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In Memoriam 

 It was a year ago that Dr. Larry Clarke passed away suddenly from acute myeloid leukemia.  
He was a pioneer in the field of quantitative imaging and its ability to measure or predict response 
to cancer therapies.  We met at the 2016 Annual Meeting knowing that Larry was not well, but not 
knowing the extent of his illness.  Now, we will be coming together for the 2017 meeting with a 
feeling of loss by his absence.  It is a testimony to Larry’s strength and dedication to the field of 
quantitative imaging that progress in the Network remains scientifically vibrant and active, moving 
toward the goas he set many years ago.  Larry was not only a leader in this field, he was a good 
friend to everyone who participates in it. 
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U01CA143062: Radiomics of NSCLC 
 

H. Lee Moffitt Cancer Center 
 

Robert Gillies, Ph.D. 
 

INTRODUCTION 

The first 5-year tenure of this award ended 02/29/2015, and was continued for an 
additional year under a no cost extension.  The original grant was focused on developing the 
field of “radiomics”; that is, the conversion of images to structured, mineable data.  At the end 
of this period, it was decided to change tack and use the radiomics approach to address a 
clinically relevant question and perhaps, change clinical practice.  Hence, the renewed focus 
of the U01CA143062 program is to use radiomics to predict recurrence following surgical 
resection or early stage lung cancers, and thus inform the decision whether to treat with 
adjuvant chemotherapy.  The projected accrual of this new project is 4558 domestic and 1675 
foreign NSCLC patients; creating the largest such highly crated data set to date.   A renewal 
with this focus was submitted 11/05/2014 and was reviewed on 1/30/2015, receiving an 
Impact Score of 24, which was not funded.  An A1 application was submitted 07/02/2015 and 
was reviewed on 11/12/2015, receiving an Impact Score of 13, which was funded at the end 
of the cycle.   The NGA was received on 8/12/2016 and it was finally activated by Moffitt 
1/06/2017.  Hence, the entirely of 2016 was unfunded by the QIN program.  Nonetheless, we 
continued to be productive in a number of avenues, described below.   

 
DISCUSSION OF PROGRESS 

§ General Radiomics Opinion Pieces 
 
 As Sir Ernest Rutherford (1871-1937) said during a hiatus in his lab’s funding funding: 
“Gentlemen, we have run out of money.  It is time to start thinking”.  We continue to write 
reviews and contribute to opinion pieces on the current and future status of Radiomics.   In 
particular, there were two high-impact opinion pieces, below, that emanated from QIN 
networks in the US (Yankeelov) and the UK (O’Connor) that are beginning to shape the way 
quantitative imaging is practiced in oncology: 

1. Yankeelov TE, et al. Clin Cancer Res. 2016. 
2. O'Connor JP, et al., Nature Reviews Clinical Oncology. 2016. 

 
Gillies published a paper in Radiology with Hedy Hriackh and Paul Kinehan that described 
radiomics for a practicing radiologist, and took a look into the “radiology reading room of the 
future” with shared data, and “habitat imaging”.   
 

3. Gillies RJ, Kinahan PE, Hricak H. Radiology. 2016. 

Finally, based on some comments made at an international meeting, Gillies and Tomas Beyer 
were invited to write an opinion piece on PET/MR in Cancer Research, which also discussed 
habitat imaging at length. 
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4. Gillies RJ, Beyer T. Cancer Research. 2016. 

 
§ Radiogenomics of Lung Cancer 

 
As a continuation of the original 5 year tenure of the grant, the U01 group finalized 

analyses comparing NSCLC CT features to gene expression.  In NSCLC, the most important 
and well known driver mutations are k-ras, Alk fusion protein, and EGFR activating mutation; 
the latter two of which are actionable.  The rationale behind a radiomic approach is that: 1) 
genomic information is often not available, while CT data are; 2) genomic information can 
have high false negatives either through sample preparation or sampling artifacts.  Hence it 
was felt that an association of CT feature with gene expression, whether or not it was 
orthogonal information, could contribute to the clinical management of patients.  The first of 
the papers looked at k-ras mutations in a large cohort with the interesting finding that 
spiculation was the only feature that was strongly associated with k-ras status and that k-ras 
status was not associated with survival. The only feature strongly predictive of non-survival 
was pleural attachment: 

 
5. Wang H et al., Clinical lung cancer. 2016. 
 
A further paper using this same cohort associated radiomic features with Alk and 

EGFR mutations: 
 
6. Wang H et al. European journal of radiology. 2016. 
 
Two papers focused in on EGFR mutation status in two large multi-institutional 

cohorts used both semantic (radiologist scored) and agnostic (computer derived) features.  
Both studies used large cohorts of 385 (manually scored by 2 radiologists) and 298 (computer 
extracted) patients.  Significant associations with EGFR mutation status were found with a 
number of semantic features, which in turn were much more predictive of outcome than were 
the agnostic features:  

 
7. Liu Y et al. Clinical Lung Cancer. 2016. 
8. Liu Y et al. Radiology. 2016. 
 

§ Nodule Diagnosis 
 
We also initiated work under the U01 to begin investigating CT scans from then 

National Lung Screening Trial (NLST).   A major effort was spent to curate and build 
appropriate cohorts for study, and this revealed otherwise unknown aspects wherein risk of 
death could be assessed based on screening history.  Based primarily on his outstanding 
epidemiological work on this, Dr. Schabath was invited to be co-PI of the U01 renewal, which 
will require significant curation and cohort building. 

 
9. Schabath MB et al.  PLoS One. 2016. 
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Using these cohorts, we have begun our radiomic analyses and have shown, quite 
convincingly that quantitative computer derived features of CT screen-detected nodules at 
baseline can predict emergence of cancer 1 or 2 years hence.  Notably, over half of the patients 
had radiomics scores in the lowest or highest quartiles, and these predicted good and bad 
outcomes, respectively, with >93% accuracy.  This work was published in JTO, where it 
received the “Editor’s choice” award in Dec., 2016 and was the subject of an editorial 
(http://www.jto.org/article/S1556-0864(16)31066-8/fulltext). 

    
10. Hawkins S et al. Journal of Thoracic Oncology. 2016. 
 

Further, we have performed a “semantic” analysis of incidentally detected 
indeterminate pulmonary nodules from 172 patients in collaboration with Pierre Massion’s 
group at Vanderbilt (102 training, 70 test).  24 radiological traits were scored by 3 
radiologists and observed that a parsimonious set of 4 features could predict the presence or 
absence of cancer with an AUROC of 0.88 (train) and 0.80 (test).    

 
11. Liu Y et al. Clin Cancer Res. 2016. 
 

§ Participation in QIN and QIBA activities 
 

In addition to the above, we have also participated in a number of joint efforts 
between QIN members. Many of these efforts finally bore fruit in 2016, such as our 
participation in the QIBA lung nodule volume estimation challenge: 

 
12. Athelogou M et al. Academic radiology. 2016. 
 
We undertook a multi-institutional study in collaboration with Drs. Kalpathy-

Cramer, Napel, and Zhou of the QIN to compare lung segmentation algorithms:  
 
13. Kalpathy-Cramer et al. Journal of digital imaging. 2016; 
 
This work was followed up by a multi-institutional study comparing the robustness of 

radiomic features extracted form segmented lung nodules: 
 
14. J. Kalpathy-Cramer, et al. Tomography, 2016. 
 
Finally, through his leadership of the PET-CT committee of the QIN, Dr. Goldgof has 

participated in a number of studies, one which was published in 2016 comparing 3-D PET 
segmentations across institutions: 

 
15. R. Beichel et al. JMRI, 2016. 
 
 
 
 
 

http://www.jto.org/article/S1556-0864(16)31066-8/fulltext)
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§ Future: Deep Learning, Habitats, and Rad-Path 
 
 Radiomics as it was first conceived involved the segmentation of tumors and 
extraction of 100’s of quantitative features to describe them; and the subsequent mining of 
these data to generate decision support.  While this continues to be a goal, new techniques and 
approaches are emerging that may supplant or complement this approach.  One such approach 
is “habitat imaging”, which combines orthogonal data sets to identify sub-regions within 
tumors with similar physiologies, and the subsequent extraction of radiomic features from 
these regions.  This approach obviates the need for segmentation.  Currently, Habitat imaging 
is best performed with MRI, so we have invested some effort into diseases, such as GBM 
(Zhou) and prostate (Stoyonava) for which MRI is routinely practiced clinically: 
 

16. Zhou M et al. J Magn Reson Imaging. 2016. 
17. Stoyanova R et al. Oncotarget. 2016. 

 
Notably, in this latter paper, biopsy locations are marked by MR-US fusion and thus 

there is an effort to identify gene expression and histopathology associated with the Habitats 
observed in MR images.  Habitat imaging lends itself to co-registration with pathology, and 
we have begun to explore quantitative histopathology measures of intra-tumoral 
heterogeneity.   This work showed important distinctions between the edge and core of tumors, 
which is something that we observed radiomically in 2015 (Grove et al., PLoS One 2015; 
PMCID 4349806): 

 
18. Lloyd MC et al.  Cancer Research. 2016. 
 
Another approach that is just emerging is the analyses of images with deep learning, 

or convolutional neural nets, CNNs.  This holds promise as: 1) it is a mature technology in 
other classification paradigms (facial recognition, defense applications); and 2) it may prove 
to be immune to image acquisition heterogeneity, which is a challenge in radiomics.  We have 
made an initial foray into this space, and will continue to pursue it in the future: 

 
19. Paul R et al. Tomography. 2016. 
 

PLANS FOR NEXT YEAR 
 Our plans for next year include: 
 

1. Establish the data entry pipeline via Clinica and NCBI. 
2. Populate the data base with > 100 patients from each site (Tianjin and Moffitt) 
3. Disseminate Data Management tools and CDEs to EDRN, MCL and other groups who 

may have an interest.   
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LIST OF QIN PUBLICATIONS AND PRESENTATIONS 
 

§ Publications 
 
 
1. Yankeelov TE, Mankoff DA, Schwartz LH, Lieberman FS, Buatti JM, Mountz JM, 

Erickson BJ, Fennessy FM, Huang W, Kalpathy-Cramer J, Wahl RL, Linden HM, 
Kinahan PE, Zhao B, Hylton NM, Gillies RJ, Clarke L, Nordstrom R, Rubin DL. 
Quantitative Imaging in Cancer Clinical Trials. Clin Cancer Res. 2016;22(2):284-90. 
doi: 10.1158/1078-0432.CCR-14-3336. PubMed PMID: 26773162; PubMed Central 
PMCID: PMC4717912. 

2. O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, Boellaard R, 
Bohndiek SE, Brady M, Brown G, Buckley DL, Chenevert TL, Clarke LP, Collette S, 
Cook GJ, deSouza NM, Dickson JC, Dive C, Evelhoch JL, Faivre-Finn C, Gallagher 
FA, Gilbert FJ, Gillies RJ, Goh V, Griffiths JR, Groves AM, Halligan S, Harris AL, 
Hawkes DJ, Hoekstra OS, Huang EP, Hutton BF, Jackson EF, Jayson GC, Jones A, Koh 
DM, Lacombe D, Lambin P, Lassau N, Leach MO, Lee TY, Leen EL, Lewis JS, Liu Y, 
Lythgoe MF, Manoharan P, Maxwell RJ, Miles KA, Morgan B, Morris S, Ng T, Padhani 
AR, Parker GJ, Partridge M, Pathak AP, Peet AC, Punwani S, Reynolds AR, Robinson 
SP, Shankar LK, Sharma RA, Soloviev D, Stroobants S, Sullivan DC, Taylor SA, Tofts 
PS, Tozer GM, van Herk M, Walker-Samuel S, Wason J, Williams KJ, Workman P, 
Yankeelov TE, Brindle KM, McShane LM, Jackson A, Waterton JC. Imaging biomarker 
roadmap for cancer studies. Nature reviews Clinical oncology. 2016. doi: 
10.1038/nrclinonc.2016.162. PubMed PMID: 27725679. 

3. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They 
Are Data. Radiology. 2016;278(2):563-77. doi: 10.1148/radiol.2015151169. PubMed 
PMID: 26579733; PubMed Central PMCID: PMC4734157. 

4. Gillies RJ, Beyer T. PET and MRI: Is the Whole Greater than the Sum of Its Parts? 
Cancer research. 2016;76(21):6163-6. doi: 10.1158/0008-5472.CAN-16-2121. PubMed 
PMID: 27729326. 

5. Wang H, Schabath MB, Liu Y, Stringfield O, Balagurunathan Y, Heine JJ, Eschrich SA, 
Ye Z, Gillies RJ. Association Between Computed Tomographic Features and Kirsten 
Rat Sarcoma Viral Oncogene Mutations in Patients With Stage I Lung Adenocarcinoma 
and Their Prognostic Value. Clinical lung cancer. 2016;17(4):271-8. doi: 
10.1016/j.cllc.2015.11.002. PubMed PMID: 26712103; PubMed Central PMCID: 
PMC4887405. 

6. Wang H, Schabath MB, Liu Y, Han Y, Li Q, Gillies RJ, Ye Z. Clinical and CT 
characteristics of surgically resected lung adenocarcinomas harboring ALK 
rearrangements or EGFR mutations. European journal of radiology. 2016;85(11):1934-
40. doi: 10.1016/j.ejrad.2016.08.023. PubMed PMID: 27776643; PubMed Central 
PMCID: PMC5123695. 

7. Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O, Ye Z, Gillies RJ. 
Radiomic Features Are Associated With EGFR Mutation Status in Lung 
Adenocarcinomas. Clinical lung cancer. 2016;17(5):441-8 e6. doi: 
10.1016/j.cllc.2016.02.001. PubMed PMID: 27017476. 
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8. Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, Ye Z, Gillies RJ. CT Features 
Associated with Epidermal Growth Factor Receptor Mutation Status in Patients with 
Lung Adenocarcinoma. Radiology. 2016;280(1):271-80. doi: 
10.1148/radiol.2016151455. PubMed PMID: 26937803; PubMed Central PMCID: 
PMC4934516 

9. Schabath MB, Massion PP, Thompson ZJ, Eschrich SA, Balagurunathan Y, Goldof D, 
Aberle DR, Gillies RJ. Differences in Patient Outcomes of Prevalence, Interval, and 
Screen-Detected Lung Cancers in the CT Arm of the National Lung Screening Trial. 
PloS one. 2016;11(8):e0159880. doi: 10.1371/journal.pone.0159880. PubMed PMID: 
27509046; PubMed Central PMCID: PMC4980050. 

10. Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H, Li Q, Cherezov D, 
Gatenby RA, Balagurunathan Y, Goldgof D, Schabath MB, Hall L, Gillies RJ. 
Predicting Malignant Nodules from Screening CT Scans. Journal of thoracic oncology : 
official publication of the International Association for the Study of Lung Cancer. 
2016;11(12):2120-8. doi: 10.1016/j.jtho.2016.07.002. PubMed PMID: 27422797. 

11. Liu Y, Balagurunathan Y, Atwater T, Antic S, Li Q, Walker RC, Smith G, Massion PP, 
Schabath MB, Gillies RJ. Radiological Image traits Predictive of Cancer Status in 
Pulmonary Nodules. Clin Cancer Res. 2016. doi: 10.1158/1078-0432.CCR-15-3102. 
PubMed PMID: 27663588. 

12. Athelogou M, Kim HJ, Dima A, Obuchowski N, Peskin A, Gavrielides MA, Petrick N, 
Saiprasad G, Colditz Colditz D, Beaumont H, Oubel E, Tan Y, Zhao B, Kuhnigk JM, 
Moltz JH, Orieux G, Gillies RJ, Gu Y, Mantri N, Goldmacher G, Zhang L, Vega E, 
Bloom M, Jarecha R, Soza G, Tietjen C, Takeguchi T, Yamagata H, Peterson S, Masoud 
O, Buckler AJ. Algorithm Variability in the Estimation of Lung Nodule Volume From 
Phantom CT Scans: Results of the QIBA 3A Public Challenge. Academic radiology. 
2016;23(8):940-52. doi: 10.1016/j.acra.2016.02.018. PubMed PMID: 27215408. 

13. Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, 
Napel S. A Comparison of Lung Nodule Segmentation Algorithms: Methods and 
Results from a Multi-institutional Study. Journal of digital imaging. 2016;29(4):476-87. 
doi: 10.1007/s10278-016-9859-z. PubMed PMID: 26847203; PubMed Central PMCID: 
PMC4942386. 

14. R. Beichel, B. Smith, J. Ulrich, C. Bauer, P. Ahmadvand, M. Budzevich, R. Gillies, D. 
Goldgof, M. Grkovski, G. Hamarneh, Q. Huang, P. Kinahan, C. Laymon, E. Moros, J. 
Mountz, J. Muzi, M. Muzi, S. Nehmeh, M. Oborski, Y. Tan, B. Zhao, J. Sunderland, J. 
Buatti, "Multi-site Quality and Variability Analysis of 3D FDG PET Segmentations 
based on Phantom and Clinical Image Data", Journal of Magnetic Resonance Imaging, 
2016 (accepted for publication). 

15. J. Kalpathy-Cramer, A. Mamomov, B. Zhao, L. Lu, D. Cherezov, S. Napel, S. 
Echegaray, M. McNitt-Gray, P. Lo, J.C. Sieren, J. Utho , S.K.N. Dilger, B. Driscoll, I. 
Yeung, L. Hadjiiski, K. Cha, Y. Balagurunathan, R. Gillies, D.Goldgof, "Radiomics of 
lung nodules: a multi-institutional study of robustness and agreement of quantitative 
imaging features", Tomography Journal, Special QIN Issue, V. 2(4), pp. 430-437, 2016. 

16. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. Identifying 
spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J 
Magn Reson Imaging. 2016. doi: 10.1002/jmri.25497. PubMed PMID: 27678245. 



7 
 

17. Stoyanova R, Pollack A, Takhar M, Lynne C, Parra N, Lam LL, Alshalalfa M, Buerki 
C, Castillo R, Jorda M, Ashab HA, Kryvenko ON, Punnen S, Parekh DJ, Abramowitz 
MC, Gillies RJ, Davicioni E, Erho N, Ishkanian A. Association of multiparametric MRI 
quantitative imaging features with prostate cancer gene expression in MRI-targeted 
prostate biopsies. Oncotarget. 2016. doi: 10.18632/oncotarget.10523. PubMed PMID: 
27438142. 

18. Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, Gatenby RA. Darwinian 
Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also 
Variable Environmental Selection Forces. Cancer research. 2016;76(11):3136-44. doi: 
10.1158/0008-5472.CAN-15-2962. PubMed PMID: 27009166. 

19. Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO, Goldgof 
DB. Deep Feature Transfer Learning in Combination with Traditional Features Predicts 
Survival Among Patients with Lung Adenocarcinoma. Tomography : a journal for 
imaging research. 2016;2(4):388-95. doi: 10.18383/j.tom.2016.00211. PubMed PMID: 
28066809; PubMed Central PMCID: PMC5218828. 

 
§ Presentations 
 
01/2016     Schabath MB  “Diagnostic and predictive quantitative-imaging features in lung 

cancer screening”.   Oral Presentation at AACR-IASLC International Joint 
Conference: Lung Cancer Translational Science from the Bench to the Clinic, San 
Diego, California 

01/2016     Schabath MB,  Gillies RJ*.  “Radiomics of lung cancer”.  Oral Presentation at 
AACR-IASLC International Joint Conference: Lung Cancer Translational Science 
from the Bench to the Clinic, San Diego, California.  *Presented by Dr. Gillies. 

01/2016  Gillies, RJ.  “Imaging Tumor Habitats” Danny Thomas Lecture, St. Jude’s. Memphis 
TN. 

02/2016 Gillies, RJ. “Imaging Habitats in Cancer” 5th Tübingen PET/MR Workshop, 
University of Tübingen, Germany 

04/2016 Gillies, RJ.  “Imaging Habitats of Cancer” AACR, New Orleans, LA 
05/2016 LO Hall “Leveraging Big Data in Medical Image Analysis”, Nanjing University 

of Science and Technology, Nanjing, China. 
05/2016 LO Hall “Leveraging Big Data in Medical Image Analysis”, Invited Talk, 2016 

International Conference on Intelligence Science and Big Data Engineering, 
Guangzhou, China. 

08/2016    Schabath MB  “Diagnostic and predictive quantitative-imaging features in lung 
cancer screening”.  Oral Presentation at 15th Annual Guangdong Congress of 
Radiology, GuangZhou, China 

07/2016    Schabath MB  “Radiomics and Lung Cancer Screening”.  Oral Presentation at NCI 
Lung Cancer SPORE Workshop, Bethesda, Maryland 

10/2016   Gillies, RJ.  “Radiomics in Decision Support”; 3rd Personalized Medicine 
Conference, invited speaker, Orlando, FL  

10/2016  Gillies, RJ.  “Whither Radiomics?” 6th Annual Radiomics Workshop, meeting 
organizer, Clearwater Beach, FL  

11/2016 LO Hall “Transfer Learning using Deep Features for Medical Image Analysis”, 
University of Notre Dame,  
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12/2016  Gillies, RJ. “Radiomics and Tumor Habitats”; 28th EORTC-NCI-AACR 
symposium, invited speaker, Munich, Germany 

 
§ Conference Proceedings 
 
I. Tunali, J.E. Gray, J. Qi, M. Abdullah, Y. Balagurunathan, R.J. Gillies, M.B. 

Schabath.  Quantitative Imaging Features Predict Response of Immunotherapy in Non-
Small Cell Lung Cancer Patients.  Int’l Assoc. Study of Lung Cancer; Vienna, AUT; 
01/2017        

D. Cherezov, S. Hawkins, D. Goldgof, L. Hall, Y. Balagurunathan, R.J. Gillies, M.B. 
Schabath.  Quantitative Imaging Features Predict Incidence Lung Cancer in Low-Dose 
Computed Tomography (LDCT) Screening01/2017.  Int’l Assoc. Study of Lung 
Cancer; Vienna, AUT; 01/2017        

D. Cherezov, S. Hawkins,, D. Goldgof, L. Hall, Y. Balagurunathan, R. Gillies, M. Schabath, 
"Improving Prediction through Selecting Features Informed by Nodule Size Ranges in 
NLST", IEEE International Conference on Systems, Man and Cybernetics (SMC 
2016), Budapest, Hungary, 10/2016. 

R. Paul, S, Hawkins, L. Hall , D. Goldgof, R. Gillies, "Combining Deep Neural Network and 
Traditional Image Features to Improve Survival Prediction Accuracy for Lung Cancer 
Patients from Diagnostic CT", IEEE International Conference on Systems, Man and 
Cybernetics (SMC 2016), Budapest, Hungary, 10/2016. 

H. Farhidzadeh, B. Chudhury, J. Scott, D. Goldgof, L. Hall, R. Gatenby, R. Gillies, M. 
Raghavan, "A Quantitative Histogram-based Approach to Predict Treatment Outcome 
for Soft Tissue Sarcoma Using Pre- and Post-treatment MRIs", IEEE International 
Conference on Systems, Man and Cybernetics (SMC 2016), Budapest, Hungary, 
10/2016. 

R. Liu, L. Hall, D. Goldgof, M. Zhou, R. Gatenby, K. Ahmed, "Exploring Deep Features from 
Brain Tumor Magnetic Resonance Images via Transfer Learning", 2016 International 
Joint Conference on Neural Networks, (IJCNN 2016), Vancouver, Canada, 7/2016. 

B. Chaudhury, M. Zhou, D. Goldgof, L. Hall, R. Gatenby, R. Gillies, J. Drukteinis, "Predicting 
Ki67 expression from DCE-MR images of breast tumors using textural kinetic features 
in tumor habitats", SPIE Medical Imaging 2016, San Diego, CA, 2/2016. 

B. Geiger, S. Hawkins, L. Hall, D. Goldgof, Y. Balagurunathan, R. Gatenby, R. Gillies, 
"Change Descriptors for Predicting Tumor Malignancy in NLST CT Screening 
Images", SPIE  Medical Imaging 2016, San Diego, CA, 2/2016. 

H. Farhidzadeh, J. Scott, D. Goldgof, L. Hall, R. Gatenby, R. Gillies, M. Raghavan, "Signal 
IntensityAnalysis of Ecological Defined Habitats in Soft Tissue Sarcomas to Predict 
Metastasis Development", SPIE Medical Imaging 2016, San Diego, CA, 2/2016. 

 
 
§ Radiomics Retreat 2016 
 

We again hosted the Radiomics Retreat in Clearwater Beach on Oct. 24-26.  This was 
supported by generous gifts from both the Moffitt Cancer Center and the Department of 
Radiology at Stanford University.  There were 102 attendees from 47 different institutions.  
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Attendees came from US, China, Germany, Denmark, and Canada.  The summary agenda is 
attached.  Once again, there was a sponsored Young Investigators dinner. 
 

The major emerging theme at this meeting was the growing interest in Deep Learning 
and AI applied to medical images, and this will be a focus of this meeting going forward.  The 
agenda for the meeting appears on the next page. 
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U01 CA140206: Quantitative Imaging to Assess Response in Cancer 
Therapy Trials 

 

University of Iowa 

John M. Buatti, MD 
Thomas L. Casavant, PhD 

Michael M. Graham, PhD MD 
Milan Sonka, PhD 

 
INTRODUCTION 

 The University of Iowa QIN team has been consistently committed to improve and 
develop tools for quantitative image analysis both for assessment of response and for tumor 
targeting.  The group remains committed to the QIN central mission of “improving the role of 
quantitative imaging for clinical decision making in oncology by the development and 
validation of data acquisition, analysis methods and tools to tailor treatment to individual 
patients and to predict or monitor response to drug or radiation therapy.” 
 
 Our team completed its 6th year of participation and made significant progress building 
on both developed infrastructure and through multi-institutional working group teams as part 
of QIN.  Several new publications highlight this progress and the interdisciplinary and inter-
institutional efforts being led within QIN.  Our group continues to move forward on 4 specific 
aims that build creatively from our previous work in a highly innovative fashion and help 
accelerate QIN progress and collaboration. 
  
§ Specific Aim 1: 
 

Develop a novel, robust imaging genomics-based decision support platform using a 
combination of our successful Phase-I developed and validated highly automated quantitative 
image analysis methods applied to linked and publicly-available well curated image (TCIA) 
and molecular (The Cancer Genome Atlas–TCGA) data warehouses along with an established 
outcomes database for H&N cancers. This will facilitate new methods and decision support 
tools necessary for future risk adaptive trials that will certainly include both genomic and 
quantitative image data. 

 
§ Specific Aim 2: 
 

Build and innovate based on Phase-I developed and validated image analysis tools: a) 
Apply highly and fully automated quantitative image analysis methods to a cooperative group 
data set of H&N cancers, b) Develop unique new tools through creative new image analysis 
methods for application to FLT/PET in H&N cancer, FLT/PET in pelvis and bone marrow, as 
well as DOTATOC for liver metastases in neuroendocrine cancers. These newly refined 
approaches will be made publicly available and will contribute to future clinical trials, 
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decision support, quantitative imaging response assessment and therapy targeting in a variety 
of cancer sites. 

 
§ Specific Aim 3: 
 

Create a novel link between our established work in PET quantification and calibration 
phantoms with our image analysis and decision support tools to create a clinically practical 
open source automated phantom analysis tool that can be applied to national efforts aimed to 
improve quantitative imaging quality assurance for clinical trials across multiple modalities 
including PET, CT, and MRI. This will provide a critical tool for improving the ease, accuracy 
and harmonization for clinical trials data acquisition. 

 
§ Specific Aim 4: 
 
 Adapt, enhance and extend quantitative image-based response assessment in 
clinical trial decision-support through relevant active clinical trials. Several clinical trials are 
highlighted exploring: 1) FLT-PET as a predictor of bone marrow activity and toxicity in 
pelvic malignancies treated with chemoradiotherapy, 2) DOTATOC as an indicator of disease 
burden in neuroendocrine tumors and 3) quantitative MR imaging [T2, T1, T1ρ, quantitative 
susceptibility mapping (QSM) and MRSI] as effective predictors of response in malignant 
glial tumors treated with intravenous high dose vitamin C. These trials will facilitate 
quantitative image analysis tool development, decision support tools and risk adaptive 
approaches in future clinical trials.  
 

DISCUSSION OF PROGRESS 
 

During the previous period our efforts continue in several major integrated activities.  
Clinical data is provided for analysis including outcomes data using both an established head 
and neck cancer data base that was initiated as part of our phase I effort.  In addition, we are 
increasingly reaching out to national data bases such as the TCGA and TCIA for other curated 
data sets.  There is a team of clinicians and computer engineers and physicists that have 
worked closely to develop a group of computer algorithms applicable for quantitative analysis 
of PET images in FDG. This tool is not only available in 3D Slicer but now has been 
complemented by instructional videos on the Iowa QIN website (http://qin.iibi.uiowa.edu ).  
Review of these videos and methods highlights the potential applicability of these tools for 
active clinical trials and makes practical application more feasible.  The tools provide fully 
automated liver uptake measurements for normalization of PET/CT images and also provide 
“just enough interaction” methods for tumor segmentation in a series of head and neck 
squamous cancers on FDG PET-CT.  Such tools further enable the calculation of a large 
number of radiomics features as well as automated and consistent response assessment or 
targeting routines for clinical decision making. 
 

In the past year, a major activity included coordination of a challenge that evaluated 
the ability of 7 institutions to analyze a series of PET image data sets of both phantoms and 
clinical head and neck cancer cases [9].  This included analysis of a group of different image 
acquisition routines as well as different methods used as standard practice at the institutions.  

http://qin.iibi.uiowa.edu/


13 
 

Simultaneously the decision support group has worked on developing the pipeline for 
integrated analysis of both genomic and quantitative image analysis data through utilization 
of both TCIA and TCGA data.  In the coming year additional clinical data and genome data 
will be added.  Our group continues to tightly integrate efforts through biweekly meetings that 
discuss progress of our teams of bioinformaticists, computer engineers, statisticians, radiation 
physicists, nuclear medicine physicians, radiologists and radiation oncologists.  We remain 
focused on advancing tools that can more effectively provide quantitative imaging based 
response assessment in cancer clinical trials. 
 
§ Aim 1 
 

During this past year, our efforts have been focused on refinement and enhancement 
of our genomic variant analysis pipeline necessary to identify highly-informative features for 
prediction and decision support. This novel informatics pipeline utilizes currently-available 
TCGA data for H&N cancers for which TCIA data is also available. Currently, the TCGA 
repository contains molecular data for more than 500 H&N squamous cell cancer patients. 
This molecular data consists of 5 modalities including: 499 with full or targeted exome (DNA) 
sequences corresponding to both tumor (T) and normal (N) samples, 526 with Copy Number 
Variation (CNV) data from either genome-wide single nucleotide polymorphisms (SNP) 
arrays or low-pass high-throughput DNA sequencing or both, 528 with epigenetic/methylome 
(HumanMethylation450) data, and 505 with high throughput RNAseq data for tumor samples. 
Figure 1 illustrates the basic analysis derived from alignments of this sequence data in three 
ways. Alignment of an N sample to the UCSC reference genome sequence will reveal the set 
of all germline (G) plus somatic (S) mutations present. Alignment of the T sample to the 
UCSC reference will reveal the additional set of tumor-specific T mutations present. One 
hundred forty eight H&N cases (of the 528 in TCGA) have some imaging data in TCIA. 
Within this H&N subset with imaging and TCGA data, 30 subjects have PET imaging data, 
144 have CT, and 11 have MRI. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Simplified schematic of variant analysis. G-germline, S-
somatic, and T-tumor-specific variants.  Exome sequence available 
for blood (normal) DNA, and tumor DNA. The three comparisons 
represent possible choices of clustering features. 
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The dataset driving our pipeline development efforts consists of 512 TCGA subject 
exomes (>33Gb), and associated variant calls (regardless of imaging data availability). These 
files contain on average 44,507 T variants per subject (tumor vs. normal, Figure 2). Of the 
22,787,886 (non-distinct) variants total, 1,683,888 distinct variants were reported across all 
512 subjects. We first intersect this with a set of 70 genes most often associated with H&N 
cancer from the annotated genomic start of translation to genomic stop. The resulting set of 
45,261 variants is then filtered by eliminating variants that appear in both the entire set of 512 
subjects (not informative), and in fewer than 5% (25) of the 512 subjects. This resulting set of 
1,836 variants is further filtered, so that only those with a minor allele frequency (MAF) of 
0.5% or less from the 1000 genomes project were retained. This MAF filter reduces the 
number of variants per subject to 51 known SNPs, however in the T samples there were an 
additional 626 private mutations with no MAF values, bringing the total number of variants 
of interest to 677. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Examples for developed, freely available open-source software 
for quantitative PET image analysis in 3D Slicer. (a) 3D Slicer PET Liver 
Uptake Measurement tool. (b) 3D Slicer PET-IndiC tool for lesion 
segmentation and generation of quantitative uptake features for treatment 
outcome prediction.  
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We next construct the subset of 29 subjects with corresponding PET/CT data available, 
so that we could apply our quantitative image analysis methods to systematically extract 
image-based features within this subgroup. We continue the refinement of the set of 677 rare 
genomic variants by requiring that a variant must appear in at least 4, but in not more than 19 
instances within the set of 29 cases analyzed. We thus arrived at a set of 395 distinct genomic 
loci within this subgroup of patients with TCGA and PET/CT data, and 16 QI metrics derived 
from our Phase I image analysis tool from which to build predictive models. As we continue 
with expansion of the set of patients, as well as our improved selection of features of interest 
for machine learning, we will be releasing our feature selection algorithms to the QIN 
community through shared BIDS working group tools and interfaces. 
 
