in press, Medical Physics; to be published Feb.
2017.

§ In preparation (submission 1%t or 2" quarter 2017)

1. Wahi-Anwar M, Lo P, Kim HG , Brown MS, Goldin, JG, McNitt-Gray MF. A
Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging
in Clinical Trials. To be submitted to Journal of Digital Imaging, 1% quarter 2017.

2. Emaminejad N, Lo P, Ghahremani S, Kim HG, Brown MS, McNitt-Gray MF, The
effects of slice thickness and radiation dose level variations on computer-aided
diagnosis (CAD) nodule detection performance in pediatric chest CT scans. To be
submitted to Journal of Medical Imaging, 1% quarter 2017.

217


http://dx.doi.org/10.18383/j.tom.2016.00235
http://doi.org/10.1118/1.4954845
http://doi.org/10.1118/1.4941953
http://doi.org/10.1109/TMI.2015.2459064

3.

Wahi-Anwar M, Young S, Lo P, Coy H, Ashen-Garry D, Pace-Soler E, Raman S,
Kim H, Brown MS, McNitt-Gray MF. Effects of Radiation Dose Reduction On
Renal Cell Carcinoma Discrimination Using Multi-Phasic CT Imaging. To be
submitted to Medical Physics, 1% quarter 2017.

§ Conference Abstracts, Presentations and Posters

1.

Emaminejad N, Lo P, Ghahremani S, Kim HG, Brown MS, McNitt-Gray MF, The
effects of slice thickness and radiation dose level variations on computer-aided
diagnosis (CAD) nodule detection performance in pediatric chest CT scans. Paper
10134-10; oral presentation at . SPIE Medical Imaging Conference (CAD
Conference). Orlando, FL, February 13, 2017.
http://spie.org/MI/conferencedetails/computer-aided-diagnosis

Young,S, Lo,P, Hoffman,J, Kim,H, Hsu,W, Flores,C, Lee,G, Brown,M, McNitt-
Gray,M, CAD Performance on a Large Cohort of National Lung Screening Trial
Patients at Screening and Sub-screening Doses. Radiological Society of North
America 2016 Scientific Assembly and Annual Meeting, November 27 - December
2, 2016, Chicago IL. archive.rsna.org/2016/16016041.html

S. Young, P. Lo, J. Hoffman, W. Wahi-Anwar, F. Noo, M. Brown, M. McNitt-Gray,
“A fully-automated pipeline for generating CT images across a range of doses and
reconstruction methods”, AAPM Annual Meeting; Washington, DC (Aug 4, 2016).
http://www.aapm.org/meetings/2016 AM/PRAbs.asp?mid=115&aid=34124

S. Young, P. Lo, J. Hoffman, G. Kim, W. Hsu, C. Flores, G. Lee, M. Brown, M.
McNitt-Gray, “CT Lung Cancer Screening and the Effects of Further Dose
Reduction On CAD Performance”, AAPM Annual Meeting; Washington, DC (Aug
4, 2016). http://www.aapm.org/meetings/2016 AM/PRAbs.asp?mid=115&aid=34420
M Wahi-Anwar, P Lo, H Kim, M Brown , M McNitt-Gray. A Fully Automated CT
Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials.
Snap Oral presentation at AAPM Annual Meeting Washington, DC (July 31, 2016)
http://www.aapm.org/meetings/2016 AM/PRADs.asp?mid=115&aid=32708

M Wahi-Anwar, S Young, P Lo, S Raman , H Kim , M Brown , M McNitt-Gray , H
Coy, D Ashen-Garry , E Pace-Soler. Effects of Radiation Dose Reduction On Renal
Cell Carcinoma Discrimination Using Multi-Phasic CT Imaging. Poster presented at
AAPM Annual meeting, Washington DC (Jul 31 2016).
http://www.aapm.org/meetings/2016 AM/PRADs.asp?mid=115&aid=33811

S. Young, J. Hoffman, F. Noo, and M. F. McNitt-Gray, “Vendor-independent,
model-based iterative reconstruction on a rotating grid with coordinate-descent
optimization for CT imaging investigations”, Poster presented at AAPM Annual
Meeting; Washington, DC (July 31, 2016).