§ Aim 2 and 3 
 

We have updated and improved our publicly released open-source software for 
quantitative PET image analysis, consisting of 3D Slicer PET Tumor Segmentation, 3D Slicer 
PET DICOM Extension, PET Liver Uptake Measurement (Fig. 2(a)), and 3D Slicer PET-
IndiC (Fig. 2(b)) Extension as well as supporting libraries. To better document the released 
software and facilitate the broad dissemination, we have published a summary paper, which 
describes details of the implemented lesion segmentation algorithm as well as its validation 
[3].  We have also established a website: http://qin.iibi.uiowa.edu  providing instructional 
videos and demonstrations that are fully narrated for public use.  We are hopeful that this will 
facilitate a broad utilization of our developed tools.  
 

We have developed a fully-automated quantitative PET phantom analysis algorithm, 
which allows the user to segment ACR/ACRIN-ECOG, SNMMI/CTN, and NEMA NU-2 
image quality phantoms and will help to simplify the process of PET scan image quality 
assessment (Figure 3). 
 

To augment the Iowa H&N PET/CT image collection (already available on TCIA 
collection: “QIN-HeadNeck”), we have encoded a) segmentations and quantitative 
measurements of lesions derived from Iowa H&N PET/CT image data and b) clinical data 
related to the Iowa H&N PET/CT image data in standard conform DICOM format and 
published it on TCIA, resulting in one of the most complex DICOM data collections currently 
available on TCIA. The data is accompanied by a recently published paper, which describes 
the data collection as well as underlying design decisions regarding the selected data 
representation in DICOM format [3]. 
 

We have finished the UI-led QIN PET Phantom and Clinical Head and Neck 
Segmentation challenge and have written a summary paper [9], which provides valuable 
insight on how to improve (multi-site) quantitative PET image analysis performance.  
 
 Development activities for an FLT based tool for head and neck cancer as well as for 
DOTATOC for tumor burden in liver are also under development but are not yet mature. 
 
   
 

http://qin.iibi.uiowa.edu/
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Figure 3:  Example of the fully-automated analysis of a PET Torso phantom. 
(a) Volume rendering of automatically identified inserts, and (b) 
corresponding quantitative analysis report. 

 
 
 
 
 
 



17 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Iron (III) is primarily responsible for the alterations seen in T2* relaxation time 
and tissue susceptibility in phantoms. T2* relaxation times (Panels A and C) were 
calculated by fitting a mono-exponential decay curve to the data on a voxel-by-voxel 
basis. Quantitative susceptibility maps (Panels B and D) were generated using the MEDI 
algorithm. Mean and standard deviation within the phantom are plotted relative to the iron 
concentration.  

 
 
§ Aim 4 
 
 We are pursuing imaging methods to assess tumor response to pharmacological 
ascorbate as an adjuvant to standard of care therapy. Peak plasma concentrations of ascorbate 
are currently measured as part of the trial but do not directly report the concentrations within 
the tumor. Therefore, we have pursued the development of methods capable of directly 
quantitating ascorbate within the tumor and measuring markers attributable to the reduction 
of labile iron by ascorbate. Imaging presents a unique opportunity for directly quantitating 
ascorbate in vivo and assessing an indirect marker of ascorbate efficacy. Since high 
concentrations of ascorbate have been shown in vitro to reduce labile Iron(III) to Iron(II), we 
have pursued the evaluation and reliability of T2* relaxation times and tissue susceptibility to 
detect subtle changes in the net iron oxidation state that may occur after ascorbate infusion. 
Phantoms containing physiological concentrations of Iron(II) and Iron(III) were evaluated 
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using the quantitative imaging metrics to determine the sensitivity of each imaging metric to 
sensitivity to varying concentrations of each iron oxidation state. We have demonstrated that 
Iron(III) has a greater influence on T2* relaxation times and tissue susceptibility than does an 
equal amount of Iron(II). Work is on-going in phantoms and pre-clinical models to further 
evaluate this relationship. 
 

SIGNIFICANT RESULTS, INCLUDING MAJOR FINDINGS, 
DEVELOPMENTS, OR CONCLUSIONS (BOTH POSITIVE AND 

NEGATIVE) 
 

The significant results from our research have been published or are being published 
as noted in the text and below.  We have successfully developed a robust segmentation for 
commonly used phantoms and also evaluated the current methods for PET segmentation 
through a QIN based challenge, which resulted in an accepted paper in Medical Physics [9].  
We believe these methods will improve harmonization and enable more facile analysis needed 
for clinical trials image acquisition consistency. We are making good progress according to 
our overall project timeline although proceeding with internal DNA sequencing and obtaining 
National studies has been slower than we had hoped.  We believe continued progress in the 
coming year will enable completion of all elements of the proposed research. 
 
 

 
Table 1: Gantt Chart for mapping progress. 

 

 
PLANS FOR NEXT YEAR 

 
 In the coming year we will begin sequencing head and neck cancers from our own 
University of Iowa database.  We will also continue to work with national databases and begin 
image analysis on cooperative group data either from ECOG/ACRIN or the NRG or both.  
These will be analyzed using the automated methods and compared to traditional analysis.  
We will work to continue to define the platform for genomic-radiomic analyis in head and 
neck cancer.  We also plan to make progress on our FLT based tools and DOTATOC tools.  
Publication of our phantom tool should also be accomplished and integrated into our website.  
Initial work on defining an MR based tool will also be pursued.  Further progress on MR 
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imaging will be determined by progress on our phase II trial using ascorbate with standard 
therapy.  
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INTRODUCTION 
 

The goal of this project is to improve cancer clinical trials by enhancing the 
effectiveness of quantitative PET/CT imaging of tumor response. This has three distinct and 
linked components: 
 

1. Develop and implement a unified database and imaging platform for our phantoms 
and software tools. 

2. Extend our biologically principled imaging tools developed for FDG to FLT 
(proliferation) and FES (receptor status) in multicenter studies. 

3. Prospectively test the integration of the above tools and methods in a newly 
approved ECOG-ACRIN clinical trial that uses FES PET imaging to evaluate new 
breast cancer therapies.  

 
DISCUSSION OF PROGRESS 

 
We list methods, results, and conclusions for each Aim in order below. 

 
§Aim 1   

Develop and implement a unified database and imaging platform for our phantoms 
and software tools. 

 
We have completed an evaluation of our PET/CT cross-calibration kit, which were 

designed in collaboration with RadQual, and are now available as a commercial product called 
the PET F-18 X-Cal System (Figure 1). The X-cal is designed to allow the monitoring of 
biases in SUV values by enabling the monitoring of biases. The kits, which contain sealed, 
long-lived 68Ge/68Ga sources in an epoxy matrix, were subjected to tests to evaluate the 
repeatability and reproducibility of their measurements, including tests on scanners and dose 
calibrators from multiple manufacturers across a network of local PET imaging centers.  

 
 

 

 

 

Figure 1: PET, PET+CT fused, and CT image of the X-Cal PET phantom 
inside a 20 cm diameter phantom filled with water. In this example a small 
amount of 18F-FDG was added to the background water. 
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Each X-Cal kit contains three sealed 68Ge/68Ga sources in an epoxy matrix for use in 
a PET/CT scanner, dose calibrator, and well counter, respectively. Each source’s activity is 
known to ±2.5% with a 95% confidence level. The dose calibrator reference sources are 
directly traceable to NIST (National Institute of Standards and Technology) standards. The 
scanner and well counter sources are implicitly NIST-traceable, i.e. they are made following 
the same procedures but are not certified by NIST. 

 
In testing at multiple sites, per-site average recovery coefficients ranged from 0.907 to 

0.983, with per-site standard deviations between 0.019 and 0.034. The 24 measurements 
overall had a mean of 0.944 ± 0.038. Dose calibrator recovery coefficients were 0.964 ± 0.033. 
For a single site, Figure 2 (right) shows the estimated SUV bias calculated from the recovery 
coefficients as described by , here b is the estimated SUV bias, RP and RD are 
the recovery coefficients for the PET phantom and the dose calibrator sources. A comparison 
of the pre-test PET scanner and dose calibrator biases did not show any correlations in the 
biases. 

 
Figure 2: (left) PET scanner recovery values versus time from 6 local network hospitals. 
24 scans were collected over 2.5 years. Overall the ensemble recovery coefficient had a 
mean of 0.944 ± 0.038. (right) Scanner, dose calibrator, and resultant SUV bias versus 
time for a single site showing variability of SUV bias in time.  

 

These results were published in the QIN special issue of Tomography [1] showing 
longitudinal variations in bias at single-center and multi-center studies. The X-cal phantom 
kit was deployed in a QIN multi-center study that has completed analysis and is being 
submitted for publication. 

 
Aim 2  
 

Extend our biologically principled imaging tools developed for FDG to FLT 
(proliferation) and FES (receptor status) in multicenter studies. 
 

We developed a method called 'virtual clinical trials to evaluate variations in the PET 
imaging process to characterize the ability of static and dynamic metrics to measure breast 
cancer response to therapy in a clinical trial setting. We have competed and published three 
studies: Estimating the effect of FDG uptake time on lesion detectability in PET imaging of 
early stage breast cancer showing that delayed imaging improves detection [2], estimating the 
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effects of uptake time variability on required sample size showing that variability in uptake 
time can double the needed number of patient studies in clinical trials [3], and comparing 
static versus dynamic PET imaging in measuring response to breast cancer therapy showing 
that as expected, dynamic imaging improves the correct discrimination of response [4]. 
 

In this last study we generated 540 i.i.d. PET study realizations for each of 22 18F-
FDG breast cancer patient studies pre- and post-therapy.  Each noise realization accounted for 
known sources of variability in the imaging process. We then performed a ROC analysis on 
the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the 
variability on the measurement capabilities of each metric.  Analysis showed that the kinetic 
macro parameter, Ki, shows more variability than SUVmax (CV of 16.6% compared to 
13.5%).  However, for the patients who did not show perfect separation between the pre- and 
post-therapy parameter uncertainty distributions (AUROC<1), dynamic imaging 
outperformed SUVmax in distinguishing metabolic change in response to therapy (14/16 
patients, p<0.05). 

 

 
 

Figure 3: Two of the 22 patient studies used. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Virtual clinical trial simulation of the imaging process and results 
for patient 11. SUVmax at 60 minutes post-injection and dynamic ROIs were 
measured from the tumors in the reconstructed images. Uptake time 
uncertainty was added to SUVmax to generate the final SUVmax uncertainty 
distributions pre- and post-therapy. The dynamic ROIs were re-input into the 
kinetic model to generate the Ki uncertainty distributions. 
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Aim 3  
 

Prospectively test the integration of the above tools and methods in a newly approved 
ECOG-ACRIN clinical trial that uses FES PET imaging to evaluate new breast cancer 
therapies. 
 

We have constructed a new set of X-cal phantom kits for deployment in the ECOG-
ACRIN trial I142 '[18F] Fluoroestradiol (FES) as a Predictive Measure for Endocrine Therapy 
in Women with Newly Diagnosed Metastatic Breast Cancer'. It is a multi-center trial for which 
Dr Linden is the co-PI. 
 

PROGRESS AND PLANS FOR NEXT YEAR 
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INTRODUCTION 

 
Response to cancer therapy in clinical trials has traditionally been assessed via simple 

linear tumor size measurement on images. However, linear measurement may be less effective 
for newer targeted agents that can arrest tumor growth without causing shrinkage. While novel 
imaging biomarkers, such as those being developed in the NCI Quantitative Imaging Network 
(QIN), may be more appropriate for detecting and predicting treatment response to these 
agents, few as of yet have been used in clinical trials, primarily due to three major challenges: 
(1) it is difficult to introduce new imaging biomarkers into the workflow of clinical trials, 
since current image viewing tools are generally closed systems and limited to linear 
assessment of target lesions, and time does not allow for more complex human-guided 
measurements; (2) there are no decision support tools that can employ new quantitative 
imaging biomarkers to assess treatment response in individual patients or drug effectiveness 
in clinical trial cohorts; and (3) it is difficult to repurpose existing clinical trial imaging data 
to accrue aggregate evidence needed to show that new imaging biomarkers predict survival, 
thereby qualifying them as surrogate endponts in clinical trials 

.  
We recently developed the electronic Physician Annotation Device (ePAD) to 

facilitate collecting annotations and measurements on target lesions in compliance with 
standards in the cancer imaging community. In this proposal, we will leverage our prior work, 
our active collaborations with current QIN researchers, and our engagement with the ECOG-
ACRIN national cooperative group to develop and evaluate a software platform, algorithms, 
and tools that meet all of these challenges.  

 
Our project will tackle the foregoing challenges by developing a software platform 

that incorporates ePAD for image viewing, enhancing it with a plugin architecture to deploy 
novel quantitative imaging biomarkers developed by QIN and other researchers, and by 
providing tools that facilitate translating and evaluating novel imaging biomarkers in clinical 
trials. Our infrastructure will contain a workflow engine that computes these novel imaging 
biomarkers during image interpretation, and tools for decision making about treatment 
response and drug effectiveness based on them. It will also enable repurposing imaging data 
from previous clinical trials to assess the benefit of these imaging biomarkers for predicting 
treatment response. 

 
Our flexible platform and tools will have substantial impact in cancer research and 

ultimately in clinical care, specifically by (1) advancing cancer research and accelerating 
clinical trials by enabling novel quantitative imaging biomarkers being developed by QIN 
researchers and others, which may be more appropriate for newer, targeted anti-cancer agents, 
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to be introduced into the clinical trial workflow, (2) improving both clinical trials and clinical 
practice by providing decision support about cancer treatment response based on these 
biomarkers, and (3) accelerating the acquisition of sufficient data needed to qualify new and 
potentially better imaging biomarkers of cancer treatment response and survival. 

 
DISCUSSION OF PROGRESS 

 
§ Specific Aims 
 

Specific Aim 1: We will develop a platform and tools to facilitate deploying new 
imaging biomarkers in clinical trials and using them for decision support. We will create 
a plug-in mechanism to our ePAD platform that allows novel quantitative imaging algorithms 
developed by us or by others to be incorporated into the clinical trial workflow with minimal 
impact on the time required for image interpretation. To assess individual and cohort response 
based on new imaging biomarkers, we will develop decision support tools that summarize 
their output in relation to clinical outcome. We will also develop tools that compare the 
assessments of novel and conventional (e.g., linear dimension) imaging biomarkers of cancer 
treatment response.  

 
Specific Aim 2: We will develop methods to repurpose existing imaging data from 

clinical trials to study new imaging biomarkers. We will develop automated image 
segmentation methods that use seed points from conventional clinical trial lesion 
measurements to derive volumetric lesion outlines, from which novel quantitative imaging 
biomarkers of treatment response can be computed efficiently in the workflow of clinical 
trials. With the ultimate goal of generalizability, we will develop and deploy two exemplar 
quantitative image biomarkers: (1) target lesion volume in carcinoid tumors imaged by CT 
and (2) functional quantitative image parameters in hepatocellular carcinoma (HCC) imaged 
by MRI. We will deploy these as plugins to our ePAD platform so that they can be used for 
repurposing existing imaging data, and can be incorporated into the clinical trial workflow. 

 
Specific Aim 3: We will deploy and evaluate our platform and tools in the core 

imaging laboratories of two cancer centers and the ECOG-ACRIN national cooperative 
group. We will apply our tools retrospectively to a recently-completed ECOG-ACRIN 
cooperative group trial (carcinoid tumors imaged by CT, linear measure vs. volumetric image 
biomarkers to assess treatment response) and a prospective investigator-initiated trial (HCC 
imaged by MRI, linear measure vs. novel functional quantitative MRI biomarkers to assess 
treatment response), with image assessments performed at two cancer centers (Stanford and 
Vanderbilt University). For both studies, we will compare the efficiency of the analysis done 
with and without our platform. Finally, we will use aggregate image biomarker data we 
acquire in conjunction with survival data from these clinical trials to study the important 
hypothesis that radiological response based on quantitative image biomarkers can predict 
overall survival. 
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§ Progress on the Specific Aims 

 
Our specific objectives and progress against these Aims for Years 1 & 2 were to: 

(labels C.n.m refer to our grant proposal and the Gantt Chart (Figure 1)): 
 

 
AIM 1: Develop a suite of configurable image feature characterization algorithms: 
 
C.1.2.1 Plugin architecture and workflow execution engine for deploying new 

imaging biomarkers: We completed a prototype of a plugin mechanism to our 
ePAD platform that allows novel quantitative imaging algorithms to be 
incorporated into the clinical trial workflow. There are three components of 
this architecture:  

• Biomarker plugins are code modules that can be added to the ePAD virtual 
machine to execute the algorithms that QIN or others develop to compute novel 
imaging biomarkers, or for producing automated segmentation of lesions 
during image viewing.  

• Application modules are software applications that leverage data in the ePAD 
platform, typically implemented as web-based applications that access data in 
ePAD via a RESTful application interface. We created an application to show 
images that have similar imaging features, called BIMM (Fig. 2) and an 
application that tracks lesions and produces a Word file summary of treatment  

Figure 1: Gantt chart showing planned developments per Specific Aims. Red line is 
current point in time. 
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response that can be entered into the record of a clinical trial based on our 
recent work [1]. 

• Workflow execution engine: We have made plans to implement this via an 
interface to the Quantitative Imaging Feature Pipeline (QIFP), a separate QIN 
project undertaking developing a workflow engine. 

 
We already are seeing third party developers beginning to develop new 
imaging biomarkers into ePAD [2]. In addition, one of the QIN sites is going 
to deploy ePAD for collecting quantitative imaging data in an upcoming multi-
site trial. 
 
We also made enhancements to the core ePAD functionality, including more 
robust DICOM segmentation object (DSO) support, interoperability with 3D 
Slicer, and better AIM template support. We also began supporting AIM 
interoperability with DICOM-SR. 
 

C.1.2.2 Image viewing to facilitate assessment of quantitative imaging 
biomarkers: This includes the several tasks (see Plans), and we made progress 
on one of the tasks: 

 
• Managing projects, users, and clinical trial information: ePAD now groups 

images into projects, managing users, and securing access to the data. It also 
associates radiologists with the images they interpret, so that ePAD viewer can 

Figure 2: ePAD application: BIMM. This application, a “biomedical image 
metadata markup manager” searches the database of image features collected 
by ePAD to find similar images. The figure shows a query image (“selected 
image”) and the results of searching for images that contain lesions having 
similar features to that in the query image (“matching images”). 
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produce summaries of image interpretations that need to be performed in 
clinical trials. This functionality has been helpful in a new project that adopted 
ePAD: the MGH/HST Martinos Center for Biomedical Imaging) used this for 
MEDICI project. 

 
In addition, we engaged actively in community outreach and dissemination. We have 
set up a public website for ePAD, http://epad.stanford.edu/ that contains introductory 
material, a demo move, documentation, a detailed description of the developer interface, 
and download information. ePAD is open source, and the license is posted as well. We 
have regular releases, at least 6 times per year, and release notes are at 
https://epad.stanford.edu/documentation/release-notes.  
 
AIM 2: Develop methods to repurpose existing imaging data from clinical trials to 

study new imaging biomarkers: 
 
C.2.2.1 Exemplar #1a—Automated segmentation of cancer lesions: Cancer lesions 

are challenging to segment since they vary in appearance in different organs. We 
created a novel method for adaptive estimation of active contour parameters for lesion 
segmentation (Fig. 3) [3]. The method is fully automatic once the lesion has been 
detected. The location of the level set contour relative to the lesion is estimated using 
a convolutional neural network (CNN). The output CNN probabilities are then used 
to adaptively calculate the parameters of the active contour functional during the 
segmentation process. Finally, the adaptive window size surrounding each contour 
point is re-estimated by an iterative process that considers lesion size and spatial 
texture. We evaluated the method in a diverse dataset of 164 MRI and 112 CT images 
of liver lesions that includes low contrast and heterogeneous lesions as well as noisy 
images. Our method, as assessed by Dice similarity coefficients, performed 
significantly better than currently available methods. An average Dice improvement 
of 0.27 was found across the entire dataset over all comparisons. We also analyzed 
two challenging subsets of lesions and obtained a significant Dice improvement of 
𝟎𝟎.𝟐𝟐𝟐𝟐 with our method (p < 0.001, Wilcoxon) [3]. 

 
PLANS FOR NEXT YEAR 

 
We will continue our software developments as follows (labels C.n.m refer to our 

grant proposal and the Gantt Chart (Fig. 1)): 
 

C.1.2.1 Plugin architecture and workflow execution engine for deploying new 
imaging biomarkers: 

• Biomarker plugins We will continue developing new plugins and 
incorporating those submitted by the community. In particular we will work 
with Dr. Abramson to create a plugin to compute a biomarker of response 
based on pixel histogram characteristics along the long axis (“ADLA plugin”). 

• Application modules: We will develop applications to enable tracking lesions 
and producing waterfall plots (see C.1.2.3). 

http://epad.stanford.edu/
https://epad.stanford.edu/documentation/release-notes
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• Workflow execution engine: We will link ePAD to QIFP, a separate QIN 
project undertaking developing a workflow engine, to provide this 
functionality. 

 

C.1.2.2 Image viewing to facilitate assessment of quantitative imaging 
biomarkers: We will pursue several tasks: 

 
• Facilitating image biomarker assessments by clinical centers, such as 

incorporating several tools into ePAD viewer that streamline the assessment of 
quantitative imaging biomarkers. 

• Facilitating oversight of image readings by clinical trial researchers and 
sponsors: We will develop a study monitoring application module that permits 
ePAD to monitor the status of image interpretations made in multiple clinical 
trials and summarized as a table in ePAD viewer. 

 

C.1.2.3 Decision support in assessing treatment response: We will develop tools to 
assist decision making based on image biomarker assessments in two major 
clinical trial tasks: (1) determine treatment response in patients, and (2) 

Figure 3: Lesion segmentation using the proposed method with different 
initializations. Left column - small initialization (3-pixels radius), middle 
column – more accurate initialization (5-pixels radius), right column – large 
initialization (9-pixels radius). a) low-contrast lesion, b) noisy and 
heterogeneous tissue surrounding the lesion. For both cases, lesion is located 
close to the liver boundary. Magenta – initial contour, yellow – our final 
segmentation, green – manual radiologists’ annotation. 
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evaluate treatment effectiveness by determining the cohort-based treatment 
response. 

 
C.1.2.4 Tools to assess the benefits of new imaging biomarkers:  We will develop 

the biomarker comparison module, an application module in ePAD viewer that 
compares the cohort treatment response results obtained when using novel vs. 
conventional (e.g., linear dimension) imaging biomarkers. This module will 
summarize the treatment response in patient cohorts based on the new imaging 
biomarker (using linear measurement for comparison) using several methods: 
waterfall plots to show the best overall response rates in the cohort, 
progression-free survival (PFS), MRR, and MTP. 

 
C.2.2.2 Develop algorithms for automated segmentation of target lesions: 

(Exemplar #1a—Automated segmentation of cancer lesions; we will pursue 
additional exemplars as outlined in our timeline in future years). We will also 
engage with the QIN community to test these modules. 

 
In addition: 
 
1. We will make a working prototype available to interested QIN participants. 
2. We will make regular public releases of ePAD and will submit an educational 

exhibit to RSNA 2017 that will allow us to begin to train the broader 
community regarding the use of the QIFP. 
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INTRODUCTION 

 The long-term vision of this program is to significantly improve patient care by 
optimizing, validating, and then extending quantitative MRI methods for the early prediction 
of breast cancer response to neoadjuvant therapy (NAT).  During the first period of support 
we incorporated quantitative dynamic contrast enhanced MRI (DCE-MRI) and diffusion 
weighted MRI (DW-MRI) into a predictive statistical model to achieve an area under of the 
receiver operator characteristic curve of 0.87 for predicting the eventual response of breast 
tumors after the first cycle of neoadjuvant therapy (NAT). We now seek to extend these results 
in multi-site clinical trials.   

 The ability to predict—early in the course of therapy—patients who will eventually 
achieve a pathological complete response remains a highly relevant clinical objective.  
Accurate and early response assessment would provide the opportunity to replace an 
ineffective treatment with an alternative regimen, and in so doing potentially avoid or curtail 
debilitating side effects or toxicities.  With the numerous options for NAT that have become 
available, development of a method to predict response early in the course of therapy is 
especially needed.   

We have developed several experimental and computational tools for improving DCE-
MRI and DW-MRI of the breast, and we have successfully applied these tools in clinical trials 
at Vanderbilt University.  We are now applying these techniques in multi-site clinical trials at 
Vanderbilt University and The University of Chicago.  Furthermore, we have an exploratory 
component in the community setting in place at The University of Texas at Austin. 

The knowledge acquired through this study will provide direction on developing 
personalized treatment strategies for breast cancer patients undergoing NAT and may 
motivate a fundamental shift in existing paradigms of therapy monitoring and selection in 
breast cancer.  Furthermore, MRI assessment of early response could be more broadly 
applicable to other solid malignancies where NAT is appropriate (e.g., pancreas, 
osteosarcoma, rectal, ovarian); thus, the results of this study could potentially have a 
significant impact beyond breast cancer. 
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DISCUSSION OF PROGRESS 
 
§ Our primary work 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: T1 parametric maps are shown for inversion recovery 
(left column), uncorrected variable flip angle (VFA, center) and 
B1-correctedVFA (right) data collected from each of three patients 
(show in rows). 

 
 

We have recently completed a set of repeatability/reproducibility studies in phantoms, 
healthy volunteers, and a limited number of patients; these data consist of quantitative, Bloch-
Siegert corrected T1-mapping, apparent diffusion coefficient maps, and quantitative 
magnetization transfer (qMT) maps.  Figure 1 displays inversion recovery, variable flip angle 
(VFA) and B1-corrected VFA T1 maps on three patients. Compared to the VFA data, the B1-
corrected VFA T1 values of the fibroglandular tissue (FGT), adipose tissue (AT), and tumor 
in all three patients are more similar to the IR T1 values.  After B1 correction, %error 
significantly (p < 0.001) decreased from 17% to 8.6% and the concordance correlation 
coefficient increased from 0.55 to 0.83 in the FGT. The 95% CI of the mean difference 
decreased from ±94 ms to ±38 ms after B1 correction. Similar accuracy and reproducibility 
results were observed in the AT and tumor tissues. These data show that Bloch-Siegert B1 
mapping significantly improves accuracy and precision of VFA-derived T1 measurements. 

 
 

Quantitative MT imaging potentially provides more specific information on tissue 
composition, including the ratio of macromolecular protons to the protons in the free water 
pool, or pool size ratio (PSR). We have assessed the reproducibility of PSR measurements of 
FGT in healthy controls.  Figure 2 displays PSR maps from the central slice of three subjects 
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for scan 1 (top row) and scan 2 (bottom row).  The mean difference for all subjects (-0.06) 
was not significantly different from zero, and the 95% confidence interval limits were ±0.64 
(α = 0.05) and the repeatability measure (2.77 × wSD) was 1.87.  The B1-corrected T1, ADC, 
PSR measurements are implemented in identical protocols on nearly identical 3T Philips 
scanners at Chicago and Vanderbilt.  The clinical trials that were selected to deploy these 
measurements have also been successfully opened at both data acquisition sites and we have 
begun to acquire patient data.  This essentially completes the majority of Aim 1 and has us 
well-positioned to address Aims 2 and 3. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: PSR maps from the central slices of three subjects for scan 
1 (top row) and scan 2 (bottom row).  Note the range of adipose tissue 
to fibraglandular tissue ratios observed in these healthy volunteers. 

 
 
In addition to collecting the above data in our ongoing clinical trials, we are exploring 

the utility of ultrafast imaging of the breast during the first minute after the administration of 
contrast media. Using standard Fourier techniques, we achieved temporal resolutions of 2 to 
9 seconds by reducing spatial resolution, and increasing parallel imaging and partial Fourier 
factors. While several techniques have been developed to increase temporal resolution without 
sacrificing spatial resolution (e.g., view-sharing, sliding window), they rely on under sampling 
the edges of k-space and mixing data acquired at different times. In a situation when the signal 
is rapidly changing, and much of the enhancement is occurring in small areas, undersampling 
and view sharing at the periphery of k-space could lead to artifacts and errors in parameters 
descriptive of lesion kinetics. Our initial experience with ultrafast breast imaging showed that 
malignant lesions, on average, enhanced earlier and faster than benign lesions and normal 
uninvolved parenchyma. Because of this, lesion conspicuity is increased in ultrafast images. 
Ultrafast imaging also allows for more accurate estimations of parameters descriptive of 
contrast media uptake, and for the measurement of these parameters relative to the time at 
which the contrast bolus arrived in the breast (see Figures 3 and 4), rather than the time of 
injection, removing the dependence on global variables such as cardiac output. Imaging the 
early phases of contrast uptake allows for the use of simplified pharmacokinetic models to 
estimate parameters such as the volume transfer constant, Ktrans.   
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Figure 3: Time of arrival (TOA) is defined as the time the lesion 
began to significantly enhance relative to when the contrast agent 
firs arrived in the arteries of the breast.  The TOA is show as a color 
overlay in these images.  Lesions are marked with arrows: a) and b) 
invasive ductal carcinoma, c) complex sclerosing lesion, d) 
fibroadenoma.  The results show her are typical of our initial results, 
with malignant lesions having a shorter average time of arrival than 
benign lesions (6.9 s +/- 4.6 s and 15.5 s+/- 13.6 s, respectively). 

 
 
 
 

Figure 4: Maximum intensity projections (MIPs) for post-contrast minus pre-contrast 
difference images acquired at a temporal resolution of 3.5s to is defined as the time that 
arterial enhancement is first measured in the breast. Two likely benign lesions are marked 
with arrows in the latest image shown. 
 
We have also used the high-temporal resolution data to automatically detect, segment, 

and track tumor associated vasculature within the breast.  Representative results are shown in 
Figure 5. In Figure 5a, two tracked paths based on data obtained with 2 sec resolution data are 
indicated and overlain on the MIP of a post-contrast image.  Observe how the vessels appear 
to originate from the most lateral lesion and extend to the internal thoracic veins. Figure 5b 
shows the normalized signal intensity time series associated with four different locations 
within the most anterior vessel (i.e., P1, P2, P3, P4 as labeled in Figure 5a). The order of 
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enhancement is what allows for the color coding of the vessel displayed in Figure 5a.  The 
high temporal resolution of the acquisition thus allows for not only vessel tracking, but also 
determining the direction of flow within the breast tissue. Figure 5c prevents a 3D rendering 
of the tracked vessels within the breast volume to better visualize their trajectory.  An abstract 
summarizing this work is to be presented at the upcoming ISMRM meeting. Longer term, we 
aim to include these measurements in our ongoing trials.  

 

Figure 5: Panel a displays two tracked vessels overlain on a maximum intensity projection.  
The (normalized) signal intensity time courses associated with locations P1-P4 are indicated 
on Panel b for one of the tracked vessels. Note how the high temporal resolution acquisition is 
critical to determining the direction of flow within the tracked vessel. Panel c shows a 3D 
rendering of the same two vessels within the breast volume. 

 
We are thrilled to report that we have established a public-private collaboration 

between The University of Texas at Austin, Austin Radiological Associates, Texas Oncology, 
and Seton Healthcare.  This is truly noteworthy as our team only arrived on campus in 
February of 2016 and we were able to establish this formal collaboration (complete with 
contracts, etc.) and open a clinical trial by September. Our first patient was enrolled in this 
study in October of 2016.  More specifically, we are testing the hypothesis that quantitative 
dynamic contrast enhanced MRI (DCE-MRI), diffusion-weighted MRI (DW-MRI), and 
magnetization transfer MRI (MT-MRI) can predict, early in the course of NAT, the eventual 
response (i.e., pathological complete response vs. residual disease) of the individual patient, 
and that this can be achieved in the community setting. A real, practical, advance of these 
studies is that we have implemented these advanced MRI measures in the community setting; 
that is, in the locations around Austin where patients go for their standard-of-care imaging 
session.  The patients do not have to come to an academic setting, they can simply go to where 
they usually receive their care.  If our methods prove successful, then the barrier between the 
bench and the bedside is dramatically lowered with this approach.  Figure 6 presents an 
illustrative data set from a patient enrolled in our study.  This constitutes a “new aim” in the 
Gantt plot below.  
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Figure 6: The figure displays two of the quantitative parametric maps we acquire in patients 
undergoing neoadjuvant chemotherapy; ADC = apparent diffusion coefficient which is a 
surrogate for cellularity, and kep = efflux transfer constant which is a surrogate for 
vascularity.   We perform various computations on these parametric maps to predict who 
will achieve pCR and who will have residual disease at the time of surgery.  Note: although 
only a single slice is show here, we collect full 3D data sets at each time point. 

 

 

 

In addition to the above progress, we have also participated in a large number of 
intra-QIN projects which we now briefly summarize. 
 

 

 



43 
 

§ IAPM MRI Subgroup: ADC DICOM Challenge 

Drs. Dariya Malyarenko and Tom Chenevert from the University of Michigan have 
distributed DICOM files of diffusion weighted MRI data of their ice water phantom from 
three obtained on GE, Siemens, and Philips scanners.  We were asked to generate ADC maps 
and save the results in DICOM format.  We have processed the data and sent back to Dr. 
Malyarekno for processing. 

§ Data Acquisition Working Group: T1-mapping Challenge 

Our team has scanned the phantom that was sent to us as part of the challenge and 
submitted the data to Dr. Octavia Bane.  We used one of head and neck protocols with a 32-
channel head coil to perform the generic T1 mapping sequence as all other participants. 
Additionally, we performed our multi-flip angle T1 mapping sequence as well.  We are co-
authors on the abstract accepted to ISMRM. 

§ Data Acquisition Working Group: Diffusion, Phase II 

We were one of the sites that scanned the fBIRN phantom for the second phase of the 
diffusion gradient nonlinearity challenge led by Drs. Malyarenko and Chenevert from the 
University of Michigan group. We scanned the phantom, deliveted the data to Dr. 
Malyarkenko and co-authored manuscript submitted to and accepted by Tomography. 

§ DCE-MRI Data Challenge: Effects of AIF Quantification in Soft Tissue Sarcoma 

 This effort was led by Dr. Wei Huang at the Oregon Health Sciences University.  to 
investigate the effects of AIF variations on DCE-MRI prediction of soft tissue sarcoma 
response to preoperative therapy.  As did all the participating centers, we determined 
individual AIFs for each patient in the cohort from the femoral artery using the DCE-MRI 
data with our site-specific method and submitted them to the OHSU for pharmacokinetic 
modeling of the tumor voxel DCE-MRI time-course data using the standard Tofts model.  This 
effort will be presented as an abstract at the upcoming ISMRM meeting. 

§ DCE-MRI Data Challenge: Effects of AIF Quantification on Shutter-Speed Analysis 

This effort was led by Dr. Wei Huang at the Oregon Health Sciences University.  The 
goal was to determine the effects of AIF characterization on the ability to perform a robust 
Shutter-Speed analysis at multiple sites.  The study design was similar to that described in the 
previous paragraph and this effort will also be presented as an abstract at the upcoming 
ISMRM meeting. 

§ Participation in National Clinical Trials 
 

We have participated in two previous ECOG-ACRIN trials investigating advanced 
quantitative MRI techniques in breast cancer, and are currently ramping up to participate in 
another consortium trial that is comparing an abbreviated breast MRI exam to digital breast 
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tomosynthesis in breast cancer screening of women with dense breasts. The primary objective 
of this study is to compare the detection rates of invasive cancers between the imaging 
technologies. This additional scan sequence was developed by Drs. Karczmar and Pineda at 
The University of Chicago, and both are current investigators in our QIN multisite breast MRI 
program. 

 
PLANS FOR NEXT YEAR 

 The main goal during the next reporting period is to accrue a significant number of 
patients at the two institutions.  Now that the protocols are up and running at both institutions, 
we are well-positioned to attack these Aims.  In addition to accruing patients in support of the 
ultimate goals of the application, we will also pursue a number of technical—but practical—
issues.  In particular, as described in the initial application, we will assess the repeatability 
and reproducibility of data acquired in the same healthy volunteers at both VU and UC.  We 
will also perform a cross-validation of independent site analyses.  The goals here are to 
determine if our acquisition and analysis toolbox can provide statistically identical answers 
when used at different institutions.   
 

We will continue to participate in inter-QIN collaborative projects and assist in the 
writing and publication of these efforts.   
 

At The University of Texas at Austin we will continue to expand our footprint into the 
community setting by completing repeatability and reproducibility studies in health subjects 
at multiple private practice settings. 
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INTRODUCTION 
 

Prostate cancer (PCa) continues to be the most common malignancy and third 
leading cause of cancer-related mortality in American men. PCa is the most common cancer 
in men in North America and Europe, with over 180,000 new cases to be diagnosed in 2016, 
when 26,120 men will die from their disease (1). The natural history of PCa is remarkably 
heterogeneous and still not completely understood. Autopsy and early observational studies 
have shown that approximately one in three men ≥ 50 years old has histologic evidence of 
prostate cancer; a significant portion of these tumors are small and possibly clinically 
insignificant, although others are extremely aggressive and lethal(2). As the number of men 
with localized prostate cancer increases, the need for an accurate non-invasive imaging tool 
increases. MR imaging has been shown to contribute significant incremental value to both 
digital rectal exam and TRUS-guided biopsy in cancer detection and localization within the 
prostate. 
 

REPORT OF PROGRESS 
 
The specific aims (SA’s) and summary of the important findings of our first 

cycle are as follows: 
 
§ SA 1: To optimize prostate MR Image analysis tools 
 

We optimized DCE-MRI modeling tools through investigation of T1 mapping effects 
(3), assessment of optimal Arterial Input Function (AIF) (4,5), and assessment of the effects 
of the bolus arrival time (BAT) measurement(6). We demonstrated the sensitivity of 
pharmacokinetic (PK) parameters to tissue T1 values, and found that using either a flip 
angle corrected VFA method, or a VTR FSE method with judiciously chosen TR values, 
increased the accuracy of T1 values (3). We demonstrated that the method for automated 
determination of AIF can lead to variability in DCE-MRI parameters (5). Therefore, PK 
values obtained using different AIF methods may not be comparable. We found that 
inaccuracies in BAT, another choice in DCE MRI analysis, leads to variability among DCE-
MRI PK model parameters, diminishes the quality of model fit, and produces fewer voxels 
suitable for modeling (6).  
 

We subsequently shared, through the TCIA, a subset of our prostate imaging data 
with 9 QIN centers to evaluate variations in PK parameters in PCa due to differences in AIF 
determination, and showed that AIF variations significantly affect PK parameter values for 
prostate DCE-MRI data (7).  We also contributed to a multi-center study investigating the 

https://paperpile.com/c/5trWNE/SC04c
https://paperpile.com/c/5trWNE/Tbzee
https://paperpile.com/c/d5yWed/g4Vv9
https://paperpile.com/c/d5yWed/EGJ0+fPCN
https://paperpile.com/c/d5yWed/eGzM
https://paperpile.com/c/d5yWed/g4Vv9
https://paperpile.com/c/d5yWed/EGJ0
https://paperpile.com/c/d5yWed/eGzM
https://paperpile.com/c/d5yWed/55DX
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role of platform-specific data encoding on the accuracy of quantitative analysis (8), and to a 
study investigating the role of the analysis platform on the PK analysis of DCE-MRI (9). 
 

Our first cycle also supported a repeatability study of treatment-naive men 
undergoing ecoil prostate mpMRI, within a 2-week period. Knowledge of measurement test-
retest repeatability is critical in longitudinal studies to enable differentiation of true change 
vs. measurement noise. Our results indicate that PI-RADS v2 suspicion scores are highly 
repeatable, while tumor volume change in response to therapy may not be considered 
significant unless it exceeded 70% on T2-WI, or 120% on DCE-MRI and ADC imaging. A 
change in mean ADC may not be significant unless it exceeds 40%. We are in the final 
stages of preparing this manuscript and, importantly, we plan to accompany the manuscript 
with the dataset which will be publicly shared on TCIA.  
 
§ SA 2: To clinically validate prostate MR quantitative analytic tools  
 

We clinically validated our MR quantitative analytic tools from SA 1. Using 
whole mount pathology (WMP) validation, we both automatic and model-based AIF 
methods for DCE-MRI to be excellent in discriminating PCa from normal tissue, but the 
same method should be used throughout a biomarker study(74). We validated PK maps used 
for guidance in our MRgBX program(10), which demonstrated higher PCa detection rates, 
when compared to TRUS biopsy samples. We also compared 2 approaches for correlating 
pathology to mpMRI (11), and found that WMP correlation is superior to standard path 
report for accurate localization of all index lesions, but is not required to distinguish 
differences of quantitative MRI parameter values within tumor. We also determined if 
tumor cell density and % GP within an index tumor on WMP correlated with ADC values 
on mpMRI. We found tumor cell density and ADC to be significantly negatively correlated 
(ρ=-0.61, p=0.005) (12).  
 
§ SA 3: To determine the clinical use of the analysis tools as a biomarker guide for 
targeted therapy and as a surrogate for disease recurrence in low-risk PCa patients 
 

The last enrolled patients have completed their follow up MRIs within the last 
6 months, and we are in the final stages of data analysis of this project, which explores the 
feasibility of mpMR as an imaging biomarker to assess response of bulky localized prostate 
cancer to combined ADT/EBRT. 
 
§ SA 4: To determine the clinical use of the analysis tools in evaluating tumor response 
to treatment with neoadjuvant second-generation androgen receptor inhibitor 
enzalutamide in patients with high-risk PCa  
 

This study is in the final stages of manuscript preparation, and demonstrated 
no significant difference between mpMRI-based residual tumor burden (RTB) and RTB at 
RP. In addition, there is a strong positive correlation between DCE-MRI and RTB (ρ=0.79, 
p=0.03), and a strong negative correlation (ρ=-0.91, p=0.005) between ADC and RTB, 
indicating a very promising role for mpMRI as a biomarker for treatment of localized PCa 
with neoadjuvant therapy.  

https://paperpile.com/c/d5yWed/S6PqV
https://paperpile.com/c/d5yWed/0YNaa
https://paperpile.com/c/d5yWed/fPCN
https://paperpile.com/c/d5yWed/1m3p2
https://paperpile.com/c/d5yWed/eB5K
https://paperpile.com/c/d5yWed/iCZ9
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In summary: 1) We optimized/validated our prostate mpMRI protocol 

(3,4,6,13,5), 2) we established a MRI-pathology validation workflow (4,10,11,12): 3), we 
established open source tools within 3D Slicer for annotation/quantitative analysis of 
mpMRI(14): 4), we determined the clinical use of the analysis tools as a biomarker guide for 
targeted therapy and as a surrogate for disease recurrence in high and low-risk PCa 
populations, and in the final stages of manuscript preparation for these 2 trials; 5) we 
contributed to multi-site QIN manuscripts(5,7-9,15–18). Finally, the data we shared in 
Cycle 1 was invaluable to several QIN community projects/challenges (3,7). 
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INTRODUCTION 
 

Patients with glioblastoma (GBM), a deadly form of brain cancer, have extremely 
poor prognosis and few treatment options [1-3]. Assessment of response to therapies is 
critically needed to aid in clinical decision-making [2,4,5]. The QIN team from MGH 
continues to make good progress in developing and validating novel biomarkers for 
measuring the response to therapy in GBM. Our techniques for the analysis of diffusion 
weighted imaging, dynamic contrast enhanced MRI (DCE-MRI) and dynamic susceptibility 
contrast MRI (DSC-MRI) are being applied in a number of prospective and retrospective 
clinical trials [6]. The software tools used for these analyses are publicly available as open-
source packages, both standalone as modules for 3D Slicer [7]. These techniques have been 
developed using phantom studies, simulations, retrospective analysis, and prospective 
analysis in patients undergoing treatment with anti-angiogenic therapies. Having worked 
with other teams in the QIN as well as other groups in the community in establishing 
common, standardized approaches to image analysis and acquisition for patients with GBM 
[8,9,10,11], we are now implementing these protocols in clinical trials. 

 
Advanced MRI methods may improve our ability to provide an accurate prognosis 

and potentially guide treatment choices for glioblastoma patients [2,4,5]. We continue to be 
fortunate to work closely with our clinical colleagues who provide us with great access to 
high quality imaging data acquired both as part of clinical trials and as part of routine 
clinical care. Our “double baseline” studies have established the variability in the DCE-
MRI, DSC-MRI and diffusion MRI based parameters (Ktrans, rCBV, rCBF, MTT, ADC, 
FA) in patients scanned 2-5 days apart. These studies also establish best practices for image 
analysis to achieve maximal robustness [8,11].  Our novel image acquisition methods 
include a double-echo DSC and DCE sequences and a multi-shell, multi-directional 
diffusion sequence that help us better elucidate the tumor microenvironment.  In addition to 
progress in the image acquisition arena, we have also made significant strides in image 
analysis and informatics.  We have also developed a number of open-source image analysis 
tools for tumor segmentation and registration, multimodal atlases, personalized tumor 
growth models and hardware and software approaches to improve image resolution. We 
continue to develop open-source software tools for the analysis of DCE data, especially T1 
mapping, and the “double-echo” sequence that has been shown to be able to quantify R2* 
effects. Some of these have already been disseminated as Slicer modules, in conjunction 
with the QIICR ITCR project.  

 
The team from MGH continues to actively participate in the Quantitative Imaging 

Network (QIN) and has made significant contributions as part of the various working group. 
We have been very actively engaged in the “challenges” being conducted as part of the QIN, 
both as organizers and participants. We have also developed a number of close and fruitful 
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collaborations with other members of the QIN, resulting in joint publications, planned multi-
institutional studies and successful grant applications. 

 
In addition to our primary work in the area of GBM, the MGH team has been 

participating actively in the PET/CT working groups and has developed radiomics pipelines 
and statistical analysis tools. These are also publicly available 
[https://github.com/QTIM-Lab].  

 
DISCUSSION OF PROGRESS 

 
§ Quantitative imaging pipeline for GBM 
 

We followed up on our previous work creating a within-patient and longitudinal 
registration pipeline. In particular, we developed a pipeline to register and upsample T1, T2, 
DTI, DSC, MPRAGE, FLAIR, and DCE maps into 1x1x1mm isotropic space. This involved 
ordering images in a chain of sequential registrations, such that only visually-similar images 
are registered in any given step. This allowed us to coregister and upsample every modality 
in every patient visit without error.  Our registration scheme is provided below. This 
pipeline is available as a Docker container and is being shared with our collaborators at Tata 
Memorial Hospital in India. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Proposed registration order in our registration and 
resampling pipeline. Volumes are only registered to their most 
similar neighbor. 

 
 
 
§ Tumor growth modeling and personalization of radiotherapy:  
 

We continue to develop our tumor growth models and their use in personalization of 
radiotherapy. Using a radiation therapy plan based on the expected growth patterns of 
tumors can results in improved tumor control and better sparing of normal tissues compared 

https://github.com/QTIM-Lab
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to a uniform expansion of the visible tumor. As shown in two recent publications [13,14], 
this is a promising approach and had the potential for use in adaptive radiotherapy. 
 
 
 

 

 

 

 

 

 

 

 

Figure 2: Clinical segmentation is used to define the clinical 
target volume (CTV, white dashed line) as a 2 cm expansion of 
the segmentation. In clinical settings, 60 Gy is prescribed to the 
CTV. We propose to personalize the prescription dose (Bottom) 
to account for tumor infiltration and segmentation uncertainty 

 
 
§ Tumor segmentation and Normative atlases 
 

We have created tools for automatic tumor segmentation as well as normative atlases 
that are useful in the semi-automated segmentation process. In diagnosing brain tumors, 
gadolinium contrast agent is usually injected to patients to highlight enhancing tumor in T1-
weighted magnetic resonance imaging (MRI). Gadolinium, or other contrast agents, help 
localize the tumors and are used in surgery planning, treatment design and prognosis 
prediction.  Automatic segmentation tools, such as those based on “subtraction images” 
(comparing post contrast with pre-contrast) can tools incorrectly identify normal enhancing 
areas (such as large vessels) are being tumor tissue. In order to quantify”normal” 
enhancement to correctly distinguish tumors, we took the approach of constructing 
normative atlases, from patient images as normal patients are typically not given contrast.  
These normative enhancement maps are publicly available 
[https://www.nitrc.org/projects/stamp_atlases ]and have been used by a number of 
groups (including ours) in conjunction with automatic segmentation algorithms to remove 
false positive and clean up segmentations. 

 
 
 

https://www.nitrc.org/projects/stamp_atlases
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Figure 3:  The STAMP T1d atlas (top row) and its maximum 
intensity projection (MIP) rendering quantifying locations and 
extent of enhancement of a (virtual) average normal. 

 
 
 
§ QIN Challenges and collaborative projects 
 

The MGH group participated in several QIN challenges and project last year, 
including DSC challenge, ADC challenge, T1 mapping challenge and the breast response 
challenge.  

 
QIN DSC Challenge: Though DSC-MRI perfusion is of well-known benefit for the 

evaluation of brain tumors, clinical translation has been hampered by a lack of confidence in 
the consistency of the derived relative cerebral blood volume (RCBV) and cerebral blood 
flow (CBF) values across sites and platforms. This multi-site and multi-platform study, for 
which the same patient data set was analyzed, demonstrated substantial consistency in 
RCBF across software sites and platforms and the ability of each to distinguish low-grade 
from high-grade tumor. In addition, a single RCBV threshold was identified for which all 
platforms maintained good accuracy. This study was summarized in an abstract and 
accepted as an oral presentation at ISMRM. A full manuscript is under preparation. The 
MGH software package, used to produce the results of the challenge is available as an open-
source module for 3D Slicer [7]. The results of our module showed excellent concordance 
with other commercial packages and performed similarly in distinguishing high grade 
tumors from low grades. 

 
QIN ADC Challenge: Reproducibility of diffusion metrics is essential given the 

increasing role quantitative diffusion weighted imaging plays in diagnosis and treatment 
monitoring. Here we examined the variability in apparent diffusion coefficient (ADC) 
measures resulting from different post-processing software implementations utilized by 
researchers across the NCI Quantitative Imaging Network. Agreement between the majority 
of implementations was good; typical biases for in vivo ADC measures of 2-3%, and lower 
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biases in phantom scans. Higher deviations (above 5%) detected among individual 
implementations and scanner-generated parametric maps highlighted inadequacies in meta-
data and post-processing parameters that need to be addressed in multi-site study settings. 
This study was summarized in an abstract and submitted to the ISMRM. A full manuscript is 
under preparation. Again, our open source implementation provided excellent results and 
showed good concordance with other software packages. 

 
QIN T1 Mapping Challenge: This multicenter study examined variability in T1 

quantification by testing common inversion-recovery spin echo and variable flip angle 
(VFA) protocols, as well as T1 mapping methods used by participating sites, using a 
phantom with known T1 values. We found field strength dependence of the accuracy, and 
platform dependence of the repeatability of T1 measurements with the common VFA 
protocol. Accuracy for site-specific protocols was influenced by site, while repeatability, by 
type of protocol. Our findings suggest modified IR methods and VFA protocols with 
multiple flip angles and B1 correction as good methods for repeatable T1 measurement.  

 
Lung volume interval challenge: As members of in the PET/CT working group, 

MGH was an active participant for the lung volume interval challenge and developed a data 
visualization platform to analyze the effectiveness of five institutions’ automatic lung nodule 
segmentation algorithms.  

 
Our visualization platform 

[http://cbibop.cloudapp.net:3838/Interval_Lung_Challenge_ShinyApp/ ] has been used 
effectively during the group meetings for the statistical data analysis. Examples of the 
analyses techniques supported by our system are found below. As seen in Figure 4, there 
were nodules with substantial disagreement between segmentation algorithms while in other 
cases, there was good agreement. As seen in Figure 5, there was a range of Dice agreements 
reflecting the range of agreement. The AUCs using percent change as a measure of 
malignancies were somewhat consistent between the groups. Our visualization also 
demonstrated the difficulty of recognizing segmentation failures without a human observer. 
A manuscript is forthcoming on the results derived from this visualization platform. 
 
 

 

 

 

 

 

 

 

 

http://cbibop.cloudapp.net:3838/Interval_Lung_Challenge_ShinyApp/
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Figure 4: Low agreement (left) and high agreement (right) 
segmentations of lung nodules from the Lung Interval Volume 
Challenge. 
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Figure 5: a.) Pairwise Dice coefficients b.) AUC of percent tumor volume 
change as a measure of malignancy. 

 
 

 
Lung feature challenge: Working with the data from the lung feature challenge, we 

analyzed the results of 800+ unique features generated from lung nodule segmentations by 
seven different institutions’ feature extraction software. The group developed a lexicon of 
radiomics feature and categorized the features are being related to shape, size, texture, 
margins and local and global shape descriptors. We found that many texture features were 
highly and unexpectedly correlated with segmentation volume, either because of errors in 
coding implementation or because of errors in methodology. Additionally, we found that the 
choice to include highly-textured border regions between tumor tissue and normal tissue can 
significantly change the values of certain texture features. As such, any texture features that 
purport to measure texture across an entire tumor area may only reflect this highly-textured 
area on the tumor border. The development of ground-truth “phantoms” for certain texture 
features will help achieve standardization across the field of texture features. We used a 
graphical model approach to visualize the correlation between features from different sites 
as well as features from different classes, as seen in Figure 6. 
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This work resulted in a recent publication in the Tomography QIN special issue [15] 

 
  

 
 
 
 
 
 
 
 
 
 

Figure 6: Graphical model showing correlation between features by feature 
type and site. 

 
  
§ DCE repeatability study 
 

We used two separate double-baseline studies of patients with glioblastoma to 
evaluate the repeatability of pharmacokinetic variables (ktrans, Ve) derived from DCE-MRI 
images. Patients (n = 45) were scanned twice without any intervening treatment between 3-4 
days apart, and then pharmacokinetic parameter maps were generated using in-house 
software. We found that using individually-calibrated AIFs and variable flip-angle T1 
mapping was less repeatable than using population AIFs and static T1 values, despite the 
theoretical accuracy benefits these patient-specific methods could achieve. Furthermore, we 
found that values obtained from methods using individual AIFs did not correlate well with 
methods using population-based AIFs, and that individual AIF methods generated higher 
median ktrans values than population-AIF methods. This suggests that one’s chosen method 
for deriving pharmacokinetic parameters has a significant effect on those parameters’ 
accuracy.  

 
We have also found that many publically-available software packages for DCE-MRI 

parameter mapping do not perform well on the publically available QIBA digital reference 
object (a software phantom). We have identified several ways in which flawed 
implementations of parameter-mapping software can lead to systematically biased values for 
ktrans and Ve. These biases are compounded in noisy, real-world data, likely leading to 
inaccurate results in practical and clinical settings. We have developed a Python package 
and a C++ module in the open-source program 3D Slicer that addresses these 
implementation errors. It performs better than existing proprietary software packages on 
both noisy and non-noisy ground truth data. We also developed open source software that 
produces perfect results on the QIBA digital reference object (a software phantom), and the 
best results in a multi-institutional study (to be published shortly). A manuscript is 
forthcoming detailing the specific changes to our software’s parameter-optimization 
methods. 
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§ Applications of imaging tools and pipeline to clinical trials and retrospective data 
analysis. 
 

Finally, our suite of tools was applied to a phase II study of Tivozanib in recurrent 
glioblastoma. In this study, we a recurrent glioblastoma population (N=10, median age 62 
(51-72)) receiving tivozanib who underwent baseline and follow-up MRIs (once every 4-
week cycle). We reported that tivozanib was well tolerated but most patients progressed 
rapidly, and the majority of patients had little changes in tumor enhancement and perfusion 
imaging suggesting that his anti-angiogenic agent had limited impact on brain tumor 
vasculature. This paper is in press in the Journal of Neuro-Oncology [6]. 

PLANS FOR NEXT YEAR 
  

We are in the final year of our current participation in the QIN. For the next year, we 
will continue to apply our tools to ongoing clinical studies of GBMs. We will disseminate 
our research through publication and presentations and making available our tools as open-
source packages to the community. We hope to continue to be part of the QIN in the future. 
 

LIST OF REFERENCES 
 

1. Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B. Advanced 
magnetic resonance imaging of the physical processes in human glioblastoma. Cancer 
Res. 2014;74(17):4622-37. doi: 10.1158/0008-5472.CAN-14-0383. PubMed PMID: 
25183787; PubMed Central PMCID: PMC4155518. 

2. Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, 
Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, 
Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, 
Wen PY, Sorensen AG, Jain RK. Improved tumor oxygenation and survival in 
glioblastoma patients who show increased blood perfusion after cediranib and 
chemoradiation. Proceedings of the …. 2013. PubMed PMID: 24190997. 

3. Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, Eichler 
AF, Drappatz J, Hochberg FH, Benner T, Louis DN, Cohen KS, Chea H, Exarhopoulos 
A, Loeffler JS, Moses MA, Ivy P, Sorensen AG, Wen PY, Jain RK. Phase II study of 
cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase 
inhibitor, in patients with recurrent glioblastoma.2010;28(17):2817-23. doi: 
10.1200/JCO.2009.26.3988. PubMed PMID: 20458050; PubMed Central PMCID: 
PMCPMC2903316. 

4. Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJ, Rosen BR, Sorensen AG, 
Jain RK. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. 
Nature reviews Clinical oncology. 2014;11(10):566-84. doi: 
10.1038/nrclinonc.2014.126. PubMed PMID: 25113840. 

5. Emblem KE, Mouridsen K, Bjornerud A, Farrar CT, Jennings D, Borra RJ, Wen PY, Ivy 
P, Batchelor TT, Rosen BR, Jain RK, Sorensen AG. Vessel architectural imaging 



60 
 

identifies cancer patient responders to anti-angiogenic therapy. Nat Med. 
2013;19(9):1178-83. doi: 10.1038/nm.3289. PubMed PMID: 23955713; PubMed Central 
PMCID: PMC3769525. 

6. Kalpathy-Cramer J, Chandra V, Da X, Ou Y, Emblem KE, Muzikansky A, Cai X, Douw 
L, Evans JG, Dietrich J, Chi AS, Wen PY, Stufflebeam S, Rosen B, Duda DG, Jain RK, 
Batchelor TT, Gerstner ER. Phase II study of tivozanib, an oral VEGFR inhibitor, in 
patients with recurrent glioblastoma. Journal of neuro-oncology. 2016. doi: 
10.1007/s11060-016-2332-5. PubMed PMID: 27853960. 

7. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, 
Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 
3D Slicer as an image computing platform for the Quantitative Imaging Network. 
Magnetic Resonance Imaging. 2012;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. 
PubMed PMID: 22770690; PMCID: PMC3466397. 

8. Prah MA, Stufflebeam SM, Paulson ES, Kalpathy-Cramer J, Gerstner ER, Batchelor TT, 
Barboriak DP, Rosen BR, Schmainda KM. Repeatability of Standardized and 
Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma. AJNR Am J 
Neuroradiol. 2015;36(9):1654-61. doi: 10.3174/ajnr.A4374. PubMed PMID: 26066626; 
PubMed Central PMCID: PMC4567906. 

9 Prust MJ, Jafari-Khouzani K, Kalpathy-Cramer J, Polaskova P, Batchelor TT, Gerstner 
ER, Dietrich J. Standard chemoradiation for glioblastoma results in progressive brain 
volume loss. Neurology. 2015;85(8):683-91. doi: 10.1212/WNL.0000000000001861. 
PubMed PMID: 26208964; PubMed Central PMCID: PMC4553035. 

10. Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, Nelson 
SJ, Gerstner E, Alexander B, Goldmacher G, Wick W, Vogelbaum M, Weller M, 
Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Pope WB, Yang D, Chung C, 
Knopp MV, Cha S, van den Bent MJ, Chang S, Yung WK, Cloughesy TF, Wen PY, 
Gilbert MR, Jumpstarting Brain Tumor Drug Development Coalition Imaging 
Standardization Steering C. Consensus recommendations for a standardized Brain 
Tumor Imaging Protocol in clinical trials. Neuro Oncol. 2015;17(9):1188-98. doi: 
10.1093/neuonc/nov095. PubMed PMID: 26250565; PubMed Central PMCID: 
PMC4588759. 

11. Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjornerud A, Vangel MG, 
Gerstner ER, Schmainda KM, Paynabar K, Wu O, Wen PY, Batchelor T, Rosen B, 
Stufflebeam SM. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility 
Contrast MRI in Glioblastoma Patients. Transl Oncol. 2015;8(3):137-46. doi: 
10.1016/j.tranon.2015.03.002. PubMed PMID: 26055170; PubMed Central PMCID: 
PMC4486737. 

12. Jafari-Khouzani K. MRI upsampling using feature-based nonlocal means approach. 
IEEE Trans Med Imaging. 2014;33(10):1969-85. doi: 10.1109/TMI.2014.2329271. 
PubMed PMID: 24951680. 



61 
 

13. Le M, Delingette H, Kalpathy-Cramer J, Gerstner E, Batchelor T, Unkelbach J, Ayache 
N., MRI Based Bayesian Personalization of a Tumor Growth Model., IEEE Trans Med 
Imaging. 2016 Apr 29. [Epub ahead of print], PMID: 28113549 

14. Le M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, 
Ayache N., Personalized Radiotherapy Planning Based on a Computational Tumor 
Growth Model. IEEE Trans Med Imaging. 2016 Nov 8. [Epub ahead of print], PMID: 
27845656 

15. Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, Echegaray S, 
Rubin D, McNitt-Gray M, Lo P, Sieren JC, Uthoff J, Dilger SK, Driscoll B, Yeung I, 
Hadjiiski L, Cha K, Balagurunathan Y, Gillies R, Goldgof D., Radiomics of Lung 
Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative 
Imaging Features., Tomography. 2016 Dec;2(4):430-437. PMID: 28149958 

LIST OF QIN PUBLICATIONS AND PRESENTATIONS 
 
1. Gutman DA, Dunn WD Jr, Cobb J, Stoner RM, Kalpathy-Cramer J, Erickson B., Web 

based tools for visualizing imaging data and development of XNATView, a zero 
footprint image viewer. Front Neuroinform. 2014 May 27;8:53, eCollection 2014. 
(PMID: 24904399) 
 

2. Reuter M, Gerstner ER, Rapalino O, Batchelor TT, Rosen B, Fischl B., Impact of MRI 
head placement on glioma response assessment. J Neurooncol. 2014 May;118(1):123-9. 
Epub 2014 Feb 25. PMID: 24566765 
 

3. Obuchowski NA, Reeves AP, Huang EP, Wang XF, Buckler AJ, Kim HJ, Barnhart HX, 
Jackson EF, Giger ML, Pennello G, Toledano AY, Kalpathy-Cramer J, Apanasovich 
TV, Kinahan PE, Myers KJ, Goldgof DB, Barboriak DP, Gillies RJ, Schwartz LH, 
Sullivan AD; (for the Algorithm Comparison Working Group). Quantitative imaging 
biomarkers: A review of statistical methods for computer algorithm comparisons,  Stat 
Methods Med Res. 2014 Jun 11.[Epub ahead of print] (PMID: 24919829) 
 

4. Obuchowski NA, Barnhart HX, Buckler AJ, Pennello G, Wang XF, Kalpathy-Cramer J, 
Kim HJ, Reeves AP; for the Case Example Working Group., Statistical issues in the 
comparison of quantitative imaging biomarker algorithms using pulmonary nodule 
volume as an example, Stat Methods Med Res. 2014 Jun 11.[Epub ahead of 
print](PMID: 24919828) 
 

5. Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B., Advanced 
magnetic resonance imaging of the physical processes in human glioblastoma. Cancer 
Res. 2014 Sep 1;74(17):4622-37. PMID: 25183787 
 

6. Jafari-Khouzani K., MRI upsampling using feature-based nonlocal means approach. 
IEEE Trans Med Imaging. 2014 Oct;33(10):1969-85. Epub 2014 Jun 12, PMID: 
24951680 
 



62 
 

7. Eichner C, Jafari-Khouzani K, Cauley S, Bhat H, Polaskova P, Andronesi OC, O. 
Rapalino, R. Turner, L. L. Wald, S. Stufflebeam, and K. Setsompop, “Slice Accelerated 
Gradient-Echo Spin-Echo Dynamic Susceptibility Contrast Imaging With Blipped 
CAIPI for Increased Slice Coverage”, Magnetic Resonance in Medicine, vol. 72, no. 3, 
pp. 770-778, 2014. 
  