http://www.aapm.org/meetings/2016 AM/PRADs.asp?mid=115&aid=33355

M Wahi-Anwar, S Young, P Lo, S Raman , H Kim , M Brown , M McNitt-Gray , H
Coy, D Ashen-Garry , E Pace-Soler. Effects of Radiation Dose Reduction On Renal
Cell Carcinoma Discrimination Using Multi-Phasic CT Imaging. Poster presentation
at AAPM annual scientific meeting 2016.

http://www.aapm.org/meetings/2016 AM/PRADs.asp?mid=115&aid=33811

218


http://spie.org/MI/conferencedetails/computer-aided-diagnosis
http://archive.rsna.org/2016/16016041.html
http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=34124
http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=34420
http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=32708
http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=33811
http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=33355
http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=33811

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J Hoffman, F Noo, S Young , M McNitt-Gray ,Tailoring TCM Schemes to a Task:
Evaluating the Impact of Customized TCM Profiles On Detection of Lung Nodules
in Simulated CT Lung Cancer Screening - Oral presentation at AAPM annual
scientific meeting 2016.

http://www.aapm.org/meetings/2016 AM/PRADs.asp?mid=115&aid=33818

Young S, Lo P, Hoffman JM, Kim GHJ, Brown MB, McNitt-Gray M. (2014).
Effects of CT dose and nodule characteristics on CAD performance in a cohort of 90
National Lung Screening Trial patients. Proc. SPIE 9785, Medical Imaging 2016:
Computer-Aided Diagnosis, 97850G; doi:10.1117/12.2217405

Hoffman JM; Noo F; McMillan K; Young S; McNitt-Gray MF. Assessing nodule
detection on lung cancer screening CT: the effects of tube current modulation and
model observer selection on detectability maps. Proc. SPIE 9787, Medical Imaging
2016: Image Perception, Observer Performance, and Technology Assessment,
97870Q (24 March 2016); doi: 10.1117/12.2217348

P. Lo, S. Young, G. Kim, J. Hoffman, M. Brown, M. McNitt-Gray, “The Effects of
CT Acquisition and Reconstruction Conditions On Computed Texture Feature
Values of Lung Lesions”, AAPM Annual Meeting; Anaheim, CA (July 14,

2015). http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29699

S. Young, P. Lo, G. Kim, J. Hoffman, M. Brown, M. McNitt-Gray, “A Research
Pipeline to Simulate a Wide Range of CT Image Acquisition and Reconstruction
Parameters and Assess the Performance of Quantitative Imaging and CAD Systems”,
AAPM Annual Meeting; Anaheim, CA (July 14, 2015).
http://www.aapm.org/meetings/2015AM/PRADs.asp?mid=99&aid=29110

S. Young, P. Lo, H. J. Kim, W. Hsu, J. Hoffman, M. S. Brown, M. F. McNitt-Gray,
“The effects of Reduced-Dose Lung Cancer Screening CT on Lung Nodule
Detection Using a CAD Algorithm”, AAPM Annual Meeting; Anaheim, CA (July
14, 2015). http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29580
S. Young, J. Hoffman, F. Noo, and M. F. McNitt-Gray, “Development of Stand-
Alone Filtered Backprojection and Iterative Reconstruction Methods Using the Raw
CT Data Exported From Clinical Lung Screening Scans”, Poster presented at AAPM
Annual Meeting; Anaheim, CA (July 14, 2015).
http://www.aapm.org/meetings/2015AM/PRADs.asp?mid=99&aid=29425

S. Young, Michael F. McNitt-Gray, "Evaluating the consistency of lesion volumetry
in chest CT after substantial dose reduction”, AAPM Annual Meeting; Austin, TX
(July 22, 2014).
http://www.aapm.org/meetings/2014AM/PRADs.asp?mid=90&aid=25133

Young S, McNitt-Gray M. Lung lesion volume measurements in simulated reduced-
dose CT scans. Society of Thoracic Radiology annual meeting, 2014.

S. Young, MF McNitt-Gray, "Solid lung nodule volumetry: effects of dose reduction
and reconstruction algorithms™, 3rd International CT Meeting; Salt Lake City, UT
(June 22-25, 2014).

Young S, McNitt-Gray M. (2014). Estimating lesion volume in low-dose chest CT:
How low can we go? SPIE Medical Imaging, 9033, 1-13. doi:10.1117/12.2043730.