8. Mohamed AS, Ruangskul MN, Awan MJ, Baron CA, Kalpathy-Cramer J, Castillo R, 
Castillo E, Guerrero TM, Kocak-Uzel E, Yang J, Court LE, Kantor ME, Gunn GB, 
Colen RR, Frank SJ, Garden AS, Rosenthal DI, Fuller CD., Quality Assurance 
Assessment of Diagnostic and Radiation Therapy-Simulation CT Image Registration for 
Head and Neck Radiation Therapy: Anatomic Region of Interest-based Comparison of 
Rigid and Deformable Algorithms, Radiology. 2014 Nov 7:132871. [Epub ahead of 
print] 
 

9. Prah MA, Stufflebeam SM, Paulson ES, Kalpathy-Cramer J, Gerstner ER, Batchelor TT, 
Barboriak DP, Rosen BR, Schmainda KM., Repeatability of Standardized and 
Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma., AJNR Am 
J Neuroradiol. 2015 Jun 11. [Epub ahead of print] PMID: 26066626 
 

10. Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjørnerud A, Vangel MG, 
Gerstner ER, Schmainda KM, Paynabar K, Wu O, Wen PY, Batchelor T, Rosen B, 
Stufflebeam SM., Repeatability of Cerebral Perfusion Using Dynamic Susceptibility 
Contrast MRI in Glioblastoma Patients., Transl Oncol. 2015 Jun;8(3):137-46. PMID: 
26055170 
 

11. Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, Nelson 
SJ, Gerstner E, Alexander B, Goldmacher G, Wick W, Vogelbaum M, Weller M, 
Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Pope WB, Yang D, Chung C, 
Knopp MV, Cha S, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, 
Gilbert MR; Jumpstarting Brain Tumor Drug Development Coalition Imaging 
Standardization Steering Committee, Consensus recommendations for a standardized 
Brain Tumor Imaging Protocol in clinical trials., Neuro Oncol. 2015 Sep;17(9):1188-98. 
Epub 2015 Aug 5., Review., PMID: 2625056 
 

12. Prust MJ, Jafari-Khouzani K, Kalpathy-Cramer J, Polaskova P, Batchelor TT, Gerstner 
ER, Dietrich J., Standard chemoradiation for glioblastoma results in progressive brain 
volume loss. Neurology. 2015 Aug 25;85(8):683-91. Epub 2015 Jul 24, PMID: 
26208964 
 

13. Ding Y, Hazle JD, Mohamed ASR,Frank SJ, Hobbs BP, Colen RR, Gunn BG, Wang J, 
Kalpathy-Cramer J, Garden AJ, Lai SY, Rosenthal DI, Fuller CD, Intravoxel Incoherent 
Motion Imaging Kinetics during Chemoradiotherapy for Human Papillomavirus-
Associated Squamous Cell Carcinoma of the Oropharynx: Preliminary Results from a 
Prospective Pilot Study" accepted for publication in NMR in Biomedicine 
 



63 
 

14. Menze BH,  Jakab A, Bauer S, Kalpathy-Cramer J, et al, The Multimodal Brain Tumor 
Image Segmentation Benchmark (BRATS)," in Medical Imaging, IEEE Transactions on, 
vol.34, no.10, pp.1993-2024, Oct. 2015 
 

15. Lê M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, 
Ayache N. Bayesian Personalization of Brain Tumor Growth Model. In Frangi, 
Hornegger, Navab, and Wells, editors, MICCAI - Medical Image Computing and 
Computer Assisted Intervention - 2015, Lecture Notes in Computer Science - LNCS, 
Munich, Germany, October 2015. Springer 
 

16. Kalpathy-Cramer J, Napel S, Goldgof D, Zhao B, QIN multi-site collection of Lung CT 
data with Nodule Segmentations, QIN multi-site collection of Lung CT data with Nodule 
Segmentations http://dx.doi.org/10.7937/K9/TCIA.2015.1BUVFJR7 
 

17. Ou Y, Zollei L, Da X, Retzepi K, Grant PE, Murphy SN, Kalpathy-Cramer J, Gollub 
RL, Field of View Normalization for Neuroimaging Analysis: Necessity, Approach and 
Effects. NeuroImage. (Under Review) 
 

18. Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, 
Napel S, A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results 
from a Multi-institutional Study. (in revision at J. Digital. Imaging) 
 

19. Awan M, Kalpathy-Cramer J, Gunn GB, Beadle BM, Garden AS, Phan J, Holliday E, 
Jones WE, Maani E, Patel A, Choi J, Clyburn V, Tantiwongkosi B, Rosenthal DI, Fuller 
CD, Prospective assessment of an atlas-based intervention combined with real-time 
software feedback in contouring lymph node levels and organs-at-risk in the head and 
neck: Quantitative assessment of conformance to expert delineation, Practical Radiation 
Oncology, 20 December 2012 (PMID: 23853674) 

20. Pinho MC, Polaskova P, Kalpathy-Cramer J, Jennings D, Emblem KE, Jain RK, Rosen 
BR, Wen PY, Sorensen AG, Batchelor TT, Gerstner ER., Low Incidence of 
Pseudoprogression by Imaging in Newly Diagnosed Glioblastoma Patients Treated 
With Cediranib in Combination With Chemoradiation. Oncologist. 2013 Dec 5. [Epub 
ahead of print], (PMID: 24309981) 

21. Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, 
Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, 
Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, Wen 
PY, Sorensen AG, Jain RK. Improved tumor oxygenation and survival in glioblastoma 
patients who show increased blood perfusion after cediranib and chemoradiation. Proc 
Natl Acad Sci., 2013 Nov 19; 110(47):19059-64. (PMID: 24190997) 

22. Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW, Quantitative 
Imaging Network Data Sharing and Competitive Algorithm Validation Leveraging The 
Cancer Imaging Archive, Translational Oncology, Transl Oncol. 2014 Feb 1;7(1):147-52. 
eCollection 2014 Feb. (PMID: 24772218) 
 

http://dx.doi.org/10.7937/K9/TCIA.2015.1BUVFJR7


64 
 

23. Huang W, Li X, Chen Y, Li X, Chang MC, Oborski MJ, Malyarenko DI, Muzi M, 
Jajamovich GH, Fedorov A, Tudorica A, Gupta SN, Laymon CM, Marro KI, Dyvorne 
HA, Miller JV, Barbodiak DP, Chenevert TL, Yankeelov TE, Mountz JM, Kinahan PE, 
Kikinis R, Taouli B, Fennessy F, Kalpathy-Cramer J., Variations of dynamic contrast-
enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: 
a multicenter data analysis challenge. Transl Oncol. 2014 Feb 1;7(1):153-66. eCollection 
2014 Feb. (PMID: 24772219) 

 
24. Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B., Advanced 

magnetic resonance imaging of the physical processes in human glioblastoma. Cancer 
Res. 2014 Sep 1;74(17):4622-37. PMID: 25183787 

 
25. Awan M, Dyer BA, Kalpathy-Cramer J, Bongers E, Dahele M, Yang J, Walker GV, 

Thaker NG, Holliday E, Bishop AJ, Thomas CR Jr, Rosenthal DI, Fuller CD., Auto-
segmentation of the brachial plexus assessed with TaCTICS - A software platform for 
rapid multiple-metric quantitative evaluation of contours., Acta Oncol. 2014 Oct 3:1-5. 
[Epub ahead of print] 

 
26. Mohamed AS, Ruangskul MN, Awan MJ, Baron CA, Kalpathy-Cramer J, Castillo R, 

Castillo E, Guerrero TM, Kocak-Uzel E, Yang J, Court LE, Kantor ME, Gunn GB, Colen 
RR, Frank SJ, Garden AS, Rosenthal DI, Fuller CD., Quality Assurance Assessment of 
Diagnostic and Radiation Therapy-Simulation CT Image Registration for Head and 
Neck Radiation Therapy: Anatomic Region of Interest-based Comparison of Rigid and 
Deformable Algorithms, Radiology. 2014 Nov 7:132871. [Epub ahead of print] 

 
27. Shoultz-Henley S, Garden AS, Mohamed AS, Sheu T, Kroll MH, Rosenthal DI, Brandon 

Gunn G, Hayes AJ, French C, Eichelberger H, Kalpathy-Cramer J, Smith BD, Phan J, 
Ayoub Z, Lai SY, Pham B, Kies M, Gold KA, Sturgis E, Fuller CD.Prognostic value of 
pre-therapy platelet elevation in oropharyngeal cancer patients treated with 
chemoradiation. Int J Cancer. 2015 Sep 28.[Epub ahead of print] PMID: 26414107  

 
28. Ding Y, Hazle JD, Mohamed ASR,Frank SJ, Hobbs BP, Colen RR, Gunn BG, Wang J, 

Kalpathy-Cramer J, Garden AJ, Lai SY, Rosenthal DI, Fuller CD, Intravoxel Incoherent 
Motion Imaging Kinetics during Chemoradiotherapy for Human Papillomavirus-
Associated Squamous Cell Carcinoma of the Oropharynx: Preliminary Results from a 
Prospective Pilot Study" NMR Biomed. 2015 Oct 9. [Epub ahead of print] PMID: 
26451969 

 
29. Yankeelov TW, Mankoff DA, Schwartz LH, Lieberman FS, Buatti JM, Mountz JM, 

Erickson BJ, Fennessy FMM, Huang W, Kalpathy-Cramer J, Wahl RL, Linden HM, 
Kinahan P, Zhao B, Hylton NM, Gillies RJ, Clarke L, Nordstrom R, Rubin DL, 
Quantitative Imaging in Cancer Clinical Trials, Clinical Cancer Research, Clin Cancer 
Res. 2016 Jan 15;22(2):284-90,  PMID: 26773162 

 
30. Messer JA, Mohamed AS, Hutcheson KA, Ding Y, Lewin JS, Wang J, Lai SY, Frank SJ, 

Garden AS, Sandulache V, Eichelberger H, French CC, Colen RR, Phan J, Kalpathy-
Cramer J, Hazle JD, Rosenthal DI, Gunn GB, Fuller CD., Magnetic resonance imaging of 



65 
 

swallowing-related structures in nasopharyngeal carcinoma patients receiving IMRT: 
Longitudinal dose-response characterization of quantitative signal kinetics., Radiother 
Oncol. 2016 Feb;118(2):315-22. Epub 2016 Jan 28. PMID: 26830697 

 
31. MD Anderson Head and Neck Cancer Symptom Working Group., Beyond mean 

pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: 
Dose-volume correlates of chronic radiation-associated dysphagia (RAD) after 
oropharyngeal intensity modulated radiotherapy. Radiother Oncol. 2016 Feb;118(2):304-
14, Epub 2016 Feb 17. PMID: 26897515 

 
32. Holliday E, Fuller CD, Kalpathy-Cramer J, Gomez D, Rimner A, Li Y, Senan S, Wilson 

LD, Choi J, Komaki R, Thomas CR Jr., Quantitative assessment of target delineation 
variability for thymic cancers: Agreement evaluation of a prospective segmentation 
challenge. J Radiat Oncol. 2016 Mar;5(1):55-61. Epub 2015 Nov 3., PMID: 27570583 

 
33. Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, 

LaViolette PS, Oborski MJ, O'Sullivan F, Abramson RG, Jafari-Khouzani K, Afzal A, 
Tudorica A, Moloney B, Gupta SN, Besa C, Kalpathy-Cramer J, Mountz JM, Laymon 
CM, Muzi M, Schmainda K, Cao Y, Chenevert TL, Taouli B, Yankeelov TE, Fennessy F, 
Li X, The Impact of Arterial Input Function Determination Variations on Prostate 
Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: 
A Multicenter Data Analysis Challenge, Tomography. 2016 Mar;2(1):56-66, PMID: 
27200418 

 
34. Joint Head and Neck Radiotherapy-MRI Development Cooperative, Dynamic contrast-

enhanced MRI detects acute radiotherapy-induced alterations in mandibular 
microvasculature: prospective assessment of imaging biomarkers of normal tissue 
injury, Sci Rep. 2016 Aug 8;6:29864. PMID: 27499209  

 
35. Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, Napel 

S., A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results 
from a Multi-institutional Study. J Digit Imaging. 2016 Aug;29(4):476-87, PMID: 
26847203 

 
36. Hansen MB, Tietze A, Kalpathy-Cramer J, Gerstner ER, Batchelor TT, Østergaard L, 

Mouridsen K., Reliable estimation of microvascular flow patterns in patients with 
disrupted blood-brain barrier using dynamic susceptibility contrast MRI, J Magn Reson 
Imaging. 2016 Nov 30. [Epub ahead of print] PMID: 27902858 

 
37. Kalpathy-Cramer J, Chandra V, Da X, Ou Y, Emblem KE, Muzikansky A, Cai X, Douw 

L, Evans JG, Dietrich J, Chi AS, Wen PY, Stufflebeam S, Rosen B, Duda DG, Jain RK, 
Batchelor TT, Gerstner ER., Phase II study of tivozanib, an oral VEGFR inhibitor, in 
patients with recurrent glioblastoma, J Neurooncol. 2016 Nov 16. [Epub ahead of print], 
PMID: 27853960 

 



66 
 

38. Le M, Delingette H, Kalpathy-Cramer J, Gerstner E, Batchelor T, Unkelbach J, Ayache 
N., MRI Based Bayesian Personalization of a Tumor Growth Model., IEEE Trans Med 
Imaging. 2016 Apr 29. [Epub ahead of print], PMID: 28113549 

 
39. Le M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, Ayache 

N., Personalized Radiotherapy Planning Based on a Computational Tumor Growth 
Model. IEEE Trans Med Imaging. 2016 Nov 8. [Epub ahead of print], PMID: 27845656 

 
40. Farahani K, Kalpathy-Cramer J, Chenevert TL, Rubin DL, Sunderland JJ, Nordstrom RJ, 

Buatti J, Hylton N, Computational challenges and Collaborative projects in the NCI 
Quantitative Imaging Network, Tomography, Tomography. 2016 Dec;2(4):242-249. 

 
41. Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, Echegaray S, 

Rubin D, McNitt-Gray M, Lo P, Sieren JC, Uthoff J, Dilger SK, Driscoll B, Yeung I, 
Hadjiiski L, Cha K, Balagurunathan Y, Gillies R, Goldgof D., Radiomics of Lung 
Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative 
Imaging Features., Tomography. 2016 Dec;2(4):430-437. PMID: 28149958 



67 
 

U01 CA140207: Quantitative Volume and Density Response 
Assessment: Sarcoma and HCC as a Model 

 
Columbia University Medical Center, New York 

  
Lawrence H Schwartz, M.D. and Binsheng Zhao, D.Sc. 

 
INTRODUCTION 

 
When new cancer treatments are being tested, longitudinal images of patients’ tumors 

are used to determine whether the treatment is working. The current uni-dimensional RECIST 
method and standard cut-off values for response assessment are outdated. The goal of our 
research is to develop new response parameters and assessment criteria for cancer treatment 
based on CT imaging of changes in tumor volume and density (e.g., necrosis fraction). This 
study will seek a proof of concept using two types of tumors (HCC and sarcoma) in which 
RECIST is known to correlate poorly with tumor response to treatment and clinical outcome. 
HCC is one of the most common malignancies worldwide, and sarcomas, though rare, carry 
the same molecular alterations as many other heterogeneous cancers; they are the classic 
cancer studied in drug discovery.  

 
Our specific aims are therefore, 

Aim 1a. To establish the reproducibility of volumetric and unidimensional measurements 
obtained with our advanced segmentation algorithms, using images from the SARC 
011 multicenter clinical trial. 

Aim 1b. To continue the development of the different algorithms over the time of the grant to 
reduce the fraction of lesion measurements that must be corrected by a radiologist. 

Aim 2.  To validate new imaging response parameters and criteria based on tumor volume, 
necrosis volume, and their combination using data from SARC 011 (sarcoma) and 
CALGB 80802 (HCC) trials. 

Aim 3.  To explore the correlation between the new imaging biomarker with biochemical 
biomarkers and the added value of the combination of both in the prediction of 
patient survival. 

 
The proposed research will first develop criteria based on quantitative imaging 

biomarkers (tumor volume and necrosis fraction) and then compare the predictive value of 
these criteria to the current clinical standard. Gaining evidence that volume and necrosis are 
early biomarkers of response or progression would aid clinical trials in the development of 
cancer drugs/treatments and help match patients to the treatments that work best for them. The 
new criteria will be widely applicable to clinical practice because CT is the most common 
imaging modality for cancer, the new quantification algorithms run on popular imaging 
platforms, and this method will enhance radiologist productivity. 
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By the time we complete this project, we will deliver the followings:  
 
• new response metrics and criteria, based on CT imaging of changes in tumor volume 

and necrosis fraction, for better assessing sarcoma and HCC treatments,  
• robust computer algorithms for segmentation of solid tumors including tumors in the 

lungs, liver and lymph nodes,  
• insight into the variability that exists in measuring these new response parameters 

using the computer-aided methods, and  
• a CT image dataset containing radiologists’ mark-up of tumors made from a subset of 

the studying data.  
 

Success of our study will help resolve the urgent, unmet need for early and more 
accurate response assessment methods in the study of targeted therapies in drug discovery 
by rapidly translating the new imaging biomarkers into clinical trials. 

 
DISCUSSION OF PROGRESS 

 
 There has been no modification to the Specific Aims stated in the original 
application. For this reporting period, from October 2015 to today, we continued moving 
forward our project smoothly. The following subsections will briefly address our 
accomplishments in the previous year.  

 
§ Segmentation algorithms  

 
We completed the development and validation of the segmentation algorithm for 

lymph nodes, the last algorithm proposed to be developed and optimized in our grant. We are 
now writing up a manuscript to report this technique. To date, we have successfully developed 
all of the three proposed algorithms; one for lung lesions, one for liver metastases, and one 
for lymph node metastases. 

 
Clinical correlative studies: We proposed two clinical trial studies to validate our 

new volumetric and density-based response assessment method.  
  
 Clinical Trial Study #1: SARC 011, a Phase II study of patients with 
recurrent or refractory Ewing’s sarcoma treated with IGF1R antibody (R1507) 

 
This study is completed and now published in JCO (1).  

 
  Clinical Trial Study #2: CLAGB 80802, a Phase III randomized study of 

sorafenib plus doxorubicin versus sorafenib in patients with advanced HCC 

To date, we completed the collection of HCC CLAGB 80802 patient data and 
tumor measurements as well.  In total, we measured 207 patients (681 scan time points). 
We are in the process of final data analysis. 
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§ Image-based response assessment platform 
 

We developed and published a prototype imaging platform for efficient assessment of 
tumor response to therapies using uni-, bi-dimensional and volumetric techniques (2) (Figure 
1). We integrated our segmentation algorithms developed for lung, liver and lymph node 
lesions into this platform to validate the volumetric response assessment technique in clinical 
trials and clinical practice. Our current imaging platform offers standard functions to view, 
manipulate and process CT and MR images. We have used this platform for measuring tumor 
volumes in various clinical studies including SARC 011 and CALGB 80802.  

 
 
 
 
 
 
 
 
 
 
§  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Home-grown imaging platform for efficient assessment of tumor response 
to therapies 

 
 

Collaborations within other teams at QIN 
 

Dr. Lawrence Schwartz, the contact PI of this grant, served as the Chair for QIN 
Executive Committee (EC) and organized monthly t-cons for the EC since May 2016.  
 

Challenges: After successful collaboration with the other QIN teams on the Lung 
Segmentation Challenge (3), we continue actively participating in all CT- and PET-related 
challenge projects within the Image Analysis & Performance Metrics Working Group 
(IAPMWG) – PET/CT subgroup of QIN. 
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PET tumor segmentation challenge: We participated in the PET Tumor Segmentation 
Challenge and completed the three phases’ experiments, DRO report (measuring max SUV, 
SUV_std, etc), and H&N lesion segmentation, using our home-developed PET lesion 
segmentation algorithm. This work is now accepted for publication in Medical Physics (4).  

 
NIST Lung Nodule Change Challenge:  We participated in the Lung Nodule Change 

Challenge to study variations in measuring tumor and tumor change over time. There are six 
QIN team participants (Moffitt/USF, MGH, Columbia, Stanford, UCLA, and U Michigan). We 
completed nodule segmentations for 100 NIST patients (50 cancer subjects and 50 non-cancer 
subjects) on diagnostic and 1-year follow up CT scans and provided both computer-generated 
and radiologist’s edited tumor volumes. This project is currently under intensive data reviewing 
and analysis. We have participated in weekly or bi-weekly t-con discussions.  
 

CT Feature Comparison Study: This project was among eight QIN sites (Columbia, Stanford, 
MGH, Moffitt/USF, UCLA, U of Iowa, Princess Margaret Cancer Centre, U Michigan). Using the Moist 
Run Lung Segmentation Challenge project’s results (i.e., 52 segmented lung lesions x 3 algorithms x 3 
repeats/algorithm), we computed the quantitative image features implemented at each site from each of 
these segmentations to explore features’ definitions and repeatability between repeated runs of each 
algorithm, and reproducibility across segmentation algorithms. The comparison was performed through 
the C-BIBOP, the informatics platform being developed by the joint U24 grant from the four QIN sites, 
MGH, Columbia, Stanford andMoffitt/USF. Our preliminary result is now published (5). 

 
§ Joint grants 

 
After receiving a joint U24 grant entitled “Informatics Tools for Optimized Imaging 

Biomarkers for Cancer Research & Discovery” by the four QIN sites, as a result of the 
continued collaboration on the radiomic feature development and comparison study 
mentioned above, the 8 QIN sites jointly submitted an R24 grant application entitled 
“Community based terminology standards for quantitative imaging (radiomics) metadata to 
advance precision medicine” in middle November 2016. The purpose of this R24 grant is to 
develop terminology standards for radiomic features to reduce the chaos, enable identification 
of best features for particular uses and ultimately improve the repeatability and reliability of 
these features and ensure better predictive models that use them. Our portal will provide access 
to datasets of images, features, terminology and tools for comparison and visualization of 
feature. We will also encourage community-based participation in this effort by providing a 
means for participants to suggest new features, relationships to known semantics and clinical 
terminology. 

 
In the past year, in addition to participating in the U24 regular bi-week t-cons and 

worked together with the other three sites to build this informatics system, we also participated 
in the regular t-cons to develop and submit the new R24 grant. 
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PLANS FOR NEXT YEAR 
 

During the 1st No-Cost Extension year (next year), 
1. We plan to publish our lymph node segmentation algorithm. The manuscript is under 

development. 
2. We will integrate the necrosis (in HCC) segmentation algorithm into our Weasis-based 

response assessment imaging platform.   
3. We will complete the analysis of CALGB 80802 HCC data and publish this study.  
4. We will submit 100 de-identified cases (CT images) collected from the CALGB 80802 

HCC clinical study to the NCI public database. 
5. We will continue actively participating in the existing and new QIN challenge 

initiatives to which our expertise, algorithms and datasets can contribute. 
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INTRODUCTION 

 
The underlying hypothesis of this project is that combining multiple quantitative 

image-derived parameters, whether different quantities from the same modality, multiple 
modalities or multiple tracers, can provide a more robust prediction and assessment of 
treatment response than a single imaging metric. Substantial effort has been focused on 
developing single-modality metrics and assessing and reducing their variability. Modalities 
investigated include DWI and ADC MRI, FDG and FLT PET/CT, In-111 octreotide and Y-
90 and SPECT/CT. In MRI we have studied the stability and reproducibility of DWI and ADC 
mapping. In PET/CT we have investigated the variability of SUVmax and SUVpeak and 
proposed an index of defect heterogeneity. In SPECT/CT we have studied the stability of 
SPECT systems and developed protocols for calibrating quantitative SPECT imaging that 
reduce instrumentation-related sources of variability. We have investigated the variability of 
In-111 octreotide uptake in normal organs and investigated the reliability of simplified 
methods for determining normal organ VOIs based on simplified ROIs. We have validated 
Quantitative Y-90 bremsstrahlung SPECT reconstruction methods by phantom studies and in 
vivo comparison to Y-90 PET.  Integrating multiparametric and multimodality images 
requires registration of images obtained with a variety of technical parameters including field-
of-view, matrix size, and scan planes. These differences result in a challenging registration 
problem. We have developed a registration method based on a 3D wavelet transformation and 
nonlinear affine transformation that performs 3D resampling and interpolations of the 
reference and target radiological images without loss of information. The registration method 
was validated using synthetic and multiparametric MRI and PET/CT images applied to breast 
and prostate cancer data.  

  
 

PROGRESS OVER THE PREVIOUS YEAR 
 
§ Specific Aim 1: Optimize and characterize individual methods 
 

We have initial results on our newly developed Radiomic-Informatic modeling of 
radiological imaging.  Multiparametric radiological imaging is a very effective technique for 
diagnosis of breast cancer in patients. Conventionally, radiologists produce diagnosis using a 
set of carefully designed features defined by BI-RADS. However, the process of manually 
engineering features is difficult, time consuming, requires expert knowledge and leads to a 
limited set of features. Moreover, “hidden” features such as complex interaction between 
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different MRI images are not visually perceivable and hence are not extracted by radiological 
experts. In order to automatically extract useful features or representations directly from the 
raw multiparametric radiological imaging datasets, we developed an advanced unsupervised 
machine learning algorithm called the multidimensional imaging radiomics-geodesics 
(MIRaGe) and shown in Figure 1.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Demonstration of the MIRaGe algorithm in a breast cancer patient.  
A. Multiparametric radiological parameters from the patient. B. The resulting 
Contribution scattergram and informatics structure in feature space from the 
MIRaGe algorithm. C. The multidimensional histogram from the radiomic-
geodesic distance metrics between each radiological parameter. The geodesic 
distances are represented using heights of different bars as well as color-coded 
from blue (low) to red (high). 

 
 
 
We investigated seventy-six breast tumor patients (mean age = 52, age range = 24-80) 

who underwent 3T MRI breast imaging were used to test the ability of the MIRaGe algorithm 
to extract feature representations relevant to the task of classification of breast tumors as 
benign or malignant. The MRI parameters used were T1-weighted imaging, T2-weighted 
imaging, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted 
imaging (DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGF) 
from multiparametric breast MRI datasets of all the patients by learning their intrinsic 
manifold representations. The radiomics-geodesics features (RGF) represented as RGF(Ia,Ib) 
characterize the complex interactions between all possible image pairs (Ia,Ib) in the 
multiparametric MRI. The feature selection and classification model (tIso-SVM) was 
implemented using a combination of Student’s ttest, Isometric feature mapping (Isomap) and 
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support vector machine (SVM) algorithms. The tIso-SVM model first filtered the set of top N 
significant features using Student’s ttest and transformed them into a two-dimensional feature 
space using the Isomap algorithm and then trained the support vector machine classifier on 
the two-dimensional feature space to classify patients as benign or malignant. The tIso-SVM 
model outputs the most informative RGFs as well as the trained model for the given task, 
validated using k-fold and leave one out cross validation.   We found that new graph theory 
metrics resulted in the average path length (mean RGF) and the graph diameter (maximum 
RGF) for the contribution scattergrams were obtained at 24.9±7.7 and 72.6±20.6 for benign 
patients and 25.3±5.5 and 69±15.1 for malignant patients in image distance units respectively. 
The tIso-SVM model was built using all the RGFs extracted by the MIRaGe algorithm. The 
tIso-SVM model successfully classified malignant lesions from benign lesions with a 
sensitivity of 93% and a specificity of 91%. The tIso-SVM model identified a total of 50 RGFs 
as the most informative features for classification of malignant from benign breast lesions. 
The top 50 RGFs primarily involved the contribution scattergram edges or paths between 
different dynamic contrast enhanced images.  Therefore, we developed the novel MIRaGe 
feature extraction algorithm for automatic feature extraction from multiparametric 
radiological imaging and demonstrated the power of the MIRaGe algorithm at automatically 
discovering useful feature representations directly from the raw multiparametric MRI data. In 
conclusion, the MIRaGe informatics model provides a powerful tool with applicability in 
cancer diagnosis and a possibility of extension to other kinds of pathologies. 

 
We are performing a comprehensive repeatability test of FDG PET/MR and PET/CT. We 

have accrued 8 patients to date.  The patient type and data tables are shown on the next page.  
We have whole tumor data, but not voxel by voxel data, or subtumor region analyses. Also 
are working on PEAK analyses.  The test and re test are highly correlated for both PET and 
MRI. The ADC means are reasonably reproducible. We have not yet reached our target 
accrual to perform Bland Altmann analyses or tests of significance. We note one case in which 
the ADC values were not measurable due to image artifacts. These assessments continue.  

 
We have developed and evaluated methods for comparing quantitative methods using 

patient that do not require a gold standard. A paper on these methods and validation with 
simulated data was published in Physics in Medicine and Biology (publication 6, below). 
 

As described in previous years, we have investigated simplified methods for defining 
VOIs to estimate activity concentration in normal organs. These methods are important in the 
context of quantitative response metrics as normal organ activities play a role as threshold or 
image QC metrics for metrics such as PERCIST 1.0. A paper on this was just accepted for 
publication in Medical Physics. 

 
We have developed resampling methods for estimating the precisions of quantities 

estimated from images such as SUVmean, SUVmax, etc. A series of three papers on this work 
have been written. One was submitted to IEEE Transactions on Medical Imaging. Revisions 
and resubmission were required, and these are in process. Drafts of two other manuscripts are 
written and undergoing coauthor review. 
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Table 1: Results from an initial set of 8 patients. 

 
 
 
§ Specific Aim 2: Develop methods to optimally combine methods 
 

A key premise of this grant is that the ability to accurately characterize different tissue 
types and response to therapy in cancer requires information from multiple radiological 
modalities. For example, multiparametric and multimodality radiological imaging methods, 
such as, magnetic resonance imaging (MRI), computed tomography (CT), and positron 
emission tomography (PET), provide multiple types of tissue contrast and anatomical 
information for tissue and response characterization. We have developed and applied multi-
parameter MRI to breast cancer used a novel machine-learning model based nonlinear 
dimension reduction methods to integrate multiparametric MRI data (T1WI, T2WI, ADC, pre- 
and post-dynamic contrast enhanced) for improved tissue characterization of breast tissue with 
demonstrated excellent diagnostic ability. Moreover, we have moved these type of tissue 
characterization to include our advanced Radiomic discussed above. Discussion: A patent for 
this method has been granted.US Patent 9,256,966; Inventors: Jacobs MA, Akhbardeh A.  
Multiparametric Non-linear dimension reduction methods for segmentation and classification 
of radiological images.  

  
In addition, we investigated the integration of Mammography, ultrasound(US) and 

MRI modalities used for breast cancer detection.  The BIRADS lexicon provides a set of 
descriptors that facilitates consistent structure for assessment and reporting of breast lesions. 
To predict recurrence, oncologists use OncotypeDX, which stratifies patients into three risk 
groups: low, medium, and high]. We hypothesize that there is a relationship between imaging 
features defined by BIRADS and the genetic profile of cancers. To test this, we developed a 
machine-learning non-linear dimension reduction(NLDR) algorithm with embedded 
informatics. Using these techniques, we compare BIRADS descriptors to the OncotypeDX for 
recurrence prediction. 