219


http://www.aapm.org/meetings/2016AM/PRAbs.asp?mid=115&aid=33818
http://dx.doi.org/10.1117/12.2217348
http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29699
http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29110
http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29580
http://www.aapm.org/meetings/2015AM/PRAbs.asp?mid=99&aid=29425
http://www.aapm.org/meetings/2014AM/PRAbs.asp?mid=90&aid=25133

220



U01CA183848: Quantitative MRI Models of HN Cancers for Physiological
Adaption of RT

University of Michigan (3)
Yue Cao, Ph.D. and Avraham Eisbruch, MD

INTRODUCTION
8§ The Clinical Problem

Current state-of-art therapy of high-risk, advanced head-and-neck cancers (HNC)
(e.g., HPV-), concurrent radiation therapy with chemotherapy and followed by adjuvant
chemotherapy, still leads to 30-50% of local and regional failure. Physiological imaging
based adaptive radiation boosting of the resistant subvolume of the tumor has the potential
to improve outcomes. However, clinical utilization of metabolic and physiological imaging
is challenging due to issues such as reproducibility of physiological images, tumor
heterogeneity, and lack of tools to support therapy adaptation.

§ Quantitative Image Features

We have been developing and investigated quantitative image tools using pattern
recognition techniques to identify the subvolumes of HNC with low blood volume (LBV)
derived from DCE MRI and low ADC quantified from diffusion-weighted MRI (Figure 1).
Currently, these tools are used to support a randomized phase 1l clinical trial for boosting the
potential “risk for failure” subvolumes of the tumor in the advanced HNC. This trial
involves two sites, University of Michigan Hospital and VA hospital at Ann Arbor. This
phase Il clinical trial allows us to test feasibility of using our QI tools in the clinical
environment. Also, the clinical trial allows us to further identify issues and barriers that
need to be overcome before deploying them in a multi-center clinical trial.

PROGRESS
§ Standardization of Delineation of the LBV Subvolumes in HNC

Evaluation of Basic Methodology on Different Scanners: The basics methodology
was developed using the DCE scans acquired on one vendor scanner. After quantifying
physiological parameters e.g., blood volume, from DCE data using the modified Toft model,
we applied our methodology to delineate the low blood volume (LBV) component of the
tumor using a pattern recognition technique. For clinical usage, a threshold was established
from a probability map of LBV of the tumor to define the subvolume with LBV. If the DCE
data acquired on a different vendor scanner using a different pulse sequence with different
acquisition parameters would lead to different BV values even though quantification is done
by using the same software, this threshold simply cannot be applied. We further realized
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that “standardizing” or “harmonizing” acquisition is not always possible due to differences
in underlying technologies of each vendor. Then, we attempt to “standardize” the “content”,
e.g., BV derived from DCE MRI acquired from different scanners.

Pre-RT
High Resistance

BV

High cellularity

ADC

Figure 1: The subvolume of the tumor with low blood volume (dark region)
indicates tumor resistance to treatment (up), while the subvolume with low
ADC (dark region) suggests high cellularity of the tumor. Cyan color depicts
the gross tumor volume (GTV).

Standardization of Blood Volumes (“content”): We hypothesize that measured
BV in a certain type of tissue should follow a same distribution in the population even the
data acquired on different scanners and using different pulse sequences. We selected
cerebellum as the tissue of interest for ‘standardization” since cerebellum is always in the
FOV when imaging HNC (that requires a large FOV to cover the extended primary and
nodal diseases. We found that the mean and standard deviation of BV in the cerebellum
VOIs of a group of patients scanned on one vendor scanner differed from those on another
vendor scanner. If the measured BV values are normally distributed, based upon our
hypothesis, we can have:

BV, —mean, BV, —mean,
SD, B SD,

where index 1 or 2 indicates scanner 1 or 2. The equation suggests that the distribution of
BV in cerebellum should be the same regardless how the measurement is done. Using this
equation, we related the BV values measured from scanner 1 to the BV values from scanner
2 to “standardize” the “BV” values. Using this approach, we overcome the “non-
standardized” acquisition-caused discrepancies in the parametric maps and subsequent
threshold values for the LBV subvolume of the tumor. This concept can be generalized to
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other body sites, for which a standardized tissue of region is selected for “standardization”
of the “content” of interest. Using this approach, we standardize our threshold to define the
subvolume of the tumor with LBV for different scanners.