SUBJECT SULmax-V1 SULmax-V2 SULmax-V1 SULmax-V2 ADCmean-V1 ADCmean-V2 HISTOLOGY

1 10.02 9.88 12.59 11.72 - - rectal adenocarcinoma

2 1.97 1.4 2.31 2.41 1382.1 816.8 rectal carcinoma

3 16.24 22.36 20.78 19.77 1227.2 1221.7
squamous cell carcinoma of the 

cervix 

4 9.63 8.21 8.76 7.83 1160.2 1002.4 endometrioid adenocarcinoma

5 13.24 12.3 14.36 13.42 1184.1 1146.6
squamous cell carcinoma of the 

cervix 

6 13.67 15.95 14.18 14.98 943.32 944.36
squamous cell carcinoma of 

rectovaginal septum

7 14.73 14.9 15.11 14.17 890.57 925.8
squamous cell carcinoma of the 

cervix

8 11.99 14.63 15.48 16.19 1063.2 1082.2 carcinoma of the cervix

PETCT PETMR
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Methods: Patients(n=48) who underwent diagnostic breast imaging, were ER+, with 

available OncotypeDX were tested with the algorithm.  The clinical and BIRADS parameters 
for mammography included breast density, asymmetry, microcalcifications(morphology, 
distribution), mass(size, shape, margins, density) and architectural distortion.  Ultrasound 
parameters included mass presence, size, echogenicity, shape, margins, vascularity, and 
orientation. These parameters were assigned numerical values to reflect relative suspicion of 
each descriptor.   RESULTS: There were 24 patients with low(0-17), 13 with intermediate(18-
31), and seven with high risk(>31) scores from OncotypeDX.  The top predictors were 
mammographic beast density, and mass margins and US directional size.  These predictors 
resulted in a significant AUC(0.86±0.07). The mammographic tumor sizes in high risk groups 
were larger(1.9±0.58cm) compared to the low-risk group(1.38±0.58cm) with similar results 
for US measurements in the radial(2.7±1.2cm vs.1.2±0.8cm), AP (1.8±0.76cm vs. 
0.98±0.61cm) and antiradial (2.1±1.3cm vs.1.0±0.58cm) dimensions. We created a 
visualization informatics heat map detailing the contribution of each parameter.   The resulting 
risk map is shown in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The NLDR heat map demonstrates the stratification of the mammographic 
and ultrasound parameters correlated with the OncotypeDX score for advanced 
clinical decision support system for precision medicine. 

 
 
 
§ Specific Aim 3. Apply methods to data from clinical trials 
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As described in previous reports, we have been studying repeatability of 
quantitative 18F-3'-fluoro-3'-deoxy-L-thymidine (18F-FLT) positron emission tomography 
(PET). A paper on this has been recently accepted in  has potential as a non-invasive tumor 
biomarker for the objective assessment of response to treatment. To guide interpretation of 
these quantitative data, we evaluated the repeatability of 18F-FLT PET as part of a multi-
center trial involving patients with high grade glioma. A paper on this has been accepted for 
publication in the Journal of Nuclear Medicine (see item 4). 18F-FLT PET was performed on 
10 patients with recurrent high grade glioma at 5 different institutions within the Adult Brain 
Tumor Consortium trial ABTC1101. Data were acquired according to a double baseline 
protocol in which PET was repeated within 2 days of each other with no intervening treatment. 
On each of the 2 imaging days, dedicated brain PET was performed at 2 time-points, 1 and 3 
hours after 18F-FLT administration. Tumor standardized uptake values (SUVs) and related 
parameters were measured at a central lab using various volumes-of-interest: isocontour at 
30% of the maximum pixel (SUVmean_30%); gradient-based segmentation 
(SUVmean_gradient); the maximum pixel (SUVmax); and a 1 mL sphere at the region of 
highest uptake (SUVpeak). Repeatability coefficients (RCs) were calculated from the relative 
differences between corresponding SUV measurements obtained on the 2 days. RCs for tumor 
SUVs were: 22.5 % (SUVmean_30%), 23.8 % (SUVmean_gradient), 23.2 % (SUVmax) and 
18.5 % (SUVpeak) at 1 hour post injection. Corresponding data at 3 hours were: 22.4, 25.0, 
27.3 and 23.6 %. Normalizing the tumor SUV data with reference to a background region 
improved repeatability and the most stable parameter was the tumor-to-background (T-to-B) 
ratio derived using SUVpeak (RC 16.5 %). SUV quantification of 18F-FLT uptake in glioma 
has an RC in the range of 18-24 % when imaging began 1 hour after 18F-FLT administration. 
The volume-of-interest methodology had a small but not negligible influence on repeatability, 
with the best performance obtained using SUVpeak. Although changes in 18F-FLT SUV 
following treatment cannot be directly interpreted as a change in tumor proliferation, we have 
established ranges beyond which SUV differences are likely due to legitimate biological 
effects. 

 
We have applied the no-gold-standard methods described in publication 6 to patient data 

in the context of comparing methods for evaluating segmentation methods for estimating 
metabolic tumor volume in FDG PET/CT. A paper on this was submitted to the Journal of 
Medical Imaging. The initial reviews were positive, and we have addressed the concerns and 
resubmitted the paper. 

 
We have developed methods for automatic segmentation of bone lesions that uses 

clustering methods and joint information from bone SPECT and CT scans. An abstract on this 
was submitted to the SNMMI annual meeting. 
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COLLABORATIONS WITHIN THE NETWORK 
 

Two publications (8 and 9) have resulted from previous QIN collaborations. 
 

PLANS FOR NEXT YEAR 
 

 This project is halfway through a no-cost extension. A renewal has been submitted 
that builds on the methods developed her and applies them to the problem of monitoring 
metastasis of prostate cancer to bones. We will continue to adapt methods to this problem and 
are planning a resubmission for March. 

 
We will complete the PET-MRI clinical repeatability at Washington University. We will 

use these data to evaluate the repeatability of various single and multi-modality metrics for 
tumor response.  

 
We have two drafts of papers on the use of bootstrap resampling methods to evaluate the 

precision and accuracy of VOI definition methods. We plan to submit this paper in the next 
two months. 

 
We will continue studies on quantitative bone imaging in the context of response to 

therapy of metastatic prostate cancer.  
 

PUBLICATIONS AND PRESENTATIONS FROM QIN 
INVOLVEMENT 

 
1. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. 

Expert Review of Precision Medicine and Drug Development. 2016;1(2):207-226 
2. Parekh V, Jacobs MA. Multidimensional Imaging Radiomics-Geodesics: A Novel 

Manifold Learning Based Automatic Feature Extraction Method for Diagnostic 
Prediction in Multiparametric Imaging. Med Phys. 2016 Jun;43(6):3373-3374 

3. Ahlawat S, Baig A, Blakeley JO, Jacobs MA, Fayad LM. Multiparametric whole-body 
anatomic, functional, and metabolic imaging characteristics of peripheral lesions in 
patients with schwannomatosis. J Magn Reson Imaging. 2016 Oct;44(4):794-803 

4. Blakeley JO, Xiaobu Ye, Duda DG., Halpin C, Bergner AL., Muzikansky A, Merker 
VL., Gerstner ER. Fayad LM; Ahlawat, S; Jacobs MA, Jain RK, Zalewski C, Dombi 
E, Widemann B, Plotkin S.  Efficacy and biomarker study of bevacizumab for hearing 
loss due to neurofibromatosis type 2 associated vestibular schwannomas. Journal of 
Clinical Oncology. 2016;34(14):1669-75. 

5. Lodge MA, Holdhoff M, Leal JP, Bag AK, Nabors LB, Mintz A, Lesser GJ, Mankoff 
DA, Desai AS, Mountz JM, Lieberman FS. Repeatability of 18F-FLT PET in a Multi-
Center Study of Patients with High Grade Glioma. Journal of Nuclear Medicine, 
accepted 2016 Sep 29, J Nucl Med. 

6. Jha AK, Caffo B, Frey EC. A no-gold-standard technique for objective assessment of 
quantitative nuclear-medicine imaging methods. Physics in medicine and biology. 
2016 Mar 15;61(7):2780. 

7. Malyarenko DI, Newitt D, J Wilmes L, Tudorica A, Helmer KG, Arlinghaus 
LR,Jacobs MA, Jajamovich G, Taouli B, Yankeelov TE, Huang W, Chenevert TL. 
Demonstration of nonlinearity bias in the measurement of the apparent diffusion 
coefficient in multicenter trials. Magn Reson Med. 2016 Mar;75(3):1312-23 
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8. Malyarenko DI, Wilmes L, Arlinghaus LR Jacobs MA, Huang W, Helmer KG, Taouli 
B, Yankeelov TE, Newitt D, Chenevert TL.  QIN DAWG Validation of Gradient 
Nonlinearity Bias Correction in Quantitative Diffusion Weighted Imaging. 
Tomography, 2016 2(4) 396-405  

 
PATENTS 

 
US Patent Application 20160132754: Inventors: Akhbardeh A., Jacobs MA. An integrated real-

time tracking system for normal and anomaly tracking and the methods therefore Date 
Awarded: May 12, 2016. 

US Patent Application 20160171695: Inventors Jacobs MA, Akhbardeh, A. Advanced Treatment 
Response Prediction Using Clinical Parameters and Advanced Unsupervised Machine 
Learning: The Contribution Scattergram, filed on July 31, 2014, Date Awarded: June 
23, 2016.  

 
Patent Cooperation Treaty Applications 
PCT: Inventors: Jacobs MA, Parekh V. (IRIS):Informatics Radiomics Integration System: A novel 

informatics radiomics method for the integration of many types of data for classification into 
different groups.   
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INTRODUCTION 
 
§ Dynamic contrast-enhanced MRI (DCE-MRI) 

 
DCE-MRI is one of the mostly used functional imaging modalities for evaluation of 

cancer response to treatment.  It involves collection of serial T1-weighted images before, 
during, and after the IV injection of a contrast reagent (CR).  It mostly measures tissue 
perfusion and permeability.  DCE-MRI evaluations of cancer therapy response frequently use 
empirically quantitative (semi-quantitative) approaches to analyze DCE-MRI signal intensity 
time-course data, such as initial area under the curve (iAUC) [1-3], wash-in rate [4-6], time-
to-peak [6], and enhancement ratio [7].  However, the results obtained are often dependent on 
the MRI scanner [vendor, magnetic field strength (B0)], data acquisition details (pulse 
sequence and parameters), CR dose and/or injection rate, personnel skills, etc., which often 
vary from one institution to another.  This leads to high variability and low reproducibility for 
DCE-MRI monitoring of tumor response to therapy.  Fitting a pharmacokinetic model to 
signal intensity time-course data to extract tissue parameters, quantitative DCE-MRI [8], is a 
more desirable approach.  These “imaging biomarkers” are physiological quantities, in 
principle independent of all of the factors listed above.  The parameters are usually variants 
of: Ktrans, a rate constant for passive CR plasma/interstitium transfer, and ve, the interstitial 
space (extracellular, extravascular) volume fraction (the putative CR distribution volume).  
The Ktrans value is directly related to tumor vessel wall permeability and/or blood flow, while 
the ve parameter may be a complementary measure of tumor cellularity.  However, the 
commonly used Standard Model (SM) (or Tofts model (TM) [8]) for DCE-MRI data analysis 
incorrectly assumes that equilibrium inter-compartmental water exchange kinetics is infinitely 
fast.  This is physically unrealistic, and contrary to more than 40 years of experimental results 
[9,10].  In a DCE-MRI study of 92 suspicious breast lesions [11], we found this erroneous 
assumption (for transcytolemmal water exchange) causes pharmacokinetic parameter 
underestimation.  Remarkably, for Ktrans this is significant for only malignant lesions.  This is 
the major source of the limited TM DCE-MRI specificity for breast cancer detection [9-11] 
and of pharmacokinetic parameter dependence on CR dose and dose delivery rate [12].  Such 
dependencies violate the definitions of the Ktrans and ve parameters. 

 
Shutter-Speed Model for Pharmacokinetic DCE-MRI Data Analysis: We have 

recently developed the “Shutter-Speed” Model (SSM) for DCE-MRI data analysis to account 
for finite inter-compartmental water exchange kinetics [13,14].  It removes the CR dose 
delivery rate- and/or dose-dependence mentioned above [12].  With the 92 breast lesion cohort 
[11], we have shown that at 100% sensitivity, tumor region-of-interest (ROI) SSM Ktrans has 
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significantly (p = 0.02) higher specificity than TM Ktrans in breast cancer diagnosis.  
This success is because the TM Ktrans underestimation is uniquely amplified for malignant 
tumors.  In a meta-population analysis of137 breast lesions [15], we found that the excellent 
SSM Ktrans discriminative ability is independent of MRI instrument vendor 
(platform/software), B0, pulse sequence and parameters, and the CR used – the essence of a 
quantitative imaging biomarker.  Similar success for prostate cancer diagnosis has been found 
using the SSM DCE-MRI method [16]. 

   
The finite water exchange effects in DCE-MRI pharmacokinetic modeling, at least on 

Ktrans estimation, become more prominent (and thus the greater extent of SM or TM Ktrans 
underestimation) with increased CR extravasation [9,10].  Once the vascular shutdown begins 
to occur with successful cancer therapy, it can be expected that DCE-MRI shutter-speed 
effects will be significantly diminished.  The potential major impact of the SSM DCE-MRI 
method for assessment of response to cancer therapy is embedded in two rational hypotheses: 
(a) by correcting SM or TM DCE-MRI pharmacokinetic parameter underestimation, the SSM-
derived parameters have greater dynamic ranges and thus, will be more sensitive to therapy-
induced changes; and (b) vascular changes as a result of treatment will lead to amplified 
decreases in shutter-speed effects, which can be measured with a novel imaging biomarker, 
such as ΔKtrans[= Ktrans(SSM) – Ktrans(TM)].  In Specific Aim 1, SSM DCE-MRI will be 
compared with TM DCE-MRI, and tumor size measurement for early prediction of treatment 
response and assessment of residual cancer following therapy completion.  Breast cancer and 
soft tissue sarcoma will be studied for this aim. 

 
Currently, there is no widely adopted standard DCE-MRI protocol in data acquisition 

and processing for assessment of therapy response.  As in the case of TM DCE-MRI, accuracy 
and reproducibility of parameters derived from SSM DCE-MRI may be influenced by choices 
of data acquisition and processing schemes, such as arterial input function (AIF) 
quantification [17,18].  In Specific Aim 2, the effects of DCE-MRI acquisition duration, 
temporal resolution (tRes), AIF quantification, and MR system platform on imaging 
biomarkers will be evaluated within the context of monitoring therapy response.  These are 
necessary steps in validating SSM DCE-MRI as a reliable and reproducible tool for assessing 
therapeutic response before it can be standardized across multiple sites. 
 

Informatics Approach to Software Development: For quantitative imaging 
biomarkers to be used in clinical practice for assessment of cancer response to therapy, 
software framework is needed to integrate imaging biomarkers with other patient-specific 
information including clinical data and molecular biomarkers.  This will enable the translation 
of novel imaging techniques into clinical practice. Different interfaces should be presented to 
clinicians and imaging scientists, fitting into their respective workflows. The software 
framework proposed for our Specific Aim 3 will leverage the cancer Biomedical Informatics 
Grid (caBIG®), an information network created by NCI that enables researchers, clinicians 
and patients in the cancer community to share data and knowledge. A caBIG compliant 
approach to this aim will enable us to more readily disseminate the advances made during the 
course of this project to the larger cancer community. 
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DISCUSSION OF PROGRESS 
 

§ Specific Aim 1: Compare SSM DCE-MRI with TM DCE-MRI, and tumor size for 
early prediction and evaluation of cancer therapy response  
 

DCE-MRI Evaluation of Soft Tissue Sarcoma Response to Preoperative 
Chemoradiotherapy:  Twenty patients (15 male, 5 female; mean age: 49 years; age range: 
25 – 69 years) with histologically confirmed, ≥ 5 cm, intermediate to high grade extremity 
soft-tissue sarcomas, who were planned for preoperative systemic therapy and surgical 
resection, provided written informed consent to participate in a longitudinal research MRI 
study that included DCE-MRI.  The tumors were located in the thigh (n = 13), knee (n = 3), 
and calf (n = 4). 

 
Twelve patients were treated with our institutional standard chemoradiotherapy 

regimen consisting of ifosfamide and epirubicin (IE) combined with preoperative 
hypofractionated radiation.  Each 21-day chemotherapy cycle included epirubicin 30 
mg/m2/day I.V. infusion over 3-5 minutes on days 1-4 (epirubicin was omitted during cycle 
2)  and ifosfamide 2.5 g/m2/day  I.V. infusion over 90 minutes on days 1-4 along with  I.V. 
hydration, mesna, anti-emetics, and filgrastim or pegfilgrastim.  Chemotherapy was planned 
for 3 preoperative and 3 postoperative cycles.  Surgery was planned for week 9 and 
chemotherapy was resumed approximately 4 weeks after surgery. External beam radiation 
therapy was initiated concomitantly at the start of cycle 2 of chemotherapy and consisted of 
28 Gy administered as 8 fractions of 3.5 Gy each over 10 days.  The other eight patients were 
treated on a phase I clinical trial that included the addition of sorafenib (200 mg daily, 400 mg 
daily, or 400 mg twice daily), a vascular endothelial growth factor receptor (VEGFR) tyrosine 
kinase inhibitor, to the same chemoradiotharapy regimen, except that 3 rather than 4 days of 
chemotherapy was administered.  Sorafenib administration began 2 weeks before the first 
cycle of chemotherapy [19].  The clinicopathologic characteristics of the patients are 
presented in Table 1. 

 
The research MRI exams were performed before treatment (Visit 1, V1), after two 

weeks of sorafenib-only treatment in the phase I trial or after the first cycle of IE treatment in 
the standard regimen (V2), and after completion of preoperative therapy but prior to surgery 
(V3).  Several patients dropped out of the MRI study at V2 and V3 due to various personal or 
medical reasons, resulting in completed MRI exams in 16 subjects (9 on the standard regimen 
and 7 on the sorafenib trial) at V2 and 12 subjects (7 on the standard regimen and 5 on the 
sorafenib trial) at V3. 
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Table 1: Clinicopathologic characteristics of study patients. 
 

 
 
DCE-MRI Data Acquisition:  All the research MRI studies were performed using a 

3T Siemens Tim Trio system with the body coil as the radio frequency (RF) transmitter and a 
phased-array body matrix coil (combined with a phased-arrayed spine matrix coil) as the RF 
receiver.  Following scout and multi-slice axial T2-weighted MRI with fat-suppression to 
locate the tumor, 3D sagittal DCE-MRI data acquisition with fat-suppression was conducted 
using a RF-spoiled gradient-echo sequence, covering the spatial extent of the tumor.  The 
acquisition parameters included 10o flip angle, 1.5/6.0 ms TE/TR, a parallel imaging 
acceleration factor of two, 24 - 36 cm FOV, 448 x 224 in-plane matrix size, and 5.0 mm slice 
thickness.  The total acquisition time for a DCE-MRI series was ~10 minutes for 36 - 80 
frames of image volume of 12 - 30 slices each with 6.8 – 16.0 s temporal resolution.  The 
variations in number of frames, number of slices per volume, and temporal resolution were 
due to differences in tumor size.  The I.V. injection of the contrast agent (CA), Gd(HP-DO3A) 
[ProHance (Bracco Diagnostic Inc.)] (0.1 mmol/kg at 2 mL/s), by a programmable power 
injector was timed to commence after acquisition of five frames of baseline image volumes, 
followed by a 20-mL saline flush. 
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 For quantification of the pre-CA T1 value, T10, proton density-weighted images were 
acquired immediately before and spatially co-registered with the DCE-MRI scan [20,21].  The 
data acquisition pulse sequence and parameters were the same as for the DCE-MRI scan 
except for 5o flip angle and 50 ms TR. 
 

Pharmacokinetic Analysis of DCE-MRI Data: The soft-tissue sarcoma region of 
interest (ROI) was manually drawn by an experienced musculoskeletal radiologist on 
contiguous post-CA (approximately 120 – 180 s after CA injection) DCE-MRI image slices 
that cover the entire spatial extent of the CA-enhanced tumor.  The radiologist also measured 
the longest diameter (LD) of the tumor from these images based on the RECIST guidelines 
[22].  Table 1 lists the tumor LD values prior to treatment (V1). 

 
 For each DCE-MRI data set, the voxel signal intensity time-courses within the multi-
slice tumor ROIs were subjected to pharmacokinetic analysis using a two-compartment-three-
parameter fast-exchange-regime (FXR)-allowed version of the Shutter-Speed model (SSM).  
The three fitting parameters of the FXR-SSM are Ktrans (rate constant for plasma/interstitium 
CA transfer), ve (volume fraction of extravascular and extracellular space), and τi (mean 
intracellular water molecule lifetime).  The τi parameter is used to account for the finite cross-
cell membrane water exchange kinetics.  The CA intravasation rate constant, kep, was 
calculated as kep = Ktrans/ve. 
 

Used for pharmacokinetic data analysis, the voxel T10 values were determined by 
comparing signal intensities between the spatially registered proton density-weighted images 
and the averaged baseline images from the DCE series [20,21].  The arterial input function 
(AIF), the plasma CA concentration time-course, was determined for each individual DCE-
MRI data set through direct measurement.  An ellipsoidal ROI was placed within the clearly 
visible femoral artery on a post-CA DCE image slice that was approximately through the 
center of the artery.  The ROI signal intensity time-course was recorded and then converted 
to blood R1 (≡ 1/T1) time-course using the steady-state signal intensity equation for RF-spoiled 
gradient-echo sequence, which was further converted to plasma CA concentration time-course 
using a linear relationship between R1 and CA concentration with an CA relaxivity of 3.8 mM-

1s-1 at 3T, a fixed pre-CA blood R1 of 0.61 s-1 [23], and a hematocrit value set at 0.45 [21,24]. 
 
Following the FXR-SSM fittings of the DCE-MRI data, voxel-based multi-slice 

parametric maps of the derived pharmacokinetic parameters were generated.  The mean 
pharmacokinetic parameter value of the whole tumor was calculated by averaging the returned 
voxel parameter values.  For each imaging metric, including pharmacokinetic parameters and 
RECIST LD, the percent changes for later MRI visits relative to V1, V21% (V2 relative to 
V1) and V31%, were calculated. 
 

Pathological Analysis:  Pathological analysis of the post-therapy resection specimens 
of each soft-tissue sarcoma was performed under light microscopy using standard pathologic 
procedures.  The pathologist estimated the amount of viable tumor and the percentage of 
necrosis. Pathologic response to preoperative chemoradiotherapy was classified as either 
optimal (≥ 95% necrosis) or sub-optimal (< 95% necrosis). 
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Statistical Analysis:  Descriptive statistical analysis was conducted to summarize the 
pharmacokinetic parameter and RECIST LD values at each MRI visit, as well as the percent 
changes of these imaging metrics relative to baseline (V1).  In assessing the abilities of MRI 
metrics (absolute values and percent changes) for evaluation of therapy response, the 
univariate logistic regression (ULR) analysis was used to correlate V1, V2, V3 MRI metrics, 
and the corresponding V21% and V31% changes, with dichotomous pathologic response 
endpoints, optimal vs. sub-optimal.  A ULR C statistics value, equivalent to the area under the 
Receiver Operating Characteristic curve (ROC AUC), in the range of 0.9 – 1.0 indicates an 
excellent marker; 0.8 – 0.9, a good marker; 0.7 – 0.8, a fair marker; < 0.7, a poor marker.  Two 
sample t test was used to evaluate the differences in imaging metrics and the corresponding 
percent changes between the two response groups, as well as between the two cohorts that 
received standard chemoradiotherapy and sorafenib plus standard chemoradiotherapy, 
respectively.  Fisher’s exact test was used to determine if there was association between 
therapy regimen (with and without sorafenib) and response status (optimal vs. sub-optimal).  
Pearson’s correlation analysis was used to examine relationships between MRI metrics and 
necrosis percentage (NP) of the resection specimens. 

Results and Discussion:  As shown in Table 1, pathological analyses of the surgical 
specimens revealed that 9 (45%) patients (5 on the standard regimen and 4 on the sorafenib 
trial) achieved optimal response to preoperative chemoradiotherapy, while the other 11 
patients (7 on the standard regimen and 4 on the sorafenib trial) had sub-optimal response.  
There was no statistically significant (Fisher’s exact test, P = 1.0) association between the use 
of sorafenib and pathologic response status, nor any significant (two sample t test, P > 0.2) 
differences in any MRI metric (RECIST LD and pharmacokinetic parameters) at any visit and 
the corresponding percent changes between the two cohorts on different therapy regimens.  
Therefore, we combined the two patient cohorts in assessing the utility of quantitative DCE-
MRI for evaluation of response to preoperative therapy. 

 
Table 2 lists the mean ± SD whole tumor MRI metric values of the optimal and sub-

optimal response groups and the corresponding ULR C statistics values for discrimination of 
the two response groups.  Only the absolute pharmacokinetic parameters and the V21% and 
V31% changes with C ≥ 0.7, representing fair or better imaging biomarkers, are listed.  The 
C value (0.69) for V31% RECIST LD change is presented for the purpose of comparison.  V1, 
V2, and V21% metrics were obtained before and 2-3 weeks after the start of therapy, and thus, 
are potential early predictors of therapy response.  The V2 Ktrans parameter was an excellent 
(C = 0.9) early discriminator of optimal vs. sub-optimal pathologic response, while V1 and 
V2 kep, V1 and V21% Ktrans, V21% ve, and V21% τi  were fair to good (0.7 ≤ C ≤ 0.8) markers 
for early prediction of response.  Compared with good to excellent predictive abilities of the 
Ktrans and kep metrics, the V21% change in RECIST LD was just a fair early predictor of 
response.  Several pharmacokinetic metrics obtained after the completion of 
chemoradiotherapy, including V3 kep, Ktrans and ve, and V31% ve, were good to excellent (0.8 
< C < 1.0) discriminators of optimal vs. sub-optimal response, whereas the V31% change in 
RECIST LD was a poor (C < 0.7) marker of response.  For the imaging metrics listed in Table 
2 with ULR C values ≤ 0.77, including V21% RECIST LD, the differences between the two 
response groups were not statistically significant (P > 0.05).  
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Table 2: Evaluation of pathologic response (optimal vs. sub-optimal response). 

 
 
 
Figure 1 shows examples of V1 – V3 colored tumor Ktrans maps from two soft-tissue 

sarcoma patients who had optimal (1A, left column; Patient 13 in Table 1) and sub-optimal 
(1B, right column; Patient 6 in Table 1) responses, respectively.  The Ktrans color scales are 
different for the two patients, but kept the same throughout the three visits for each patient to 
demonstrate changes in the longitudinal study.  The six panels in Fig. 1 are cropped images 
(without zooming) of Ktrans maps overlaid on post-CA DCE-MRI image slices that were 
approximately through the center of the tumor.  The FOV of DCE-MRI acquisition was kept 
the same for all three visits for each patient.  Thus, it is rather apparent in Fig. 1 that there was 
not only minimal change in the imaging tumor size for each patient but also little difference 
in tumor size change between the optimal and sub-optimal responders in the longitudinal 
study.  However, substantial decrease in tumor Ktrans was observed at V2 compared to V1, and 
continued to V3 for the optimal responder, while there were no noticeable Ktrans changes from 
V1 to V2, and to V3 for the sub-optimal responder. 

 
The Pearson’s correlation coefficient, R, and the P value for statistical significance are 

summarized in Table 3 for correlations between the absolute MRI metric values (and percent 
changes) and the pathologically measured NP values of the resection specimens.  Only the 
imaging metrics with statistically significant (P < 0.05) correlations with NP are listed, except 
for V1, V2, V3, V21%, and V31% RECIST LD metrics which are listed for comparison.  
Figures 2 and 3 show examples of linear regressions between NP and MRI metrics pre-therapy 
(Figure 2), at the early stage of therapy (Figure 2), and post-therapy (Figure 3).  While the 
negative correlations of V1 Ktrans (Fig. 2A) and kep (Figure 2B), V2 Ktrans (Figure 2C), and V3 
Ktrans (Figure 3A), ve (Figure 3B), and kep (Figure 3C) with NP were statistically significant 
(P < 0.05), there were no significant (P > 0.2) associations between any RECIST LD measures 
and NP. 
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Table 3: Pearson’s Correlation of MRI metric with NP 

 
 
This study shows that changes in tumor functions as measured by quantitative DCE-

MRI are superior to changes in RECIST-based imaging tumor size measurement for early 
prediction of soft-tissue sarcoma pathologic response to preoperative therapy, suggesting that 
therapy-induced tumor functional changes precede changes in tumor size.  These results 
suggest that soft-tissue sarcomas with low perfusion and permeability at baseline (pre-
therapy) and/or after one cycle of chemotherapy may have less angiogenesis-induced 
abnormal vasculature, and therefore, better drug delivery and response.  The potential of 
noninvasive functional imaging methods, such as DCE-MRI, for accurate early prediction of 
therapy response may have profound importance in the emerging era of precision and 
personalized medicine.  Early identification of poor responders to a therapy regimen may 
allow rapid adjustment in treatment planning and spare these patients from ineffective 
therapies and the associated toxicities. 
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Figure 1:  Visit 1 (V1, pre-therapy), V2 (after two weeks of sorafenib or one cycle 
of chemotherapy), and V3 (after completion of chemoradiotherapy) color 
parametric Ktrans maps of two soft-tissue sarcomas:  an optimal (A, left column, 
98% necrosis in resection specimen) and a sub-optimal (B, right column, 30% 
necrosis in resection specimen) responder to preoperative therapy.  The maps were 
generated for tumor ROIs defined on multiple contiguous image slices, and the 
ones on the image slices through the central portion of the tumors are displayed 
here.  For each tumor, the Ktrans color scale is kept the same for all three visits for 
easy visualization of therapy-induced changes.  The left and right color scales 
correspond to Ktrans maps in A and B, respectively. 
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Figure 2:  Scatter plots of pathologically measured necrosis percentage (NP) of the 
resection specimen against Ktrans (A) and kep (B) pre-therapy (V1), and Ktrans (C) and 
RECIST LD (D) after two weeks of sorafenib or one cycle of chemotherapy (V2).  The 
straight line in each panel represents a linear regression.  The Pearson’s correlation 
coefficient R and P values for the four imaging metrics are listed in Table 3 and shown 
in each panel.  The data points are from the initial cohort of 20 patients for the V1 metrics 
(A and B) and the 16 patients who continued to have the V2 MRI studies (C and D). 
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Figure 3:  Scatter plots of pathologically measured necrosis percentage (NP) of the 
resection specimen against post-therapy (V3) MRI metrics: (A) Ktrans, (B) ve, (C) kep, and 
(D) RECIST LD.  The straight line in each panel represents a linear regression.  The 
Pearson’s correlation coefficient R and P values for the four imaging metrics are listed 
in Table 3 and shown in each panel.  The data points are from 12 patients who completed 
the V3 MRI studies among the initial cohort of 20 patients. 

 
 
 

The post-therapy (V3) Ktrans, kep, and ve parameters all showed strong negative 
correlations with NP of the resection specimens and were excellent markers (ULR C value > 
0.9) for discrimination of optimal and sub-optimal responders.  However, there was no 
significant correlation between V3 RECIST LD and NP.  This suggests that a functional 
imaging study such as DCE-MRI following preoperative therapy may yield additional 
information potentially useful for surgical planning and subsequent management.  The 
negative correlations of post-therapy Ktrans and kep with NP are expected, as increased tumor 
necrosis is usually associated with decreased perfusion, and thus the DCE-MRI measures of 
microvascular properties.  The similar relationship observed between post-therapy ve and NP 
is, however, intriguing.  With cancer cell death and increased necrosis after the preoperative 
chemoradiotherapy, the ve value is generally expected to increase with increased necrosis.  
The opposite was seen in this study and the probable reason for this is that, though defined as 
extravascular and extracellular volume fraction, ve as measured by DCE-MRI is in principle 
the putative CA distribution volume fraction.  With increased necrosis and decreased viable 
perfused tumor area, the CA distribution volume fraction, which was reported as an averaged 
value over the whole tumor volume, was presumably decreased as well.  It is possible that the 
estimated ve value may actually increase with increased necrosis if the DCE-MRI acquisition 
time is long enough to allow substantial diffusion of CA molecules into the necrotic area. 
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In conclusion, we have demonstrated the utility of quantitative DCE-MRI for early 
prediction and evaluation of soft-tissue sarcoma response to preoperative chemoradiotherapy 
in 20 patients with lower extremity tumors.  Tumor functional changes as measured by 
quantitative DCE-MRI parameters such as Ktrans and kep provided better early prediction of 
pathologic response outcome than the conventional approach of measuring changes in 
imaging tumor size.  Post-therapy DCE-MRI parameters, not the RECIST LD metric, were 
found to significantly correlate with percent necrosis of the resection specimens.  The SSM-
unique τi parameter could be a useful imaging biomarker of metabolic activity that can be 
used to evaluate tumor response to therapy. 
 

DCE-MRI Prediction and Assessment of Breast Cancer Response to Neoadjuvant 
Chemotherapy 
 
Neoadjuvant chemotherapy (NACT) is increasingly used before surgery to treat 

locally advanced breast cancer.  Though pathological response is a good indicator of survival, 
it can be determined only after surgery.  Thus, there is genuine need of noninvasive imaging 
method to monitor and provide early prediction of therapeutic response.  This allows swift 
introduction of alternative treatment for non-responding patients.  In addition, accurate 
assessment of residual disease following NACT completion improves surgery decision 
making such as lumpectomy vs. mastectomy.  Conventionally, tumor size measurement is 
used to evaluate response.  However, changes in tumor size often occur late during treatment 
and may over- or under-estimate residual disease. 

 
Quantitative DCE-MRI has been shown effective for early prediction of breast cancer 

response NACT [21,25].  However, few have investigated the utility of DCE-MRI for 
evaluation of post-NACT residual disease, which can have important implications for surgical 
decision making of mastectomy vs. lumpectomy. In this project we compared quantitative 
imaging biomarkers estimated from pharmacokinetic (PK) analysis of DCE-MRI data with 
imaging tumor size measurement for early prediction of breast cancer NACT response and 
evaluation of residual disease, and the standard Tofts model (TM) with the Shutter-Speed 
model (SSM) PK analysis within the context of response assessment. Here we report our 
results in the first five years of this U01 project using SSM and TM DCE-MRI for assessment 
of breast cancer response to NACT. 

 
A total of 6 breast cancer patients have been recruited for the MRI studies in the past 

year, making a total accrual of 65 subjects thus far.  They all underwent six-eight cycles of 
NACT before surgery.  As shown in the study schema, the research DCE-MRI studies were 
performed at Visit 1 (V1) - before NACT, at Visit 2 (V2) - after first NACT cycle, at Visit 3 
(V3) - at NACT midpoint or before change of drugs, and at Visit 4 (V4) - after NACT 
completion, but before surgery.  At the time of this report, 47 subjects with 49 independent 
primary tumors have completed the longitudinal MRI studies and undergone surgeries, and 
their MRI data have been analyzed and correlated with pathological endpoints. 
 
 DCE-MRI Data Acquisition and Analysis: Axial bilateral DCE-MRI images with 
fat-saturation and full breast coverage were acquired with a 3D gradient-echo TWIST (Time-
resolved angiography WIth Stochastic Trajectories) sequence using a 3T Siemens scanner 
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[21].  The TWIST sequence is a k-space undersampling and data sharing gradient-echo 
sequence delivering both high spatial and temporal resolution for breast DCE-MRI.  Other 
details of DCE-MRI acquisition included 100 flip angle, 2.9/6.2 ms TE/TR, a parallel imaging 
acceleration factor of two, 30-34 cm FOV, 320x320 matrix size, and 1.4 mm slice thickness.  
The total acquisition time was ~ 10 min with 16-20 s temporal resolution.  Gd contrast agent 
(Prohance®) IV injection (0.1 mmol/kg at 2 mL/s) was carried out following acquisition of 
two baseline image volumes.  Tumor ROIs were drawn by experienced radiologists who also 
measured tumor size according to well-established (one dimensional) RECIST guidelines.  
The ROI and pixel-by-pixel (within ROI) DCE time-course data were subjected to both the 
TM and the SSM pharmacokinetic analyses to extract Ktrans, ve, kep (= Ktrans/ve), and τi (from 
SSM only) parameters.  The whole tumor ROI DCE-MRI parameter values were calculated 
by averaging the ROI values from each of the image slices covering the entire tumor, weighted 
by the pixel numbers within the ROI in each image slice. 
 

Pathology and Statistical Analyses:  The pre-therapy biopsy specimens along with 
the post-therapy surgical specimens and lymph nodes were analyzed to evaluate pathological 
responses.  Two pathological metrics [26], RCTD (relative changes in tumor density) and 
RCB (residual cancer burden), were computed.  Pathologic complete response (pCR) is 
defined as RCTD = -1.0 and RCB = 0; non-response (pNR) as RCTD ≥ 0; and partial response 
(pPR) as -1.0 < RCTD < 0.  Non-pCR includes both pPR and pNR and can be further stratified 
into RCB classes based on RCB index values [26]: RCB-I: 0 < RCB ≤ 1.36; RCB-II: 1.36 < 
RCB ≤ 3.28; RCB-III: RCB > 3.28. Since the MRI metrics were measured from the primary 
breast tumor only, the in-breast component of RCB was also computed for correlation with 
the MRI results. 

 
The pathologic endpoints were correlated with the MRI metrics using the univariate 

logistic regression (ULR) analysis to identify imaging biomarkers for early prediction of 
response.  A ULR C statistics value, a measure equivalent to the area under the Receiver 
Operating Characteristic curve (ROC AUC), in the range of 0.9 – 1.0 indicates an excellent 
predictor; 0.8 – 0.9, a good predictor; 0.7 – 0.8, a fair predictor; < 0.7, a poor predictor.   ULR 
analysis and the Spearman’s correlation (SC) were used to correlate MRI metrics with RCB 
ranks and numerical values, respectively. 

 
Results and Discussion:  12 patients achieved pathologic complete response (pCR) 

(RCB = 0) while the other 35 (37 tumors) were non-pCRs.  Table 4 shows the mean ± SD 
values of the PK parameters and the percent changes (e.g., V21%: percent change of V2 
relative to V1) for the two groups and P values for comparison, as well as the ULR C statistics 
values (equivalent to AUC of ROC analysis) for early prediction of pCR vs. non-pCR.  Only 
the metrics at V3 or earlier and with C ≥ 0.7 (indicating fair or better early predictor of 
response) are listed.  RECIST LD and its percent changes are listed for comparison. V21% 
values of several PK parameters were good (C > 0.8) early predictors of response, with 
parameters of both PK models performing equally well.  However, even at NACT midpoint 
(V3), RECIST LD and its percent changes remained poor (C < 0.7) predictors of response.  
Figure 4 shows a column graph of the mean±SD V21% changes of some of these MRI metrics 
for the pCR (black column) and non-pCR (gray column) groups. Figure 5 shows 
representative Ktrans(SSM) and τi color maps of a pCR (1A) and a non-pCR (1B) at V1 and 
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V2.  Compared to the non-pCR, the pCR tumor had considerable decrease in Ktrans and 
increase in τi after only one NACT cycle. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Early prediction of pathologic response (pCR vs. non-pCR) 
 
 

 
Table 5 lists coefficient R and P values for significant (P < 0.05) SC between V4 

imaging metrics and RCB index value, while Table 6 is the Table 2 equivalent for in-breast 
RCB.  After NACT completion, Ktrans and kep of both models and RECIST LD were positively 
correlated with RCB, while τi was negatively associated with in-breast RCB.  The correlation 
was generally strengthened when in-breast RCB was used, as the imaging metrics were from 
the primary tumor only.  

 
Our results thus far suggest that changes in tumor vasculature precede size changes in 

response to NACT.  After only one cycle of NACT, the % changes (relative to baseline) or 
actual values of quantitative DCE-MRI biomarkers can provide excellent early prediction of 
eventual pathologic response to the entire course of NACT, while the RECIST measure of 
tumor size is not a good predictor of response at early time point or even the midpoint of 
NACT (results not shown here).  V21 percent changes of both TM and SSM Ktrans parameters 
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are excellent early predictors, suggesting the systematic differences between the two models 
are of less concern when % change is used for response evaluation.  However, the absolute 
SSM parameter values generally offer larger separations of the two response groups (see Fig. 
4) than their TM counterparts and thus are more sensitive measures of therapeutic response.  
This is most likely due to the incorporation of the exchange effects in the SSM analysis.  
Furthermore, SSM analysis allows quantification of τi, a potential imaging biomarker of 
metabolic activity [21, 27, 28].  The utility of τi is clearly demonstrated in early prediction of 
response (Table 4) and assessment of RCB (Table 6).  The potential of τi as a robust early 
predictor of breast cancer therapy response is further supported by our observation that it is 
the only pre-NACT imaging metric that correlates with RCB with near statistical significance 
(P = 0.053). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5:  Spearman’s Correlation with RCB index value 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Spearman’s Correlation with Breast RCB index value. 
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Figure 4: Column graphs of the mean V21% change values of RECIST LD and several 
DCE-MRI metrics (Ktrans, kep, and τi, estimated from the TM and SSM pharmacokinetic 
analyses) for the pCR (black column) and non-pCR (gray column) patient groups.  The 
error bar represents the standard deviation (SD).  V21%: percent change of MRI metric 
at visit 2 (V2, after one NACT cycle) relative to visit 1 (V1, pre-NACT). 
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Figure 5:  V1 (pre-NACT) and V2 (after one NACT cycle) color parametric maps 
of Ktrans(SSM) and τi from a pCR (A) and a non-pCR (B) breast tumor.  For each 
tumor, the color scale of each DCE-MRI metric is kept the same between the two 
visits for easy visualization of NACT-induced changes.  There are no noticeable 
changes in the parametric maps from V1 to V2 for the non-pCR, while the 
substantial decrease in Ktrans(SSM) and increase in τi are clearly visible for the pCR. 

 
 
§ Specific Aim 2: Investigate the effects of data acquisition and processing schemes on 
DCE-MRI biomarkers within the context of assessing therapy response. 
 

Effects of Temporal Resolution on DCE-MRI Prediction of Breast Cancer Response 
to Therapy  
  

Pharmacokinetic (PK) analysis of high temporal resolution (tRes) DCE-MRI data has 
been shown effective for early prediction of breast cancer response to NACT.  However, high 
tRes breast DCE-MRI studies are currently limited to research and early phase clinical trial 
settings.  Due to the trade-off of tRes and spatial resolution (sRes) in data acquisition and 
clinical needs for bilateral full breast coverage and high sRes, low tRes (60-120 s) breast DCE-
MRI protocols are commonly used in large-scale clinical trials and clinical practice. 
Consequently, because of inaccuracies in PK parameter estimation from low tRes data [29, 
30], semi-quantitative analysis (such as uptake slope, etc.) is often employed for low tRes 
data.  Unlike quantitative PK parameters (such as Ktrans) which are direct measures of 
biological properties, semi-quantitative metrics are directly related to MR signal change, not 
tissue biology, and the values are often dependent on data acquisition protocols and scanner 
platforms and settings, making it difficult to compare studies across institutions.  There has 
been no literature evidence on whether PK analysis of low tRes data can still provide useful 
early prediction of breast cancer therapy response despite expected PK parameter errors.  Here 
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we report our initial results comparing PK analyses of low and high tRes breast DCE-MRI 
data for early prediction of NACT response, using data sets from the same patient cohort.  

 
Methods: 15 breast cancer patients enrolled in a multicenter ISPY-2 NACT trial 

consented to high tRes (14-18 s) research DCE-MRI (2) at visit 1 (V1, before NACT), V2 
(after 1 NACT cycle), V3 (at NACT midpoint), and V4 (after NACT).  They also underwent 
a low tRes (80-100 s) ISPY-2 DCE-MRI protocol at the same four time points.  PK analyses 
of the low and high tRes DCE-MRI data were performed using the Shutter-Speed model 
(SSM) which takes into account transcytolemmal water exchange kinetics.  Tumor mean PK 
parameter values were calculated by averaging tumor voxel parameter values from all slices 
covering the tumor, which included Ktrans, ve, kep (=Ktrans/ve), and the SSM-unique τi 
parameter, mean intracellular water lifetime. 

 
Estimated PK parameters from the low and high tRes data at V1 and V2, and the 

percent changes (V21%, V2 relative to V1) were compared, and correlated with pathologic 
response status (determined from resection specimens after NACT) to assess abilities for early 
prediction of response through ROC analysis.  A nonparametric method was used to compare 
ROC AUC between results from the two tRes data sets.   
 

Results and Discussion: Following NACT, 4 patients had pathologic complete 
response (pCR) while the other 11 had non-pCR.  Table 7 lists tumor mean ± SD values of 
V1, V2, and V21% PK parameters estimated from the high and low tRes data, showing 
statistically significant underestimations of Ktrans, kep, and τi and overestimation of ve from the 
low tRes data compared to the high tRes data. However, there were no significant differences 
in V21% values of these parameters.  For example, Figure 6 shows scatter plots of V2 and 
V21% Ktrans from the high and low tRes data.  Table 8 lists the ROC AUC values of several 
DCE-MRI metrics for early discrimination of pCR vs. non-pCR.  For each metric there was 
no statistically significant difference in ROC AUC between the two tRes data sets. 

 
The findings of Ktrans underestimation and ve overestimation from the low tRes data are 

consistent with a previous study [29].  The errors in PK analysis of low tRes data are largely 
systematic with PK parameter values changing in the same direction going from low to high 
tRes.  This is why there are no significant differences in V21% values, and the likely reason that 
DCE-MRI metrics that are good early predictors of NACT response when obtained from the 
high tRes data perform comparably well in early prediction when obtained from the low tRes 
data (Table 8). This preliminary study suggests that despite expected errors in estimated PK 
parameters, PK analysis of low tRes DCE-MRI data could be useful for assessment of breast 
cancer therapy response.  Since low tRes data is usually collected in large-scale breast cancer 
clinical trials, the utility of PK analysis of low tRes data for therapy response evaluation may 
have significant impact on future imaging biomarker development, taking advantage of the 
large, retrospective database from the past and current trials that include breast DCE-MRI. 
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Figure 6:  Scatter plots of V2 Ktrans (left) and V21% Ktrans (right) estimated from the 
low and high tRes data.  The straight line connects data points from the same subject.  
pCRs are represented by black circles while non-pCRs by red triangles. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Effects of tRes on estimated DCE-MRI PK parameters. 
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Table 8: Early prediction of response. 
 
 
 
§ Specific Aim 3: Develop software tools that can provide clinicians with imaging metrics 
together with clinical and molecular biomarkers to aid clinical decision-making in 
evaluation of therapy response 
 

The OHSU Informatics group (Shannon McWeeney, PhD, Jayashree Kalpathy-Cramer, 
PhD, Fred Loney, MS, Lara Fournier, MS and Erik Segerdell, BS) continued work on several 
tasks pertaining to Aim 3.  The activities completed in Year 5 include the following: 

• Add web application database update to the image data analysis pipeline 
• Improve imaging pipeline features and scalability 
• Add ROI and modeling overlays to the Quantitative Imaging Profile (QuIP) image 

display (Fig.ure 7) 
• Investigate alternative image registration methods 
• Deploy a production QuIP web server instance 
• Review the QuIP application with imaging scientists and clinicians 
• Added 16 DICOM studies to TCIA 

 
 

http://www.cancerimagingarchive.net/
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Open Source Tool Utilization 
 

OHSU is utilizing the following open source tools in the Quantitative Imagine Pipeline 
(Figure 7).  XNAT  imaging repository platform developed at Washington University; 
Nipype, a Python workflow integration framework; ANTS, a diffeomorphic registration 
and image mapping toolkit; CTP, the Washington University TCIA image uptake utility; 
XTK, an image visualization module; and NVD3, a charting utility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  Quantitative Imaging Profile (QuIP) web application. 

 
Collaborations within the QIN Network 

 

1. The OHSU team participated in a multi-center project investigating gradient 
nonlinearity bias in measurement of apparent diffusion coefficient across MRI scanner 
platforms. As a collaborative study of the QIN Data Acquisition Working Group 
(DAWG), this project is headed by Dr. Thomas Chenevert of University of Michigan.  
The results of this study have been published in Magnetic Resonance in Medicine in 
2016 and Tomography in 2016. 

http://www.xnat.org/
http://nipy.sourceforge.net/nipype/
http://www.picsl.upenn.edu/ANTS/
https://wiki.cancerimagingarchive.net/display/Public/Image+Submitter+Site+User's+Guide#ImageSubmitterSiteUser%27sGuide-Chapter3%5C%26nbsp%3BCTP%26nbsp%3BInstallation
https://github.com/xtk/X#readme
http://nvd3.org/
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2. The OHSU PI (Dr. Huang) has initiated a multicenter AIF challenge project within the 

MRI WG to evaluate the effects of variations in AIF determination on estimated DCE-
MRI pharmacokinetic parameters, as well as on therapy response assessment.  A total 
of 9 QIN centers participated in this challenge and quantified AIFs with site-specific 
methods from shared pre-therapy prostate and pre- and post-therapy soft-tissue 
sarcoma DCE-MRI data.  The AIFs were submitted by each center to the managing 
center OHSU.  Dr. Huang and his team then analyzed the shared data with submitted 
AIFs (from multi-centers) and fixed pharmacokinetic model, pre-contrast T1, and 
tumor ROI definition to assess the effects of AIF variations only.  The analysis of the 
shared eleven prostate data sets using the standard Tofts model has been completed 
and the manuscript has been published in Tomography in 2016.  The same data was 
also analyzed by OHSU using the Shutter-Speed model and the results were submitted 
as an abstract to the 2017 annual ISMRM meeting.  The analysis of AIF variation on 
a longitudinal sarcoma therapy response study has been completed and the results were 
submitted as an abstract to the 2017 annual ISMRM meeting. We expect to submit the 
manuscript on the effects of AIF variation on DCE-MRI evaluation of soft tissue 
sarcoma response to preoperative chemoradiotherapy in mid-2017. 
 

3. The OHSU team participated in the T1 measurement collaborative project in the 
DAWG, led by Dr. Bachir of Mount Sinai.  The goal of the challenge is to assess 
reproducibility across scanner platform in T1 measurement using commonly used pre-
contrast T1 determination methods for DCE-MRI, such as the multi-flip angle method 
and the inversion-recovery method.  A NIST phantom is used for challenge with 
known T1 values for the solutions included in the phantom.  Data analysis has been 
completed and a 2017 ISMRM abstract has been submitted.  The manuscript is 
expected to be submitted in mid-2017. 
 

4. The OHSU team participated in the ADC mapping challenge of the MRI WG 
organized by Dr. Newitt of UCSF.  The goal is to evaluate the concordance of ADC 
maps generated with scanner manufacturers’ software and tools used by QIN centers.  
The initial data analysis has been completed by Dr. Newitt and an 2017 ISMRM 
abstract was submitted. 

 
PLANS FOR NEXT YEAR 

 
For Specific Aim 1, we will continue breast cancer and soft-tissue sarcoma patient 

accrual, with no modification in the research protocols.  The primary focus will be on MRI 
data collection, analysis, correlation with pathologic endpoints, and statistical analysis to look 
for the best imaging biomarker or combination of biomarkers for cancer therapy response.  
For Specific Aim 2, we have evaluated the effect of DCE-MRI data acquisition duration, AIF 
quantification, as well as temporal resolution on evaluation of breast cancer response to 
NACT.  We plan to submit a manuscript on these results in 2017.  Additionally, we will 
perform similar analyses using the soft tissue sarcoma data and determine if we can draw 
similar conclusions with regard to the effects of variations in DCE-MRI data acquisition and 
analysis within the context of therapeutic monitoring.  For the bioinformatics aim, the Specific 
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Aim 3, we will continue working on Aim 3.2 to integrate imaging and non-imaging 
biomarkers in the web-based informatics tool, QuIP, for cancer therapy response evaluation, 
and test the tool with clinicians (radiologists and surgical and medical oncologists) for its 
utility for clinical decision making. 

 
Collaborations within QIN Network 

 
The OHSU team will be participating in or initiating the following multi-center 

challenge projects: 
 

1. DCE-MRI AIF challenge phase II (MRI WG, Leader: Wei Huang) 
2. DSC-MRI DRO (digital reference object) challenge (MRI WG, Leader: Chad Quarles) 
3. Effects of k-space under-sampling on quantitative DCE-MRI analysis (DAWG and 

MRI WG, Leader: Wei Huang) 
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INTRODUCTION 

Our research program continues to focus on the development and clinical 
implementation of quantitative breast MRI for assessing response to treatment. Neoadjuvant 
chemotherapy (NAC) for breast cancer, in which systemic therapy is administered prior to 
surgery, has important benefits for patients, including down-staging inoperable cancers and 
improving breast conservation rates [1, 2]. It is now well established that women whose 
tumor is completely eradicated at the time of surgery (pathologic complete response, or 
pCR) have excellent survival rates [3-5]. Conversely, women with substantial residual 
disease at surgery, have much poorer outcomes, with recurrence rates of over 50% at 5 
years[6]. The problem of identifying ineffective treatment remains one of the most critical 
unmet needs in neoadjuvant chemotherapy for locally advanced breast cancer. We are 
developing quantitative imaging methods to assess response to treatment in the I-SPY 2 
TRIAL, a multi-center phase II treatment trial using response-adaptive randomization within 
breast cancer subtypes to evaluate investigational agents for women with high-risk stage 
II/III breast cancer [7-9]. The goal of our QIN research is to develop accurate and reliable 
breast imaging techniques that can be applied as diagnostic tools for individualizing patient 
treatment. Over the past year our QIN efforts have focused on 1) developing advanced DWI 
approaches for breast cancer evaluation for introduction into I-SPY 2, 2) beginning 
dedicated breast PET studies in I-SPY 2, 3) providing curated image data and outcomes 
from I-SPY 1 for public data-sharing and 4) leading a QIN Grand Challenge to identify high 
performing imaging biomarkers of response.   
 

PROGRESS OVER THE PRIOR YEAR 
 
§ Advanced diffusion-weighted MRI (DWI) methods for assessing breast tumor 
response to neoadjuvant chemotherapy 
 
High spatial resolution breast DWI 
 

We previously developed a high-spatial resolution reduced field of view (rFOV) 
DWI sequence to overcome limitations of standard DWI methods for evaluating the breast. 
We continue to evaluate this method in comparison to standard DWI for measuring response 
to treatment. The rFOV sequence utilizes a 2D spatially-selective echo-planar RF excitation 
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pulse and a 180-degree refocusing pulse to reduce the FOV in the phase-encode (PE) 
direction [10], resulting in improved spatial resolution and reduced off-resonance effects. 
We optimized the rFOV HR-DWI sequence for breast imaging to acquire data with voxel 
sizes 5-6 times smaller than standard commercially available single shot echo-planar 
imaging (ssEPI) DWI sequences (STD-DWI) while retaining sufficient SNR for accurate 
calculation of ADCs. We showed that the sequence improved image quality compared to 
standard ssEPI DWI in breast, as seen in Figure 1 showing a comparison of breast images 
acquired with standard (STD) and high resolution (HR) DWI in a patient with invasive 
breast carcinoma [11]. Studies comparing STD-DWI and HR-DWI in breast cancer patients 
undergoing NAC demonstrated that the lower tumor ADC percentile from HR-DWI (15th 
and 25th percentile) derived tumor ADC histograms have stronger association with final 
MRI-measured tumor volume change than that from STD-DWI [12]. We also found an 
association between early changes in tumor ADC metrics measured by HR-DWI and 
pathologic complete response (pCR). An increasing trend in the area under the receiver 
operating curve (AUC) for predicting pCR was found with decreasing ADC percentile. 
Additionally, AUCs for the lower percentile tumor ADC were higher than those for early 
functional tumor volume (FTV) change (Table 1). Our findings here are consistent with a 
previous study showing the sensitivity of lower percentile tumor ADC values to early 
treatment changes [12]. The higher AUCs found for ADC metrics versus FTV suggest that 
HR-DWI may be of value in evaluating early breast tumor response to neoadjuvant 
chemotherapy and support the investigation of this technique in a larger cohort. 

 
 
 
 
 
 
 
 
 
 
  
 

Figure 1: Representative DWI (b=0 and b=600) and ADC 
maps of an invasive breast carcinoma acquired with HR-
DWI (top row) with voxel size of 4.8 mm3 compared to 
STD-DWI (bottom row) with voxel size of 29 mm3.  It 
shows improved image quality and reduced distortion. The 
tumor is visible as a hypointense region in the center of the 
breast on the ADC maps. 
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Table 1: AUCs for the early percent change in 
HR-DWI ADC and tumor volume as predictors 
of pCR showing an increasing trend with 
decreasing ADC percentile. 

 
 

Diffusion-tensor imaging (DTI) of the breast 
   

We are also evaluating diffusion-tensor imaging (DTI) as a further refinement of 
DWI methods that may carry additional prognostic information for breast cancer response. 
DTI and contrast-enhanced MRI were acquired at 1.5 T in 34 patients before treatment 
and after 3 cycles of taxane-based therapy (early treatment). Tumor fractional anisotropy 
(FA), principal eigenvalues (λ1, λ2, and λ3), and apparent diffusion coefficient (ADC) 
were estimated for tumor regions of interest drawn on DTI data. The association between 
DTI metrics and final tumor volume change was evaluated with Spearman rank 
correlation. DTI metrics were investigated as predictors of pathological complete 
response (pCR) by calculating the AUC. Early changes in tumor FA and ADC 
significantly correlated with final tumor volume change post therapy (ρ = -0.38, p  =  
0 . 0 3  and ρ = -0.71, p < .001, respectively).  Pretreatment tumor ADC was significantly 
lower in the pCR than in the non-pCR group (p = 0.04).  At early treatment, patients with 
pCR had significantly higher percent changes of tumor eigenvalues  λ1, λ2, λ3, and 
ADC than those without pCR. The AUCs for early percent changes in tumor FA and 
ADC were 0.60 and 0.83, respectively. The early percent changes in tumor eigenvalues 
and ADC were the strongest DTI-derived predictors of pCR. Although early percent 
change in tumor FA had a weak association with pCR, the significant correlation with 
final tumor volume change suggests that this metric changes with therapy and may merit 
further evaluation. These results were recently published in the QIN Special Issue of 
the journal Tomography [13]. 

 
§ Breast MRI predictors of NAC response 
 
Optimization of breast MRI biomarkers by cancer subtype  
 
Under its primary aim, ACRIN 6657, the imaging component of I-SPY 1, prospectively 
tested the functional tumor volume (FTV) biomarker and found it to be highly predictive of 
both pathologic response and recurrence-free survival following NAC [14, 15]. FTV is 
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defined as the image volume with enhancement kinetics exceeding both an early percentage 
enhancement threshold (PEt) and a signal enhancement ratio threshold (SERt).  Primary 
study analysis used empirically determined values for these thresholds.  In subsequent 
studies, we examined the effect of varying PEt and SERt on prediction of pCR, to determine 
if optimization of these parameter thresholds can improve predictive performance [16].  We 
also hypothesized that predictive performance varied by cancer subtype and therefore 
independent optimization within subtype groups would result in the greatest improvement. 
The ACRIN 6657 cohort included women with locally advanced breast cancer (tumor size ≥ 
3cm) having up to four DCE-MRI examinations: before NAC (MR1), after one cycle of 
NAC (MR2), between the anthracycline-based regimen and taxane (MR3), and after NAC 
and prior to surgery (MR4).  Patients were stratified into 3 groups by cancer subtypes 
defined by hormone receptor (HR), and human epidermal growth factor receptor 2 (HER2) 
status: HR+/HER2-, HER2+, and triple negative (TN, HR-/HER2-). MRI-measured FTV 
and change in FTV (ΔFTV) were investigated as predictors of the outcome pCR.  
 

For our optimization study PEt was varied from 30% to 200% in 10% intervals, and 
SERt was varied from 0.0 to 2.0 in 0.2 unit intervals.  FTV was measured at each 
examination (FTV1, FTV2, FTV3, FTV4) and ΔFTV was measured relative to the first 
examination (ΔFTV2, ΔFTV3, ΔFTV4).  For each pair of thresholds (PEt, SERt), the 
absolute FTV and ΔFTVs were calculated and analyzed for prediction of pCR using AUCs. 
116 patients from the ACRIN 6657 / I-SPY 1 TRIAL with complete data on all four MRI 
visits, HR/HER2 status, and pCR outcome were included.  Mean age was 48 (range 29-69). 
The 116 patient cohort was divided into subgroups: 45 (39%) HR+/HER2-; 39 (34%) 
HER2+; and 30 (26%) TN.  Lower AUCs with less variation were observed in patients in 
the HER2+ subgroup than patients with HR+/HER2- and TN breast cancer.  When 
examining prediction by visit, maximum AUCs were found at later time points in all patient 
cohorts. Specifically, maximum AUC was observed for: the full cohort at ΔFTV3 with AUC 
of 0.78 (CI: 0.69 – 0.87) at (PEt, SERt) = (130%, 0.0); the HR+/HER2- subtype at ΔFTV3 
with AUC of 0.9 (CI: 0.84 – 0.97) also at (PEt, SERt) = (130%, 0.0); the HER2+ subtype at 
FTV3 with AUC of 0.77 (CI: 0.62 – 0.92) when (PEt, SERt) = (70%, 1.4); and the TN at 
FTV4 with AUC of 0.89 (CI: 0.76 – 1) with (PEt, SERt) = (40%, 2.0).  The analysis suggests 
that MRI thresholds need to be adjusted by breast cancer subtype to improve the predictive 
performance. The PEt may need to be set higher in HR+/HER2- than other subtypes, which 
may be due to higher background parenchymal enhancement among HR+ patients, and SERt 
may need to be set at higher level for TN subtype. These data were recently published in 
Tomography [17] and a validation study is currently underway in I-SPY 2, with a larger 
patient population.  

 
§ Dedicated breast PET (dbPET) in I-SPY2 
 

Breast cancer is increasingly recognized to represent a heterogeneous group of 
diseases that vary in their treatment response, recurrence risk and overall prognosis [18].  
Ever since the first description of breast cancer subtypes based on gene expression profiles 
[19], there has been growing emphasis on the molecular characteristics of breast cancer. 
While contrast-enhanced MRI depicts breast tumor morphology and vascularity [20], 
positron emission tomography (PET) with tumor specific tracers can provide 
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complementary molecular information that elucidates the underlying biology of the disease.  
Recent advances of organ specific PET scanner have allowed us to incorporate PET into the 
clinical workflow of breast imaging. In our ongoing effort to expand our breast imaging 
capability to the realm of molecular imaging, we evaluated the use of a dedicated breast PET 
(dbPET) to characterize breast tumor behavior and its response to treatment.  
 

A 32 year-old female BRCA1 gene mutation carrier with bilateral synchronous breast 
cancers was imaged with breast MRI (1.5 T) and a new FDA-approved dedicated breast PET scanner 
(MAMMI dbPET, OncoVision, Spain) before and after three weeks of neoadjuvant chemotherapy.  
The patient had two biopsy-proven invasive ductal carcinomas in the right breast, one of which was 
estrogen and progesterone receptor positive, HER2-negative (ER/PR+, HER2-) and the other triple 
receptor negative (TN), as well as a TN invasive ductal carcinoma in the left breast.  Standard DCE-
MRI was obtained using a dedicated breast coil. The patient also underwent MAMMI dbPET 
imaging with a low dose of F-18 FDG (5 mCi) at 45 min post-injection.  The same imaging protocol 
was repeated after three weeks of chemotherapy.   
 

Prior to treatment, breast MRI showed two malignant masses in the right breast 
measuring 4.0 cm (ER+) and 5.3 cm (TN), respectively, in longest diameter.  Overall 
functional tumor volume (FTV) of both masses, defined as the volume of enhancing tumor 
exceeding an early enhancement threshold of 70% above baseline 20, was 73.2 cm3 (Figure 
2A).  DbPET showed two FDG avid lesions with the maximum standard uptake value 
(SUVmax) of 19.1 for the ER + tumor and 19.5 for the TN tumor (Figure 2B).  

   
After 3 weeks of paclitaxel treatment, MRI showed a decrease in size of the ER+ 

tumor to 3.2 cm, but there was slight enlargement of the TN tumor to 5.8 cm.  Overall FTV 
of both masses also increased to 89.5 cm3 (Figure 2C).  As MRI appeared to show disease 
progression, carboplatin was added to the regimen and dbPET was obtained 1 week later.  
DbPET showed a complete resolution of FDG uptake in the ER + tumor and a 22% 
reduction of SUVmax in the TN tumor (SUVmax at 15.3) (Figure 2D).  Repeat MRI obtained 
one week later showed minimal decrease in size of the right breast TN tumor to 5.2 cm and 
further decrease in the right ER+ tumor to 2.3 cm. 

 
Within the left breast, baseline MRI showed a 1.2 cm malignant mass with overall 

FTV of 0.67 cm3 and MAMMI dbPET showed an FDG avid mass with SUVmax of 6.7.  
After 3 weeks of chemotherapy, MRI showed residual disease (measuring 0.7 cm with FTV 
at 0.12 cm3, whereas dbPET showed no FDG uptake in the left breast mass after 4 cycles of 
treatment. 