Individual Patient QA: Although the system QA is performed and quality of
images is controlled, sometimes, the quantitative parametric maps of an individual patient
scan still can be off from the distribution of the group or population. Then, we used the
same concept described above to re-normalize the BV values of individual patients to the
group mean if the BV in the cerebellum VOI of the individual patient is 2SD above or below
the group mean.

We have been using this approach to “standardize” our results from two different
vendor scanners, and to control the unexpected variations in individual patients in
supporting the phase Il clinical trial that has enrolled approximately 40 patients.

We have presented this concept in the Quantitative Imaging Track in the annual
meeting of AAPM 2014, Quantitative Imaging Series in the annual meeting of RSNA 2015
and the QIN panel at 2016 ASTRO annual meeting. [1-3].

8§ Automation of Delineation of LBV Subvolumes in HNC

Our current workflow for delineation of the LBV subvolume of the tumor in the
clinical trial involves a two-step image process: 1) quantification of the parametric maps
from the DCE MRI using a pharmacokinetic model and 2) delineation of the subvolume of
the tumor with LBV. The question is whether we can fully automate this process and reduce
the process to a single step. A fully automated process will be better for supporting the trials
in the clinical environment.

We applied the basic principles in the radiomics and machine learning to the
temporal-domain analysis of DCE MRI. Development of this approach involves training
and testing. After the algorithm is trained and tested, we were able to delineate directly the
subvolume of the tumor with LBV from extracted DCE features, which is a rapid process.
Compared to the conventional two-step approach, we were able to achieve the similar
accuracy (Figure 2).
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Figure 2: Subvolumes extracted by the two-step method via PK modeling (top row), the
Wavelet-based method (middle row), and the PCA-based method (bottom row). Note the
similarity of voxels identified to be LBV among the three methods.

We further tested whether the algorithm trained on one dataset could be applied to a
dataset acquired with different parameters using different pulse sequence on different
scanners. The results from our preliminary test indicated that the accuracy for the data
acquired differently was not lower than the data acquired using the exactly same parameters.
This algorithm can tolerance to differences in data acquisitions than the pharmacokinetic
models. This type of the algorithms has the potential to support variations in DCE
acquisition in the clinical environment with further development and validation. We believe
this is unique in the field.

We have presented this work in the annual meeting of AAPM 2015 and in the 2016
MRI in RT workshop and a paper is published in Tomography of the QIN special issue in
2016. [4-6]

8 Reduction of Susceptibility Effects on Diffusion Weighted Images in HN

Anatomy in the neck and the base of skull produces large variations in magnetic
susceptibility, and results in signal loss and geometric distortion in diffusion weighted
images (Figure 3). Also, metals in dental works cause signal loss and geometric distortion.
In order to support precision radiation therapy, e.g., boosting the high cellular subvolume
(low ADC) of the tumor, and quantitative analysis of diffusion weighted images in HN, it
requires to have a pulse sequence that reduces the susceptibility effect in the diffusion
weighted images.
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One solution is to adopt the RESOLVE pulse sequence that can reduce susceptibility
effects on diffusion weighted images dramatically. A trade-off of the RESOLVE pulse
sequence is the longer scanning time and sensitive to motion. We have optimized the
parameters to balance the acquisition time and quality of diffusion weighted images,
including geometric and signal quality. Examples of the slices acquired by the RESOLVE
and single shot EPI sequences are shown in Figure 3.

We have been evaluating both geometric distortion and signal quality of diffusion
weighted images acquired by the RESOLVE sequence compared to the convention sequence
in HN. We have presented the preliminary results in the MRI in RT workshop in 2016.[7]
We will continue this evaluation in the next year.

gure 3: Post-Gd T1 weighted image (left), and ADC maps acquired using the
RESOLVE pulse sequence and single shot EPI pulse sequence (middle and right,
respectively). Red and green contours are gross tumor volumes of primary cancer and
affected nodes. Note that the geometric distortion and signal loss in the ADC map
acquired by the single shot EPI.
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Using the quantitative MR images for RT planning requires to position a patient in
the RT treatment configuration during the MRI scan. This requires to use the RT
immobilization devices, such as five-point mask and bit bar, for the HN MRI scan, which
limits the duration of the scan due to patient tolerance. Also, RT planning has unique
requirement on the FOV, slice thickness, 2D or 3D, orientation, with or without fat
saturation and so on. We have optimized the RT MRI scanning protocol by working with a
group of users including radiation oncologists, radiologists, and physicists (Figure 4). We
have shared our protocol at national and international conferences in last two years.

8 Analysis of Heterogeneity in the advanced HN Cancer

Heterogeneity in the cancers represents a challenge on treatment and assessment of
response. Tumor heterogeneity leads to that a single imaging modality often is insufficient
to guide for precision treatment and inadequate or even mis-led on response. We leveraged
on the image data collected in the randomized phase Il clinical trial, including pre-RT FDG
PET, and DCE and diffusion MRI pre-RT and during RT, to analyze the image-phenotype
features in the advanced HNC and early changes during the course of RT. These image-
phenotype features as well as early changes during RT will be correlation with local and
regional outcomes, which will tell us which image-phenotype features could be the best
radiation boosting target.

Spatial Overlap Between Low Blood Volume and Low ADC in HNC: We have
described that the subvolume of the tumor with LBV is potentially radiation resistant while
the subvolume with low ADC had high cellularity. The question is whether these two
subvolumes of the tumor in HNC have any spatial overlap. Our preliminary analysis of 28
patients showed that 26% and 14% of primary gross tumor volumes (GTVs) had LBV pre-
RT and after receiving two weeks of RT, respectively; while 35% and 19% of primary
GTVs had low ADC (<1.2x10° mm?/s). However, only 9% of the GTVs had both LBV and
low ADC before RT and two weeks radiation reduced it to 4%, suggesting the two image-
phenotype features represent the two different aspects of the HNC (Figure 5). This work
was presented in the annual meeting of ASTRO in 2016 as a research paper as well as in a
QIN panel [8-9]. This work will be extended to the 40 patients who have been enrolled in
the clinical trial.

Figure 5: Spatial relationships
between the subvolumes of the
tumor with LBV and low ADC
pre-RT and after receiving 2
weeks RT.

Low
diffusion

(35%)

Volume definitions Volume definitions
(% of primary) (% of primary)
BASELINE 2 weeks

Spatial Relationship Between FDG PET, LBV and Low ADC in the HNC: FDG
PET plays an important role in HNC management, including RT target and response
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assessment. However, how does the metabolic tumor volume (MTV) defined based FDG
uptake have LBV or low ADC is largely unknown. We investigated this question. Table 1
show the volumes defined based upon these metabolic images. Note that the MTV based
upon a threshold of 50% of SUV max (MTVso%) was only approximately ¥ of the primary
GTV defined based upon the post-Gd T1 weighted images; while the MTVsoy was
approximately ¥z of the nodal GTV. The median subvolume of the tumor with LBV of the
primary tumor was 11 cc, which was approximately 2/3 of MTVso%. The subvolume of the
tumor with low ADC was 26 cc.

Median volume (cc) Range(cc)
GTVp 69.1 10.2-595.2
MTV50%p 15.5 2.2-259.7
MTV30%p 33.7 3.9-362.0
LBVp 10.9 0.2-158.8
LADCVp 25.9 1.1-180.6
GTVn 11.2 1.3-172.5
MTV50%n 5.2 0.7-61.5
MTV30%n 12.7 1.9-126.4
LBVn 4.6 0-114.2
Table 1: Tumor Volumes Based upon FDG, LBV and Low ADC.
p indicates primary tumor; n notes nodal tumor.

We further investigated the spatial overlaps between these subvolumes defined based
upon FDG, LBV and low ADC. We found that 98% and 86% of MTVso within the primary
and nodal GTVs, respectively. However, only 10%-12% of MTVsoy% had LBV and 13-15%
of MTVsoy% had low ADC. Table 2 shows these spatial relationships in detail.