 
After 12 weeks of paclitaxel chemotherapy, MRI demonstrated marked improvement 

of all 3 lesions with a residual ill-defined 3.8 cm TN mass and a 2.2 cm ER+ mass in the 
right breast with combined FTV at 1.82 cm3.  The left breast mass had resolved completely 
on MRI.  The patient subsequently completed 4 cycles of doxorubicin and cyclophosphamide 
(AC).  The final MRI prior to surgery showed a residual 0.8 cm TN mass with surrounding 
faint non-mass enhancement and faint non-mass enhancement at the site of the ER+ cancer 
(overall FTV at 0.22 cm3). 
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Figure 2: Breast imaging of a 32-year-old female patient with biopsy 
confirmed ER+/PR-/HER2- and TN invasive carcinomas in the right breast.  A:  
Before treatment DCE-MRI showing the malignant lesions with the mapping of 
contrast signal enhancement ratio (SER) and overall FTV at 73.2 cm3.   B:  
Before treatment MAMMI dbPET imaging with FDG confirmed MRI findings, 
showing high FDG avidity in ER+ (blue arrow, SUVmax = 19.2) and TN 
(yellow arrow, SUVmax = 19.5) tumors. C:  After 3 cycles of treatment, DCE-
MRI showed residual disease in the ER+ tumor and progression of the TN 
tumor with the FTV at 89.5 cm3, whereas  D:  1 week after, MAMMI dbPET 
showed a complete resolution of FDG uptake in the ER+ tumor and reduction of 
SUVmax by 22% in the TN tumor.  

 
 
 
Pathology from the subsequent right mastectomy revealed two residual foci of 

weakly ER+, HER2-negative, high-grade invasive ductal carcinoma measuring 1.5 cm and 
0.7 cm.  There was also residual high-grade ductal carcinoma in situ, which was present as 
scattered microscopic foci less than 1 mm each.  Left mastectomy showed no evidence of 
residual disease.  
 

This pilot study demonstrates that dbPET may be more sensitive than dynamic 
contrast enhanced MRI for evaluating early treatment response, revealing functional 
changes that precede anatomic changes at MRI. Further studies involving larger numbers 
of patients are underway to validate our initial observations.  This work was recently 
published in the journal Clinical Breast Cancer [21]. 
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§ Data-sharing efforts and TCIA Collections 
 

Over the past year we worked with The Cancer Imaging Archive (TCIA) to provide 
three imaging collections for public access. In collaboration with TCIA, ACRIN, I-SPY and 
QIN, we developed and implemented MRI data sharing procedures for clinical studies 
focused on DCE and DWI of breast cancer. DICOM private attributes were defined and 
documented for embedding quality assessment and SER FTV results within the shared 
datasets, and a de-identification scheme suitable for our treatment response studies was 
developed. The primary effort was to provide highly curated and quality-assessed image 
data from the ACRIN 6657/I-SPY 1 trial for public data-sharing. This data was made 
available with limited access in August 2015 and became fully public September 1, 2016 
[22]. The collection includes images and clinical data on 222 patients with 847 MRI studies. 
Protocol compliance and quality assessment enabled curating into multiple, easily 
accessible, collection subsets for different levels of analysis including basic radiologic 
evaluation, e.g. tumor size, and full SER FTV. Using the developed methods additional 
collections were established on TCIA including a 64-patient pilot study for SER FTV 
evaluation of treatment response in NAC, and a 13-subject collection for use in the QIN 
ADC Mapping Challenge led by Dr. Newitt. 

  
DISCUSSION OF COLLABORATIONS 

 
This U01 is being conducted in the context of the ongoing multi-center I-SPY 

2/ACRIN 6698 Trial integrating molecular biomarkers and imaging to maximize the 
effectiveness of neoadjuvant treatment for patients with locally-advanced breast cancer.  We 
leverage our existing partnerships with the American College of Radiology Imaging 
Network (ACRIN) Imaging Core, the National Institute of Standards and Technology 
(NIST) and Quantitative Imaging Network (QIN) sites to develop and evaluate a robust 
image quality assurance (QA) process for our ongoing and future clinical trials, and to 
optimize quantitative image classifiers for prediction of treatment response. In addition to 
the face-to-face meeting in April 2016 and regular teleconference with working groups 
(WG) and sub-groups, we have been interacting with other QIN sites on a regular basis.  In 
particular, we have been working closely with Dr. Thomas Chenevert at the University of 
Michigan to develop the image quality ranking system and gradient non-linearity correction 
(GNC) in breast DWI. 

 
§ Participation in QIN Network Committees and Working Groups 
 

• Dr. Hylton served as Chair of the Executive Committee for the term April 2015-
March 2016.  During this time, she worked with QIN program leaders to establish a 
Working Group to develop guidelines for managing Challenges and Collaborative 
Projects (CCPs).  Dr. Hylton continued to lead the Executive Committee Working 
Group on Breast MR Metrics of Response (BMMR). 
 

• Dr. Newitt continued to lead the ADC Mapping Collaborative Project under the QIN 
MRI Subgroup of the Image Analysis and Performance Metrics Working Group 
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(IAPMWG).  Dr. Newitt completed his service as Co-Chair of the MRI Subgroup of 
the IAPMWG in April 2016 and continues to participate as a member. 

 
• Dr. Wilmes was a central participant in the Data Acquisition Working Group 

(DAWG).  She led UCSF’s participation and site data acquisition for the multi-center 
challenges for 1) Diffusion weighted imaging: Characterization (Phase I) [23] and 
correction (Phase II) of gradient non-linearity [24] and 2) Assessment of inter-
platform variability of T1 quantification methods used for DCE-MRI in a multicenter 
phantom study [25]. 
 

• Dr. Ella Jones was a regular participant in the Clinical Trial Design and 
Development Working Group (CTDD WG).  In 2016, she served as the Vice Chair 
of the CTDD WG and co-authored a paper surveying the accrual pattern in clinical 
studies involving quantitative imaging [26]. 
 

§ Participation in QIN Challenges 
 

UCSF investigators led two QIN Challenges/Collaborative Projects (CCPs) and were 
also major participants in two additional CCPs, as described below. 
 
§ The Breast MRI Metrics of Response (BMMR) Challenge 
 

A QIN-sponsored challenge for evaluation of Breast MRI Metrics of Response 
(BMMR) was designed in 2016 by a QIN Executive Committee working group led by Dr. 
Hylton, implementing the challenge and collaborative project procedures developed by the 
QIN in 2015. The objective of the challenge was the prediction of recurrence free survival 
time (RFS) for patients with invasive breast cancer undergoing neoadjuvant chemotherapy, 
utilizing serial DCE-MRI studies taken over the course of therapy. The BMMR challenge 
opened in May 2016 and ran through October 2016 and was the 1st QIN challenge to be 
performed under the new QIN guidelines for CCPs.  The BMMR Challenge used MRI data 
from 162 ACRIN 6657/I-SPY 1 patients, annotated with RFS outcome and breast cancer 
subtype defined by hormone receptor (HR) and HER2 receptor status. Separate data on 64 
patients with RFS outcomes from a UCSF pilot neoadjuvant breast cancer study was 
provided as a training data set. Both training and test data sets were made available to 
Challenge participants on TCIA. The challenge was managed in collaboration with Dr. 
Jayashree Kalpathy-Cramer through the QINLABS website. Three QIN groups (U. Chicago 
(M. Giger), Moffitt Hospital (J. Drukteinis) and MGH (J. Kalpathy-Cramer)), and one non-
QIN group (U. Pennsylvania (D. Kontos)) submitted results for evaluation. Three other 
groups (Stanford, U. Washington, and OHSU) participated in development of the challenge 
but did not complete analysis of the test phase data. Statistical analysis of the challenge 
results was performed by members of the ACRIN Biostatistical Center (Zheng Zhang and 
Helga Marques of the Brown U. Center for Statistical Sciences). The BMMR Challenge 
results are currently being prepared for publication and will be presented at the 2017 QIN 
face-to-face meeting. 
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§ QIN ADC Mapping Collaborative Project: Multi-site Concordance of DWI Metrics 
 

The ADC Mapping CCP, led by Dr. David Newitt of UCSF was undertaken to 
examine the variability in apparent diffusion coefficient (ADC) measures resulting from 
different post-processing software implementations utilized by researchers across the NCI 
Quantitative Imaging Network. Participating QIN sites included UCSF, University of 
Michigan-1, BNI, BWH, JHU, Mount Sinai, MCW, MGH, OHSU, University of Michigan-
3, University of Washington and Vanderbilt. A secondary aim of the ADC Mapping 
Challenge was to evaluate the feasibility and practical challenges involved in centralized 
analysis of multi-center ADC data. MRI data from both phantom [27] (Ph) and in vivo 
breast (Br) DWI was analyzed, including data from three major MRI scanner manufacturers: 
Siemens, Philips and GE Medical Systems (Table 2). The breast MRI studies [28] were 
curated and de-identified at UCSF and shared via TCIA [29] in a private collection for this 
CCP. Phantom data was provided by U. Michigan via the NCIPHub [30].  Eleven QIN sites 
calculated parametric maps using 12 DWI analysis platforms, with analysis implementations 
using IDL, Matlab, 3D Slicer, OsiriX, AFNI, C++ and QIBAPhan1.3, and file formats 
DICOM, NIFTI, NRRD and Matlab. Manufacturers' software (scanner-generated) DICOM 
ADC maps were also evaluated where available. All comparative and statistical analyses 
were done by D. Newitt and J. Gibbs at UCSF. For comparisons, all maps were converted to 
a modified-DICOM format and scaling factors were set in the meta-data to produce ADC 
maps in common units of 10-6 mm2/sec. ROIs were defined as shown in Figure 3 and applied 
to the parametric maps yielding mean values of the diffusion metrics. Concordance was 
evaluated from the percent difference of each measurement from the median value for all 
QIN sites. Pairwise within-subject coefficient of variation (wCV) was calculated for all site 
pairs and metrics to establish groupings of similar (wCV<0.1%) results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Protocol and analysis metric descriptions for data sets included in 
ADC Mapping Challenge. 

 

N studies b values 

ID values (s/mm2)
4 b-value, 3 direction 3 ADC4 1cm circles

QIBA diffusion 
phantom

401, 402, 403 ADChi-low 13 vials

3

101, 102, 103

8 ADC4

201-208 ADC3slow

PerfFrac

@ DWI Parameter Definitions: 
ADC<n> (n=# b-values) mono-exponential ADC
ADChi-low                 mono-exponential ADC using only highest and lowest b-values
ADC3slow                 mono-exponential ADC using 3 highest b-values

PerfFrac                                 fraction of b=0 signal attributed to fast-decaying perfusion component

Br4b
4 b-value, 3 direction 
bilateral axial breast

0, 100, 600, 800 GEMS, SM, PM multi-slice tumor

* Manufacturers:  General Electric Medical Systems (GEMS); Siemens Medical (SM); Philips Medical (PM)

Br2b
2 b-value, 3 direction 
bilateral axial breast

0, 800 GEMS, SM, PM ADC2 multi-slice tumor 

Group 
label

DWI Scan 
Description

Scanner 
manufacturers *

Parameters @ Analysis ROIs

Ph4b 0, 500, 900, 2000 GEMS, SM, PM
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Figure 3:  ROI definitions for PVP phantom scans (left) and in vivo 
breast scans (right). The breast image shows a single representative 
slice of the multi-slice tumor ROI. 

 
 
 
Results 
 

All 12 platforms were able to produce mono-exponential ADC maps for the Br2b 
and Br4b groups, and perfusion-suppressed ADC3slow values for Br4b. 8 platforms provided 
perfusion-fraction maps for the Br4b studies. All sites were able to handle all multi-vendor 
DICOM image sets, but interpretation of the full directional data from the GEMS scanners 
(Br4b, IDs 203, 204) was challenging for several sites due to unfamiliarity with this format, 
requiring assistance from UCSF. All maps were centrally analyzable, but required a variety 
of manipulations including scaling, slice order reversal, and masking of NaN values, 
illustrating the necessity of adoption of a uniform DICOM standard for parametric maps 
[31]. Preliminary analysis was completed in Fall 2016, and submitted as an abstract for the 
2017 ISMRM meeting. Sample results for the 4 b-value breast ADC are shown in Figure 4. 
Inter-site wCV tables revealed eight of the sites were grouped into 2 separate groups: sites 
[1, 4, 13] with wCV<0.01% and sites [3, 5, 6, 8, 9] wCV<0.1%, while the other 4 sites and 
the scanner-generated maps showed more individualistic behavior. ADC values differed 
2.8±0.2% between the two groups and up to 5% for non-grouped sites. The Philips scanner 
map had a 28% error due to inaccurate scaling information in the DICOM. Phantom results 
showed similar groupings amongst analysis implementations, though with smaller 
differences between the groups: RMS percent difference in ADC values for all phantom ROI 
of 0.29%, 0.30%, 0.62% for GEMS, Siemens, and Philips scans respectively. Full results 
will be submitted for publication in 2017. 
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Figure 4:  Sample results:  Percent difference from median values 
for all sites for the mono-exponential ADC from the 4 b-value 
breast scans. Horizontal bars indicate the 2 groups of sites with 
close to identical results as measured by the wCV. Scanner-
generated results are shown at the far right. 

 
 
§ AutoPERCIST Challenge 
 

In our effort to incorporate PET into the workflow of breast imaging, we recognized 
the need for accurate objective measurements of standard uptake values (SUVs), required 
by PERCIST 1.0, to evaluate FDG uptake and tumor response to treatment.   We sought to 
collaborate with Drs. Richard Wahl (Washington University) and Jeff Leal (John Hopkins 
University) to assess the AutoPERCIST software to semi-automatically identify and 
measure reference tissue (liver), set disease threshold values and calculate SUVs (peak, 
max, mean, volume and total lesion glycolysis). Using the latest version of AutoPERCIST, 
we were able to accurately identify and measure breast cancer patient’s primary breast 
tumor and axillar lymph node (Figure 5). We also participated in a multicenter reader 
variability study of AutoPERCIST through the CTDD WG. Sixteen sites including six 
international institutions participated in this study.  Thirty paired sets of anonymized FDG 
PET-CT images were downloaded for evaluation and up to 5 tumor lesions from each PET 
image will be selected.  All selections will be recorded and sent to the central database at 
Johns Hopkins Image Response Assessment Team for quality control. 

 
§ DWI Gradient non-linearity correction Challenge: Phase I and Phase II 
 

Our group participated in a multi-site MRI data challenge led by Tom Chenevert’s 
group at University of Michigan to improve the accuracy of diffusion weighted imaging 
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(DWI).  Gradient non-linearity in DWI introduces a significant spatial bias in apparent 
diffusion coefficient (ADC) values. In the DAWG Phase I project, our site and others 
acquired DWI data from an imaging phantom with known ADC value for multiple locations 
within the MRI bore. From these data, GNL bias was characterized and “corrector 
functions” were generated [23]. In the Phase II project, our group was one of a subset of 
initial participants that acquired DWI data in a different phantom to validate the corrector 
functions derived in Phase I. This work demonstrated that the GNL correction resulted in 
increased quantitative accuracy in measured ADCs across multiple sites and MRI scanner 
vendors [24]. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Screenshots from AutoPERCIST. A:  
Automatic identification of the liver as a reference 
organ.  B: Measurement of the primary breast tumor 
and the axillar lymph node.   

 
 
 
§ T1 mapping Challenge: Assessment of inter-platform variability of T1 quantification 
methods used for DCE-MRI in a multicenter phantom study 
 

Our group participated in a multi-site MRI data challenge led by Bachir Taouli’s 
group at Mt. Sinai hospital to evaluate different MRI T1 mapping methods for accuracy and 
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variability. To this end we implemented standard T1 mapping protocols provided by the 
challenge and acquired data in a phantom of known T1 values using the prescribed 
sequences as well as our local site protocol. These data were provided to the challenge and 
in combination with data from other imaging sites, were used to determine the variability of 
different T1 mapping sequences and which sequence is the most accurate for calculating T1 
values 25. 
 

ACTIVITIES OUTSIDE THE QIN NETWORK 
 
§ The Cancer Imaging Archive (TCIA) 
 

We worked with investigators at TCIA and the ACRIN Imaging Core Lab to enable 
the transfer of ACRIN 6657 image data and to ensure that appropriate patient de-
identification and DICOM standards for QI are incorporated.  We implemented specific 
capabilities to support the archival of derived images and metadata associated with the 
tumor volumetric analysis used to generate the primary imaging endpoint, functional tumor 
volume (FTV) for ACRIN 6657, as well as for storing results from QA/QC evaluations. 

 
§ American College of Radiology Imaging Network (ACRIN) 
  

To improve image quality assurance, we collaborated with the ACRIN Imaging Core 
to develop the image QA/QC program for the I-SPY2/6698 trial.  The resulting DWI quality 
ranking system has been implemented as part of the image review and analysis process used 
to generate the primary study endpoint for the trial.   
 
§ NIST and Industry 
 

We are collaborating with the National Institute of Standards and Technology 
(NIST) and two industrial partners, High Precision Devices, Inc. (HPD) and The Phantom 
Laboratory through the SBIR Phase I award mechanism. We previously worked with NIST 
to design and prototype a universal breast MRI phantom that could be used in multi-center 
clinical trials for standardization and quality control of breast DCE and DWI data [32, 33]. 
Based on specifications provided by UCSF, the next generation of prototype phantom is 
being designed by both industrial partners. These two prototypes are compatible with most 
major breast MRI coils and magnet systems, and contain compartments with materials 
mimicking the MRI properties of normal fibroglandular, adipose breast tissue and breast 
tumor, with a representative range of T1, T2 and ADC values. In addition, geometrical 
objects for evaluation of image distortion and resolution are in place.  In conjunction with 
the final physical design and single-site testing at UCSF, we will develop comprehensive 
image acquisition protocols and measurement methods to efficiently monitor breast-imaging 
critical parameters including T1 and ADC measurements, image distortion, fat suppression 
and SNR. The phantom and associated protocols will then be evaluated in a pilot multicenter 
study at 3-5 I-SPY 2 clinical centers. Additionally, in collaboration with the QIN Data 
Acquisition Working Group (DAWG) and Image Analysis and Performance Metrics 
Working Group (IAPMWG), we plan to design and execute a phantom-based challenge 
focused on breast-specific imaging using the finalized phantom.    
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PLANS FOR NEXT YEAR  
 

Our renewal application received an Impact Score of 20 and is pending. If funded, 
our continuing U01 program will focus on the clinical evaluation of advanced QI methods in 
I-SPY 2.  Through our experience with ACRIN 6698, we encountered a number of issues 
that pose limitations to the quantitative use of DWI in the NAC setting, including systematic 
errors in acquired data due to gradient non-linearity and B0 inhomogeneity, and variability in 
image quality and consistency. We propose to address these in the ongoing U01 project and 
to perform more in-depth and robust evaluation of breast DWI for assessing NAC response 
in I-SPY 2. We plan to introduce improvements to both the DWI data acquisition methods 
and diffusion quantification approaches. Through continued collaboration with the National 
Institute of Standards and Technology, we will utilize the universal breast MRI phantom to 
implement a phantom-based quality control (QC) process at the participating I-SPY 2 
clinical centers. We will also implement vendor-specific GN correction for all breast DWI 
data in I-SPY 2. We will continue collaborative efforts begun under ACRIN 6698 to 
improve diffusion quantification approaches and develop DWI-based metrics that can be 
used in combination with DCE metrics to improve predictive performance of imaging. The 
project will be conducted in the clinical context of the ongoing I-SPY 2 trial, allowing us to 
measure the impact of each proposed refinement, as well as the overall effectiveness of DWI 
for predicting response and survival.   
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INTRODUCTION 
 

The overarching goal of this project is to provide for standardized implementation 
and clinical validation of advanced quantitative diffusion-weighted MRI (qDWI) analytical 
techniques for quantification of tumor diffusion values across multiple MRI systems in order 
to improve use in multi-site cancer imaging trials [1].  This research effort is focused on 
identification and mitigation of significant technical impediments to DWI as a quantitative 
imaging (QI) metric for cancer patients.  Activities are aligned with three specific objectives 
involving strategic collaborations within the NCI Quantitative Imaging Network (QIN), 
Imbio, LLC (industrial partner), the National Institute of Standards and Technology (NIST), 
Eastern Cooperative Oncology Group and the American College of Radiology Imaging 
Network (ECOG-ACRIN), and the Imaging and Radiation Oncology Core (IROC).  The 
major goals of this U01 research effort are focused on an integrated series of three Specific 
Aims involving image data transfer and analysis with quantitative software testing (Aim 1), 
data acquisition quality assurance and system characterization (Aim 2), removal of technical 
bias (Aim 3) and statistical evaluation (Aim 1).  Scans will be obtained for site/system 
certification and quality control as described in Aim 2.  Diffusion MR clinical data will 
undergo bias removal as described in Aim 3 followed by generation of histogram and voxel-
wise parametric response map (PRM) metrics using the proposed advanced software 
algorithms described in Aim 1.  The image data source for ACRIN 6702 & 6698 trials is the 
TRIADv4 application.  Deliverables by Aim are as follows: 

 
§AIM 1 
 
To develop and evaluate a reproducible and robust computational environment for 

quantification of diffusion-weighted MR images using data collected from the ISPY-2 breast 
cancer trial. 
 

For this QIN effort, diffusion-PRM will be evaluated using a novel computing 
platform allowing DICOM data to be securely uploaded and processed through a web 
browser.  This will enable easy collaboration between Imbio and UM QIN investigators.  All 
software under this grant proposal will be developed and tested in accordance to Imbio’s 
quality system that ensures standardization of quantitative measures.  This approach will be 
undertaken using a semi-automated spatial alignment of serial data. Image registration will 
be performed using a multi-layered approach. Rigid body registration is first performed 
followed by a geometric warping interpolant, i.e. B-spline, algorithm used for mapping the 
tumor volumes from interval examinations onto the tumor volume from the pre-therapy 
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anatomical image, which is defined by the user. Registration will be based on the 
optimization of mutual information between two image data sets, allowing for multimodal 
registration, and implemented through the use of automatically determined control points. 

 
§ AIM 2 
 
To devise the next generation DWI phantom for absolute quantitation that spans the 

tissue ADC range and incorporates internal MR-thermometry; and to extend QA/QC metrics 
to include characterization of systematic bias for ongoing multi-center breast cancer trials. 
 

Through QIN and ACRIN collaborations, we provide QA/QC services and facilitate 
incorporation of developed quality assurance methods utilizing an ice water diffusion 
phantom in ongoing multi-center ACRIN 6698 and 6702 clinical trials. Acceptable 
performance of each newly added MR system will be confirmed upon entry to the study, and 
reaffirmed bi-annually or after significant hardware/software upgrades to each system. Our 
developed uniform data structure format (regardless of vendor-specific DICOM) will be 
used for data screening for protocol compliance testing and data reduction. Each QA/QC 
DWI scan is performed in four passes in rapid succession such that system noise & short-
term instability artifact level are measurable for each pixel by variance over these passes. 
QA procedures will be amended to include the long-tube ice-water phantom distribution 
among participating sites, as well as implementation of uniform quality assurance protocol 
for routine assessment of systematic spatial GNL bias on relevant scanner platforms. 
Analogous to the multi-center DWI phantom study, a detailed phantom preparation and 
QA/QC scan protocol will be provided with each phantom set. Reported performance 
metrics will include measures of random noise and bias over FOV, as well as DWI 
directional spatial uniformity coefficients, and scanning protocol compliance. 

 
§ AIM 3 
 
Enhancement of predictive power for quantitative diffusion metrics by retrospective 

correction of DW-MRI gradient nonlinearity (GNL) errors in multi-center therapy-response 
trials. 
 

Our proposed GNL bias correction approach will follow the recently described 
algorithm, based on system characterization from regular QC measurements on the ice water 
diffusion phantom (Aim 2). This correction can be implemented independent of proprietary 
information on gradient design.  This aim will include (1) system GNL and SNR evaluation 
(data from Aim 2); (2) modeling of system-specific nonlinearity tensors; (3) construction of 
digital 3D maps for DW bias; (4) application of corrector maps to patient DWI-ADC data 
from ongoing clinical trials (data from Aim 1); (5) performance evaluation for quantitative 
population statistics (e.g., fDM and histogram metrics) with and without bias correction.  
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DISCUSSION OF PROGRESS 
 
§ Progress Toward Next Generation DWI Phantom and QA/QC 
 

A formal collaboration has been established with NIST scientists to develop an 
ambient temperature diffusion phantom based on polyvinylpyrrolidone (PVP) that offers 
absolute quantitative diffusion coefficients tunable by PVP concentration,  long-term 
stability, no toxicity, and spans the tissue ADC range 0.42.5(x10-3mm2/s).  This builds on 
an existing temperature-controlled PVP-based DWI phantom design 
(http://www.nist.gov/pml/div686/grp08/biomagnetics.cfm#) that has become “a standard” 
since endorsed by QIBA (http://www.rsna.org/qiba/ ) and is commercially available 
(http://hpd-online.com/MRI-phantoms/php ).  UM investigators were deeply involved in its 
design and understand its two key limitations: (a) it requires ice-water temperature control to 
achieve absolute quantification, thus phantom preparation is relatively tedious with limited 
duration for use (<1-2hr) , and (b) 0oC PVP solutions only span half the tissue ADC range.  
Our proposition is to use PVP solutions at ambient temperature thereby eliminating phantom 
preparation while achieving the full relevant tissue ADC range.  However, this approach 
now requires determination of absolute temperature internal to the phantom.  To achieve 
this, a temperature-sensitive chemical probe insert, combined a single-shot low bandwidth 
EPI (LB-EPI) sequence will provide an estimate of temperature based on spatial separation 
of chemical moieties visible as ghosts on the image.  When deployed in the field, we believe 
an image-based read-out of internal temperature using a standard sequence with parameters 
set to maximize spatial separation of chemical shift ghosts (i.e. low bandwidth) would be 
less dependent on shim quality and operator skill than single-voxel spectroscopy.  NIST has 
been contracted to provide essential calibration of chemical shift vs temperature of candidate 
probes chemically designed for: (a) long T2; (b) temperature sensitivity; and (c) comparable 
signal between chemical moieties.  The calibration curve (Figure 2A) performed at 500MHz 
(11.7T) of a pH-adjusted t-butanol with dilute deuterium provides excellent NMR properties 
and reasonable temperature-sensitivity.  Figure 2B illustrates temperature read-out via LB-
EPI performed on a clinical 1.5T (64MHz) system.  A software routine was developed to 
automatically analyze LB-EPI to convert spatial shift (via cross-correlation) to chemical-
shift, thus temperature.  Magnetic field-dependent bias discovered in our fiber-optic 
temperature probe (used for independent confirmation) was recently rectified and new 
batches of chemically-designed probes are being evaluated.  

 
 

 
 
 
 
 
 
 
 
 

http://www.nist.gov/pml/div686/grp08/biomagnetics.cfm
http://www.rsna.org/qiba/
http://hpd-online.com/MRI-phantoms/php
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In parallel to work on this next generation DWI phantom, QA/QC software tools, 
fabrication and delivery of DWI ice-water phantoms, and Site Certification services have 
been established with aim to improve uniformity and quality of DWI in clinical trials.  To 
date, these services have been utilized in four Oncology trials: ACRIN6698 (Breast); 
ACRIN6701 (Prostate); ACRIN6702 (Breast); NRG-BN001 (Brain).  Over 200 DWI 
phantom datasets have been analyzed.  Approximately 15% failed certification tests due to: 
significant protocol violations; high ADC non uniformity due to gradient non linearity; and 
low SNR.  Figure 2C illustrates the automated DWI QA/QC analysis output (Fig 2C (a)) 
used for system certification report (Fig 2C (b)) for one NRG-BN001 trial site. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The NRG-BN001 trial also involves dynamic susceptibility contrast (DSC) perfusion 

MRI for which we lack a dynamic phantom, therefore human subject DSC series are 
assessed for quality using: whole-brain SNR estimated via voxel-wise signal stability from 
pre-injection dynamics;  peak change in signal upon bolus passage; and inspection of whole-
brain leakage-corrected rCBV histogram (Figure 2D).  
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§ Progress Toward Gradient Nonlinearity Correction 
 

During the previous U01 cycle, our team has designed and launched a QIN-wide 
multi-center “phase 1” collaborative project within Data Acquisition Work Group (DAWG) 
to obtain empiric descriptors of gradient nonlinearity (GNL) along primary magnet 
directions on representative MRI systems utilized in clinical trials.  As a result of “phase 1” 
project, channel-specific GNL was characterized for ten distinct gradient systems by three 
vendors [2].  In Year 1 of U01 renewal project, based on “GNL phase 1” results, the system-
specific nonlinearity tensors were modeled using previously developed empiric approach 
[3], and the corresponding empiric 3D diffusion weighting bias maps were derived for six 
representative systems (e.g., Figure 3A), two from each vendor (GE, Siemens and Philips). 
The follow-up GNL correction validation “phase 2” project was launched within QIN 
DAWG to validate the empirically derived GNL correctors using independent phantom 
(FBIRN, 1.5% agar) scans outside of the (spatially limited) “phase 1” measurements 
performed with different DWI phantom (ice-water tube).  In addition to test scans using 
arbitrary (orthogonal) DWI directions at two arbitrary off-center locations within the bore 
with substantial (predicted) GNL bias (> 10 %), the participating QIN sites obtained a 
“reference” measurement at bore isocenter representing the true diffusion coefficient free of 
GNL bias. The retrospective empirical correction was then applied to “test DWI” DICOM 
by our team, blinded to “reference DWI”. The empirical GNL correctors were also 
compared to vendor design GNL characteristics provided for several systems.  A convenient 
procedural simplification for isotropic phantom medium was that direction-average DW bias 
correctors are independent of DWI schema (LAB or non-LAB) and could be applied directly 
to ADC maps. Degree of similarity of ADC histograms from reference and corrected off-
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center locations were used as a figure of merit for the retrospective correction.  The 
performed correction improved uniformity of diffusion weighting for all systems at least 
three-fold, which lead to seven-fold gain in ADC precision and two-fold reduction of cross-
site variability (Figures 3B and 3C).  These results confirmed feasibility of centralized GNL-
bias correction in multi-site trial setting warranted by general stability of system-specific 
GNL. The results of this project were published in QIN special issue of Tomography [4]. 
 
 
 
 
 
 

 
 
 
 
 
 
 
The automated retrospective correction tools were developed to recast the static 

(empiric) 3D correctors for arbitrary scan geometry as recorded in DICOM. These tools 
would help streamline analysis of multiple data sets from clinical trials.  Although, the 
developed empiric correctors appear sufficient to remove the bulk of observed GNL bias, 
these correctors are only approximations of actual bias, best predicted based on system 
design coefficients known to vendors ([5], Figure 3B). Along with the finite accuracy of 
empiric GNL scaling, finite contribution from local shim (revealed during “phase 1” project 
[2]) and EPI distortion errors were identified as the main sources of residual ADC error. 
Another limitation of the proposed “retrospective” GNL correction approach is related to the 
type of DICOM data available from ongoing clinical trials. The clinical trials typically store 
only trace-DWI DICOM, which would preclude channel-specific GNL corrector application, 
desired especially for anisotropic tissue [2].   Nevertheless, for majority of breast DWI data 
targeted by this U01, the assumption of nearly isotropic tissue diffusion is valid, and 
direction-average corrector approach should be viable for ADC maps [5]. 
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PLANS FOR NEXT YEAR 
 

§ Aim 2 
 

We believe significant absolute temperature error stems from uncertainly in the 
calibration data, therefore we have altered our apparatus to allow simultaneous direct (i.e. 
non-MR) and NMR/MRI temperature measurement.  The goal of this component of the 
proposal is to identify, fabricate, calibrate, and implement chemical systems that can be used 
as internal thermometers to measure absolute temperature in the MRI environment, using 
image features.  To date, we have designed and implemented several systems having water, 
and methyl or methylene resonances with long T2 times. The dual frequency mixtures allow 
internal calibration and absolute temperature accuracy to approximately 1-2 °C in clinical 
MRI systems at 1.5 at 3.0 T. To improve this accuracy, we will explore the ability of 
chelates of the lanthanide metals europium, praseodymium, and thulium to create enhanced 
temperature sensitivity due to paramagnetic induced chemical shifts. These metals have 
short electron T1 times and have been used previously as chemical shift reagents to with 
minimal line broadening.    
 
§ Aim 3 
 

In Year 2 of the project, toward Aim3, we plan to identify a representative DWI data 
set from ACRIN 6698 breast clinical trial, acquired on (multiple) characterized systems with 
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validated GNL correction. The longitudinal phantom QC data for the corresponding systems 
will be analyzed to ensure consistency with the empirically modeled GNL bias and to 
establish SNR thresholds for retrospective GNL correction. The appropriate permissions will 
be obtained to request the de-identified DWI DICOM from the data managing center 
(UCSF) for retrospective correction for trial subjects scanned on the corresponding systems.  
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INTRODUCTION 

 
The goal of our grant is to apply machine learning techniques to objectively 

identify those imaging features that best characterize tumors--either tumor biology or 
therapy response. In particularly, we aimed to develop virtual biopsy technology that will 
enhance the clinical decision making process in brain cancer by providing tools for 
investigation of image-based therapy response assessment. We anticipate this project will 
impact clinical trials by enabling identification of superior outcome measures using 
objective algorithmic selection methods. 