%MTVs0, HMTV 30, %MT Vg5, %MTV;05, %MTVsqs,,,
inGTV In GTV with LBV with LBV with LADC

97.8% 89.2% 45.9% 10.3% 13.1% 71.3% 53.3%
(53.2%-100%) (1.9%-100%) (10.9%-71.7%) (0-77.7%) {0-73.0%) (3.8%-93.0%) (2.0%-82.6%)
SOMTV 555, SMTV 345, FMT V5, / Y%MTVs0s, BMTV 355,
in GTV In GTV MTVsg5, with LBV with LBV

86.2% 73.1% 38.6% 12.2% 14.6%

[ (14.1%-100%) (12.4%-99.8%) (11.9%6-71.0%) (0-89.8%) (0-80.0%) =
GV M1V GTV MTV
GTV\ MTV % LBV \ MTV % LADC\ MTV
MTV MTV 0 MTV %




Table 2: Spatial Relationship Between of GTV, MTV, LBV and low ADC

In the 40 HN tumors, the voxel-level correlations between SUV FDG and BV values
had the correlation coefficients varied from 0.55 to -0.12, and between SUV FDG and ADC
had the correlation coefficients from 0.15 to -0.6.

These data suggest that advanced HN cancers exhibit a large extent of heterogeneity.
However, which of these image-phenotype features represent the most aggressive or
radiation resistant subvolume of the tumor is to be determined when we correlate the
features with outcomes.

8§ Participation in QIN Challenges

We participated in several QIN challenges: 1) arterial input function for DCE
analysis led by Wei Huang, 2) diffusion quantification challenge led by David Newitt; 3) T1
measurement challenge led by Octavia Bane, and 4) DSC challenge led by Kathleen
Schmainda. All challenges led to submitted abstracts for the 2017 ISMRM annual
meeting[10-12]. The third challenge has a RNSA abstract. The first part of the first
challenge had led to one publication in Tomography [13].

§ Development and Evaluation of Other QI Tools
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We have developed other QI tools that are not directly related to our QIN HNC
project.

Hypercellularity Volume Delineation for GBM: GBM represents many challenges,
including target definition for surgery and radiation and response assessment due to diffuse
disease and edema. We have developed a QI tool to delineate the hypercellular tumor
volume (HCV) by suppressing edema using high b-value diffusion weighted imaging to
reveal the solid tumor (Figure 6). We have found that 40% of the HCV were non-enhanced.
The large HCV was associated with short progression-free survival, suggesting that HCV
represents one of aggressive components of GBM. We have published a paper on this
research. [14]

DWI b=3000

Figure 6: Post-Gd T1 weighted, T2 FLAIR and diffusion weighted images with b=3000
s/mm2. Red, green and yellow contours represent enhanced GTV, FLAIR abnormality
volume and hypercellularity volume. Dark pink contour depicts the 95% prescribed
dose volume which missed a portion of HCV based upon the conventional treatment
planning.

Recently, we have tested whether we can bring this QI tool to a site where there is no
MRI expert to conduct a multi-center clinical trial. First, we tested diffusion imaging on the
ice water phantoms at both sites and led to 1.3% discrepancies between two sites. Secondly,
we implemented a fully automated version of software to delineate the HCV for defining the
radiation boost target. Thirdly, we tested the geometric accuracy of diffusion weighted
images using a RESULVE sequence. Except the first 1-2 mm around the brain surface, the
diffusion images have the accuracy at the level of the spatial resolution uncertainty. This
technique does not require a long time for image acquisition. This technique is ready to be
deployed in different sites for support clinical trials. Also, this technique could be a useful
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tool to differentiate true progression from pseudo-progression, particularly when the GBM
vasculature is altered by anti-angiogenesis drugs.

T1 Repeatability Test: We have performed T1 repeatability tests on brain since T1
is important in DCE quantification. In this work, we compared two methods for T1
quantification. Our results are published in 2015 [15-16].

PLANS FOR NEXT YEAR

1. We will continue to support the workflow for image acquisition and analysis for the
randomized phase 1l clinical trial. Right now, we have enrolled approximately 40
patients from two sites.

2. We will complete analysis of the image-phenotype features in advanced HN cancers,
and write two papers.

3. We will develop a method to automate our current workflow to reduce expert efforts

required to support the clinical trial.

We will participate in other QIN challenges.

We will further improve and develop the one-step method to delineate the

subvolume of the tumor with LBV.

6. We will collaborate with other sites to explore the radiomics analysis.
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