 
There is significant potential for Machine Learning (ML) to improve how we use 

imaging in clinical trials to assess therapy. Multi-spectral MRI processing is not new, but 
using ML methods to identify more complex relationships than simple linear ones could 
be important, and is novel in the therapy assessment and Radiogenomics space. There 
has been relatively little work focusing on the estimation of the information content of 
features in medical images  

 
The specific deliverables for the grant include:  
 

1. A library of easily applied tools for computing both widely used standard features 
and biologically relevant features from DICOM images. We expect this library 
should be usable by QIN community.  

2. An interactive tool for applying several FS methods to identify the most 
informative features and best performing machine learning methods for the 
selected feature set. We expect this tool should be usable by QIN community.  

3. A family of decision support applications for three clinical situations.  
 

DISCUSSION OF PROGRESS 
 
§ Automated Segmentation of hyperintense regions in FLAIR MRI 
 

Brain tumor segmentation is a challenging task with many researchers and 
competitions focusing on creating and evaluating newly developed algorithms. In 2012, 
the brain tumor image segmentation benchmark (BRATS) competition (1,2) was 
established as part of the MICCAI conference and since then has been the “gold 
standard” for brain segmentation algorithm testing. 

  

https://paperpile.com/c/qWWpEK/IxzAd+Xtltf
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The brain tumor segmentation algorithms commonly described in the literature 
usually exploit classical image analysis techniques or pattern recognition techniques (3–
5) with the more recent approaches utilizing deep convolutional neural networks (6–13).  

  
Each MRI series (image type) reveals different information about the tumor. For 

instance, T1-weighted (T1w) post contrast acquisitions reveal information regarding the 
enhancing part of the tumor, while fluid-attenuated inversion recovery (FLAIR) 
acquisitions capture the edema part of the tumor. Lesion size in FLAIR images is an 
important clinical parameter for patient assessment and follow-up. Manual estimation of 
the volume of the lesions in FLAIR images is time-consuming and highly user-
dependent. 

 
Autoencoders have recently been gaining attention for their ability to perform 

segmentation tasks in medical images (14–16). One advantage of autoencoders against 
other deep learning approaches is the use of decoders that enables estimation of features 
suitable for pixel-wise classification (16). 

 
Over the past year, our team focused on accurate quantification of the abnormal 

signal areas in the FLAIR acquisitions in glioma patients. For the purpose of this study, 
we utilized convolutional autoencoders trained on the publically available BRATS 
dataset and evaluate the accuracy on a dataset where three expert segmentations were 
available. Figure 1 captures the main idea of an autoencoder and its application to image 
segmentation. The primary concept is that the autoencoder learns how to reconstruct the 
segmented desired output (namely the segmentation mask). The encoder layer consists of 
7 convolutional layers. The convolutions are used to produce the feature maps. In 
addition, a rectified-linear non-linearity (ReLU) is applied followed by maxpooling with 
a 2 × 2 window. The resulting output is sub-sampled by a factor of 2. Max-pooling 
achieves translation invariance, accounting for small spatial shifts. The decoder 
component consists of a hierarchy of decoders, one corresponding to each encoder. Of 
these, the appropriate decoders use the max-pooling indices received from the 
corresponding encoder to perform non-linear up-sampling of their input feature maps. 
This allows for improved boundary delineation (16). The high decoder output is 
forwarded to a trainable soft-max classifier which classifies each pixel independently. 
The number of input channels is the number of classes (in our case, tumor or not tumor) 
and the output of the sigmoid classifier is a 2 channel image of probabilities. The 
predicted segmentation corresponds to the class with maximum probability at each pixel. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The overall architecture of the developed convolutional 
autoencoder. Tumor regions were assigned to a value of 1, while 
surrounding tissues were assigned to a value 0.   

https://paperpile.com/c/qWWpEK/4tHhb+QRvCI+yTdQd
https://paperpile.com/c/qWWpEK/4tHhb+QRvCI+yTdQd
https://paperpile.com/c/qWWpEK/gXaUx+5BgL9+CZ57v+Gxg5J+2gafk+JgK5I+xbTCL+dcKRJ
https://paperpile.com/c/qWWpEK/NEWe2+EZEyG+WhH0p
https://paperpile.com/c/qWWpEK/WhH0p
https://paperpile.com/c/qWWpEK/WhH0p
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Comparison of the proposed method and the three manual segmentations 
available against the STAPLE algorithm is shown in Table 1.  

 
 

Measure Statistic  User 1 User 2 User 3 Proposed  
Jaccard Mean 0.923 0.840 0.758 0.785 

 SD 0.051 0.077 0.057 0.095 
 Max 1.000 1.000 0.865 0.917 
 Min 0.760 0.550 0.649 0.458 
 Median 0.931 0.856 0.747 0.821 
 Q1 0.901 0.815 0.711 0.729 
 Q3 0.957 0.879 0.809 0.849 

Dice Mean 0.959 0.911 0.861 0.876 
 SD 0.029 0.048 0.037 0.066 
 Max 1.000 1.000 0.928 0.957 
 Min 0.864 0.710 0.787 0.629 
 Median 0.964 0.922 0.855 0.901 
 Q1 0.948 0.898 0.831 0.843 
 Q3 0.978 0.935 0.895 0.919 

FPF Mean 0.079 0.198 0.190 0.291 
 SD 0.055 0.135 0.111 0.210 
 Max 0.253 0.819 0.460 1.181 
 Min 0.000 0.000 0.020 0.090 
 Median 0.070 0.164 0.169 0.219 
 Q1 0.044 0.136 0.100 0.172 
 Q3 0.101 0.227 0.275 0.370 

TPF Mean 0.993 0.996 0.899 0.995 
 SD 0.032 0.015 0.062 0.016 
 Max 1.000 1.000 0.994 1.000 
 Min 0.793 0.923 0.720 0.931 
 Median 1.000 1.000 0.895 1.000 
 Q1 1.000 1.000 0.860 1.000 
 Q3 1.000 1.000 0.956 1.000 

 
Table 1: Comparison of the proposed method and the three manual segmentations available 
against the STAPLE algorithm. 
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Figure 2 captures the probabilistic output generated from the autoencoder for an 
input image.  
 

 
 

Figure 2. Probabilistic output of the proposed system for a case in our validation 
dataset. As depicted (right panel) tumor areas appear to be brighter than 
surrounding tissue.  

 
 
The proposed automated system is indistinguishable from expert derived 

segmentations in its ability to perform glioma segmentation. This approach will be useful 
for alleviating the inherent variability of human derived tumor delineation thereby 
improving the reproducibility of image-derived biomarkers.  
 
§ Grunt--a Flexible Pipeline Technology 
 

Docker (https://www.docker.com/) is an open source technology that allows one 
to capture a complete execution environment as a file that can then be executed on any 
Docker host platform (which can be LINUX, MacOS or Windows Server). This is much 
like virtual machine technology, but has much lower computing requirements. 

 
In research, we frequently think of ‘pipelines’ where a series of tools are applied 

to a dataset, producing a final output at the end of the pipe. With Docker technology, it is 
feasible to connect a number of tools (Dockers) together that might otherwise not be 
compatible. One minor challenge to this approach is providing access to the image files 
to process, and the result, in a secure and controlled fashion. Security is increasingly 
recognized as an important part of proper research computing, and others working on 
pipelines have largely ignored security, and we believe that will become a critical error. 

 
To leverage Dockers while addressing the security issue, we propose deploying 

the image analysis algorithms as web application and interact with them though a 
RESTful Application Programming Interface (API). We have extended an open source 
software tool called Grunt (https://githuib.com/Mayo-QIN/grunt).  The aim of Grunt is to 
simplify the creation and deployment of web apps utilizing Dockers with an easy and 
well-documented connection method. 

   

https://www.docker.com/
https://githuib.com/Mayo-QIN/grunt
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The only documentation needed is a description of the endpoints of the RESTful 
api basically the description of the required algorithm inputs. Grunt can be configured 
based on configuration files (yml or cli‐ ‐ enables compatibility with existing tools like 
Slicer)). The configuration files consist of multiple services described as endpoints of the 
RESTful api. 

 
By deploying the service through a RESTful api also enables the researched to 

leverage cloud architectures. Since one institution can create the grunt based app publish 
it in a private or public cloud and subsequently potential collaborators would be able to 
stream the data to the service and retrieve the results. A very crucial requirement for 
creating automated pipelines. Grunt also contains a web interface where users can check 
the jobs running. Furthermore a job scheduler is provided for long running jobs with 
functionality for monitoring and notification when the jobs are finished. 
 
§ Predicting MGMT methylation status utilizing machine learning 
 

Glioblastoma multiforme tumors (GBMs) with Methylguanine methyltransferase 
(MGMT) promoter methylation can be expected to respond better to an alkylating agent 
like temozolomide(17).  In addition, MGMT methylation may be considered as a 
predictive biomarker for a patient’s desirable response to radiation therapy. Several 
reports in the literature indicate that MGMT promoter methylation is associated with 
longer survival(18). However, while determination of MGMT methylation status has 
been standard of care for some time, an accurate result is not always obtained due to the 
requirement of large tissue specimens. 

 
A retrospective study of 155 GBM patients with known MGMT methylation 

status was conducted. Co-occurrence and run length texture features were calculated and 
both support vector machines (SVMs) and random forest classifiers (RFCs) were used to 
predict MGMT methylation status. 

 
The best classification system (an SVM-based classifier) had a maximum area 

under the ROC curve (AUC) of 0.85 (95% CI: 0.78 to 0.91) using four texture features 
(correlation, energy, entropy, and local intensity) originating from the T2-weighted 
images, yielding at the optimal threshold of the ROC curve a sensitivity of 0.803 and a 
specificity of 0.813 (Tables 2, 3). 

 
Results show that supervised machine learning of MRI texture features can 

predict MGMT methylation status in preoperative GBM tumors, thus providing a new 
noninvasive imaging biomarker.  

 
 
 
 
 
 
 

 
 

 

https://paperpile.com/c/qWWpEK/B9x5
https://paperpile.com/c/qWWpEK/KOFc
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Table 2: Results from random forest classifier (RFC) with feature 
extracted from T2 images (best performing system is in bold). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 3: Results from support vector machine (SVM) with feature 
extracted from T2 images (best performing system is in bold). 

 

Gray Level

(GL)
0.82

95% CI: 0.662 to 0.849
0.7

95% CI: 0.521 to 0.732
0.756

95% CI: 0.432 to 0.798
0.84

95% CI: 0.757 to 0.892
7 100 5 32

7 10 3 64

13 10 3 128

# 
Selected 
Features

Classifier 
parameter 
(estimator)

Window 
filter size

A z

10 50 3 16

Gray Level

(GL)
C: 10.0, 0.83

σ: 0.1 95% CI: 0.637 to 0.867

C: 10.0, 0.85

σ: 0.01 95% CI: 0.782 to 0.913

C: 1.0, 0.78

σ: 1e-03 95% CI: 0.594 to 0.804

C: 1.0, 0.78

σ: 1.1e-03 95% CI: 0.633 to 0.821

C: 1.0, 0.8

 σ: 1.0 95% CI: 0.512 to 0.822

C: 10.0, 0.76

σ: 1e-04 95% CI: 0.422 to 0.824

C: 100.0, 0.75

σ: 1e-02 95% CI: 0.410 to 0.816

8 5 16

4 5 64

3 64

4 5 16

4 5 16

Window 
filter size

A z

4 3 16

4 3 32

# 
Selected 
Features

Classifier 
parameter 
(estimator)

4
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IMAGE ANALYSIS TOOLS FOR LOW GRADE GLIOMAS 
 

We have developed a complete software package which includes several brain 
image analysis tools such as rigid, nonrigid, and atlas image registration, bias field 
correction, skull striping, and semi-automated segmentation algorithm for low grade 
glioma (LGGs) (19) and shared it publicly for other QIN members 
(https://github.com/aqqush/LGG_Software). We have also developed a deep learning 
based classification approach for predicting chromosomal arms 1p/19q deletion from 
MRI images (Akkus et al. 2016). Furthermore, our work on fully-automated 
segmentation of LGGs in pre- and post- operative images using deep learning and 
assessment of LGGs progression are still ongoing.  
 
§ Semi-automated Segmentation of Preoperative Low Grade Gliomas 

 
Segmentation of pre-operative LGGs from magnetic resonance imaging is a 

crucial step for studying imaging biomarkers. However, segmentation of LGGs is 
particularly challenging because they rarely enhance after gadolinium administration. 
Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-
defined tumor boundaries, and limited number of image types. To overcome these 
challenges we propose a semi-automated segmentation method that relies only on T2-
weighted (T2W) and optionally post-contrast T1-weighted (T1W) images. First, the user 
draws a region-of-interest (ROI) that completely encloses the tumor and some normal 
tissue. Second, a normal brain atlas and post-contrast T1W images are registered to T2W 
images. Third, the posterior probability of each pixel/voxel belonging to normal and 
abnormal tissues is calculated based on information derived from the atlas and ROI. 
Finally, geodesic active contours use the probability map of the tumor to shrink the ROI 
until optimal tumor boundaries are found. This method was validated against the true 
segmentation (TS) of 30 LGG patients for both 2D (1 slice) and 3D. The TS was 
obtained from manual segmentations of three experts using the Simultaneous Truth and 
Performance Level Estimation (STAPLE) software. Dice and Jaccard indices and other 
descriptive statistics were computed for the proposed method, as well as the experts’ 
segmentation versus the TS. We also tested the method with the BraTS datasets, which 
supply expert segmentations. For 2D segmentation vs. TS, the mean Dice index was 0.90 
± 0.06 (standard deviation), sensitivity was 0.92, and specificity was 0.99. For 3D 
segmentation vs. TS, the mean Dice index was 0.89 ± 0.06, sensitivity was 0.91, and 
specificity was 0.99. The automated results are comparable with the experts’ manual 
segmentation results. We present an accurate, robust, efficient, and reproducible 
segmentation method for preoperative LGGs. 

 
§ Predicting Chromosomal Arms 1p19q Codeletion from MRI images 
  

In this study, we predict the 1p/19q chromosomal arm deletion from MR images 
using convolutional neural networks (CNN), which could be a noninvasive alternative to 
surgical biopsy and histopathological analysis. Our method consists of three main steps: 
image registration, tumor segmentation, and classification of 1p/19q status using CNN. 
We included a total of 159 LGG subjects (57 nondeleted and 102 codeleted) and 
preoperative postcontrast-T1 (T1C) and T2 images. The T1-weighted images were 
rigidly registered to the T2 images. For all images, the image where the tumor had the 
largest cross-sectional area as well as the slice immediately above and below were 
segmented using the semi-automated tool that we developed above. We divided our data 

https://paperpile.com/c/qWWpEK/GXKl
https://github.com/aqqush/LGG_Software


150 
 

into training, validation, and test sets. The training data was balanced for equal class 
probability. We used data augmentation, including random translational shift, rotation, 
and horizontal and vertical flips to increase the size of the training set at each epoch. 
Finally, we evaluated several configurations of a multi-scale CNN architecture until 
training and validation accuracies became consistent. We also compared the performance 
of our method to the performance of a classical machine-learning algorithm using 
support vector machine (SVM) classifier with greedy feature selection. Using seven 
selected features (from intensity-based features, local binary patterns, Gabor filters, 
Laplacian of Gaussian, gray-level co-occurrence matrix, and boundary sharpness) the 
SVM classifier was trained and tested on the same data.  The multiscale CNN overfits 
the original (limited size) data when data augmentation is not used. The training accuracy 
was 100% for both the training and validation sets, but remained below 80% for the test 
data. The results of the best performing configuration on the unseen test set were 96% 
(sensitivity), 82% (specificity), and 89% (accuracy). The results of the SVM on the test 
set were 80% (sensitivity), 82% (specificity), and 81% (accuracy).  Multi-scale CNN, 
which learns a hierarchy of complex features directly from raw image data with their 
self-learning capability, provides promising results for predicting 1p/19q status 
noninvasively based on T1C and T2 images. 
 

PLANS FOR NEXT YEAR 
 

Our aim for the last year of our grant is to fully focus on deep learning and more 
specifically in its application in segmentation and prediction of genomics utilizing MRI 
data. We have obtained a large collection of LGGs from UCSF used in a recent paper 
that has genomic data. Furthermore we are planning to compare the performance of the 
deep learning architectures with traditional machine learning approaches.  

 
We are also planning to extend the functionality of the Grunt pipeline work with 

BIDS group to ensure that our tool is compatible with the pipeline tools available in 
QIN. 
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INTRODUCTION 
 
§ Specific Aim 1 
 

Develop a framework for quality control (QC) in functional MRI of the liver in 
patients with hepatocellular carcinoma (HCC).  

 
§ Specific Aim 2 
 

Validate a quantitative multiparametric scoring system combining measurements of 
MR diffusion, perfusion and hypoxia against histopathologic measures of tumor 
grade/cellularity, aggressiveness, angiogenesis and hypoxia in human HCC.  
 
Specific aims 1 and 2 are as initially stated, and not modified. 
 
§ Specific Aim 3 
 

Validate new imaging response parameters based on multiparametric quantitative 
MRI in patients with advanced HCC treated with sorafenib in an independent study.  We 
have slightly modified specific aim 3 by changing the treatment from sorafenib to Yttrium 
90 radioembolization.  
 

Updated specific aim 3 reads as follows:  Validate new imaging response parameters 
based on multiparametric quantitative MRI in patients with advanced HCC treated with Y90 
radioembolization in an independent study.  Rationale for the modification: we have decided 
to switch to radioembolization, as it is a more effective treatment than sorafenib.  
 

DISCUSSION OF PROGRESS 
 
§ Specific Aim 1 
 

Data on repeatability has been reported last year and published (1-3).    
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§ Specific Aim 2 
 

R1 and R2* measurement under oxygen and carbogen challenge: data already 
reported last year and published in (1). 
 

IVIM DWI results and correlation with DCE-MRI: data already reported last 
year and published in (2). 

 
DCE-MRI quantification with Tofts model vs. shutter-speed model: data already 

reported last year and published in (3). 
 
§ New Data 
 

Quantification of HCC tumor heterogeneity using mpMRI [manuscript 
submitted]  
 

Introduction: Many studies that employ mpMRI to assess/predict tumor response 
use central tendency parameters, such as mean or median, over entire regions of interest 
(ROIs) to determine longitudinal changes in tumor tissue after treatment (5). However, such 
analysis may not represent the exact tumor status, given the intrinsic heterogeneous tumor 
composition (5). Heterogeneity analysis of tumor MRI measurements may provide accurate 
markers of tumor heterogeneity at the genetic, cellular and molecular levels (5) and thereby 
allow for a better understanding of tumor characteristics that affect treatment. HCC lesions 
are known to exhibit substantial intra- and inter-tumor heterogeneity, due to a large variety 
in etiological and genetic backgrounds and the longtime development of the disease (6). 
Tumor heterogeneity poses a significant challenge for treatment stratification. While 
morphological and genetic heterogeneity in HCC lesions has been assessed previously (7), 
imaging reports on HCC heterogeneity are extremely limited (8). Tumor imaging 
phenotypes, including histogram features, potentially correlate with the underlying genotype 
and subsequently noninvasive imaging, including MRI, can be used as a surrogate for 
genomics and transcriptomics (radiogenomics) (9). Recently, there has been considerable 
interest in immunotherapy of a wide variety of cancers, including HCC (10). The success of 
such treatment heavily depends on tumor expression of immunotherapy targets, such as 
immune checkpoints. Identification of imaging features that correlate with gene expression 
of immunotherapy targets potentially allows for noninvasive prediction of immunotherapy 
outcome at baseline.  
 

Purpose: To quantify tumor heterogeneity in HCC using mpMRI, and to report 
preliminary data correlating quantitative MRI parameters with histopathology and gene 
expression in a subset of patients.  
 

Materials and Methods: We included 32 HCC patients (M/F 26/6, mean age 59y) 
who underwent mpMRI including DWI, BOLD, TOLD and DCE-MRI. Histogram 
characteristics [central tendency (mean, median) and heterogeneity (standard deviation, 
kurtosis, skewness) MR imaging parameters] in HCC and liver parenchyma were compared 
using Wilcoxon signed-rank tests. Inter-tumor heterogeneity was assessed using the 
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coefficient of variation between histogram features across tumors. Histogram data was 
correlated between MRI methods in all patients and with histopathology and gene 
expression in 14 patients.  
 

Results: 39 HCC lesions were assessed (mean size 4.4±3.3 cm). HCCs exhibited 
significantly higher intra-tissue heterogeneity vs. liver with all MRI methods (P<0.042). 
Inter-tumor heterogeneity was significantly higher for kurtosis and skewness vs. mean 
parameters (P<0.001). While there were significant correlations for central tendency 
parameters between MRI methods and with each of histopathology and gene expression, 
heterogeneity parameters exhibited additional complementary correlations between BOLD 
and DCE-MRI and with histopathologic hypoxia marker HIF1α and gene expression of Wnt 
target GLUL, pharmacological target FGFR4, stemness markers EPCAM and KRT19 and 
immune checkpoint PDCD1.  
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: 54 year-old male patient with HBV cirrhosis and HCC. A) 
Representative magnified parametric maps (DCE-MR imaging, BOLD, TOLD 
and ADC) of a large (8.3 cm) HCC. Location of the tumor within the liver is 
indicated by the white arrow on the T2-weighted image (bottom row, right). A 
distinct region in the anterior portion of the tumor of high arterial flow (Fa) and 
low R2* was observed, reflective of high tumor perfusion and normoxia (black 
arrow in Fa and R2* pre O2 maps). The posterior portion of the tumor displays low 
Fa and high R2*, suggestive of poor perfusion and hypoxia (white arrow in Fa and 
R2* pre O2 maps). B) Histograms of Fa, R2* pre O2, R1 pre O2 and ADC in the 
same lesion. The extensive heterogeneity observed in the parameter maps of Fa 
and R2* pre O2 is also reflected in the histograms, as illustrated by the fat tails 
and pronounced skewness, indicated by the black arrows. ADC = apparent 
diffusion coefficient, ART = arterial fraction, DV = distribution volume, Fa, 
arterial flow, Fp = portal flow, Ft = total flow, MTT = mean transit time, R1 = 
longitudinal relaxation rate, R2* = transverse relaxation rate. 
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Figure 2: Heatmaps of correlations between mean, median, SD, kurtosis and skewness 
of MR imaging parameters in 39 HCC lesions (in 32 patients). Significant correlations 
(P<0.05) are colored according to the scale bar. A combined heatmap of all significant 
correlations between MR imaging features is shown on the right, illustrating additional 
information provided by heterogeneity parameters (SD, kurtosis and skewness). 
Significant correlations between DCE-MR imaging and BOLD were for example only 
seen for heterogeneity parameters and not for central tendency parameters (mean and 
median). ADC = apparent diffusion coefficient, ART = arterial fraction, DV = 
distribution volume, Fa, arterial flow, Fp = portal flow, Ft = total flow, MTT = mean 
transit time, R1 = longitudinal relaxation rate, R2* = transverse relaxation rate. 

 
 

Conclusions: Histogram analysis combining central tendency and heterogeneity 
mpMRI features is promising for noninvasive HCC characterization on the functional, 
histologic and genomics level.   
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§ Specific Aim 3  
 

We have enrolled so far 5 patients with HCC treated with radioembolization. Patients 
underwent mpMRI before and 6 weeks after treatment. We will look at the perceptive value 
of baseline, early follow-up and changes in parameters as possible markers of response at 6-
12 months. Results will be analyzed after at least 10 patients are enrolled.   
 

DISCUSSION OF COLLABORATIONS 
 

Within the Network: 1) we are in the process of submitting a manuscript assessing 
involving a QIN challenge involving multicenter quantification of T1 mapping in vitro, used 
for DCE-MRI purposes. 2) We have collaborated in several challenges: the DWI linearity 
challenge, the ADC challenge, and the prostate AIF challenge.   
 

Other Institutions Outside the Network: we have an ongoing collaborating with NYU 
(Daniel Sodickson’s group) on the use of radial GRASP sequence for perfusion acquisition. 
Data analysis showed major truncation artifacts in the arterial input function. We are looking 
for solutions to this.  
 

Industrial: we are collaborating with Siemens to test new sequences including DWI, 
DCE-MRI (using k-space sharing) and 3D T1 mapping.  
 

PLANS FOR NEXT YEAR 
 

Continue patient recruitment for specific aim 3 in patients treated with 
radioembolization. 
 
 

LIST OF QIN PUBLICATIONS 
 

1. Bane O, Besa C, Wagner M, Oesingmann N, Zhu H, Fiel MI, Taouli B. Feasibility and 
reproducibility of BOLD and TOLD measurements in the liver with oxygen and 
carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. 
J Magn Reson Imaging. 2016;43(4):866-76. doi: 10.1002/jmri.25051. PubMed PMID: 
26417669; PubMed Central PMCID: PMC4803537. 

2. Hectors SJ, Wagner M, Besa C, Bane O, Dyvorne HA, Fiel MI, Zhu H, Donovan M, 
Taouli B. Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular 
carcinoma: Is there a correlation with flow and perfusion metrics obtained with dynamic 
contrast-enhanced MRI? J Magn Reson Imaging. 2016. doi: 10.1002/jmri.25194. 
PubMed PMID: 26919327. 

3. Jajamovich GH, Huang W, Besa C, Li X, Afzal A, Dyvorne HA, Taouli B. DCE-MRI of 
hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-
speed model--initial experience. MAGMA. 2016;29(1):49-58. doi: 10.1007/s10334-015-
0513-4. PubMed PMID: 26646522. 

4. Huang W, Li X, Li X, Chang M, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, 
Fedorov A, Chen Y, Tudorica A, Gupta SN, Laymon CM, Marro KI, Dyvorne HA, 
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Miller JV, Chenevert TL, Yankeelov TE, Mountz J, Kinahan PE, Kikinis R, Taouli B, 
Fennessy F, Kalpathy-Cramer J. Variations of dynamic contrast-enhanced magnetic 
resonance imaging in evaluation of breast cancer therapy response: a multicenter data 
analysis challenge. Translational Oncology 2014 Feb 1;7(1):153-166 

5. Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, 
LaViolette PS, Oborski MJ, O'Sullivan F, Abramson RG, Jafari-Khouzani K, Afzal A, 
Tudorica A, Moloney B, Gupta SN, Besa C, Kalpathy-Cramer J, Mountz JM, Laymon 
CM, Muzi M, Schmainda K, Cao Y, Chenevert TL, Taouli B, Yankeelov TE, Fennessy 
F, Li X. The Impact of Arterial Input Function Determination Variations on Prostate 
Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: 
A Multicenter Data Analysis Challenge. Tomography: a journal for imaging research. 
2016;2(1):56-66. doi: 10.18383/j.tom.2015.00184. PubMed PMID: 27200418; PubMed 
Central PMCID: PMC4869732. 

6. Malyarenko DI, Newitt D, L JW, Tudorica A, Helmer KG, Arlinghaus LR, Jacobs MA, 
Jajamovich G, Taouli B, Yankeelov TE, Huang W, Chenevert TL. Demonstration of 
nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter 
trials. Magn Reson Med. 2016;75(3):1312-23. doi: 10.1002/mrm.25754. PubMed PMID: 
25940607; PubMed Central PMCID: PMC4630210. 

 
§ Submitted  
 
Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, Chen N, Fiel MI, Zhu H, 
Merad M, Hoshida Y, Taouli B. Characterization of hepatocellular carcinoma heterogeneity 
with multiparametric MRI. Radiology (submitted) 
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INTRODUCTION 
 

A major impediment to the development of new therapies for glioblastoma (GBM) is 
a lack of biomarkers to quantitatively monitor response. Standard of care diagnostic images 
(contrast-enhanced T1 weighted MRI and T2-weighted/FLAIR) are used to guide surgical 
resection and radiation therapy planning, While these images are excellent images to 
differentiate higher grade gliomas from the lower grade gliomas, they do not show entirety 
of the infiltration of GBMs. Proton magnetic resonance spectroscopic imaging (MRSI), 
which can characterize regions of brain based on levels of various metabolites and other 
substances, is a candidate imaging modality for defining high risk regions that are not 
identified by standard MRI.  Metabolites that can be evaluated include: choline (Cho), a 
peak reflecting cell membrane synthesis that is elevated in highly proliferating, non-necrotic 
gliomas; creatine (Cr), an energy metabolite; and N-acetyl aspartate (NAA), a healthy 
neuronal biomarker that is decreased as healthy tissue is displaced. Early studies established 
that the MR spectra of GBMs differ significantly from normal brain, with increased levels of 
Cho, and decreased levels of NAA.  
 

DISCUSSION OF PROGRESS 
 
§ Correlation Between sMRI Cho/NAA with Histology 
 

We have been developing an advanced spectroscopic technique we have termed 
spectroscopic MRI (sMRI), which combines advanced imaging technologies such as 3D 
whole brain echo-planar spectroscopic imaging (EPSI) and acceleration acquisition 
technologies with a new clinical platform for registering spectroscopy data with standard of 
care images, enabling easy visualization and an efficient clinical workflow. We have been 
using sMRI in various clinical studies at Emory to demonstrate it’s superiority compared 
with standard imaging alone to identify the entirety of GBMs, including non-enhancing 
infiltrative tumor. Based on a recently completed clinical study to correlate sMRI and 
histology in tumor samples collected via stereotactic biopsy-manner (Emory IRB00051663), 
we learned that the Cho/NAA ratio showed significant correlations with tumor cell density 
as determined via histological analysis (ρ = 0.82, p < 0.001). (Cordova et al. published in 
Neuro-Oncology 2016) 
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§ Correlation Between sMRI Cho/NAA with Recurrence Pattern 
 

Based on data from the control arm of our current U01 study (Emory IRB00055973), 
sMRI Cho/NAA ratio map before RT treatment initiation matched well with contrast-
enhancement at sites of tumor recurrence and exhibited an inverse relationship with 
progression-free survival (Cordova et al. published in Neuro-Oncology 2016). Figure 2 
shows the zoom-in view of recurrence case that Cordova et al. published in the QIN special 
issue of Tomography 2016) 
 

The 40-year-old male shown in Figure 2 exhibited a striking anterior tail of 
Cho/NAA elevation outside of the T1w-CE lesion that passed along the posterior horn of the 
left lateral ventricle before surgery. This metabolic abnormality continued to grow through 
the duration of RT, ultimately resulting in subependymal invasion along the trajectory of the 
Cho/NAA elevation. This patient underwent salvage surgery, which histologically 
confirmed GBM tumor at recurrence site.  This case also exhibited T1w-CE lesion 
morphological changes that approached a Dice coefficient of unity, or perfect agreement, 
when compared to pre-RT Cho/NAA 2X NORM volume (ΔDice: +19.0%, ΔMED: -
35.6.0%). This increase in agreement accounts for an addition of 12.9 cm3 of tumor in the 
pre-RT Cho/NAA 2X NORM volume from preRT to recurrence. These exciting results will 
be reported in the future once confirmed with other similar cases. 
 

Biomarker ρ p-value

NAA -0.50 0.01*

Cho 0.63 5E-4*

Cho/NAA 0.82 <1E-4* 

DWI-ADC 0.17 0.40

sMRI Biomarkers vs 
SOX2 (glioma marker) Density

Figure 1. A normalized metric of tumor infiltration, SOX2 (glioma marker)
density, identifies tumor outside of conventional imaging and exhibits striking
correlations with sMRI biomarkers. Though no obvious abnormality can be found
on preoperative T1w-CE or T2w imaging in this patient, a striking elevation in
Cho/NAA on sMRI suggests substantial tumor infiltration. Statistically significant
correlations were seen between various normalized metabolic markers and SOX2
density with Cho/NAA exhibiting the strongest association
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§ Development of Web-based spectroscopic MRI Clinical Interface 
 

There is widespread agreement that MR spectroscopy can provide valuable 
information without the need for exogenous contrast agents, however the infrastructure 
needed to incorporate sMRI into the clinical workflow is lacking. We have been developing 
a web-based sMRI clinical interface for analysis, visualization and integration of sMRI data 
into patient management. This “scanner-to-clinician” platform is designed to provide 
quantitative, expedient, and objective analysis to integrate sMRI into routine clinical usage, 
including diagnosis and therapy planning (radiation or surgery). In addition, this user-
friendly tool can be highly valuable in the sMRI-based diagnosis and evaluation of 
numerous other neuropathologies aside from cancer, including hypoxic-ischemic injury, 
multiple sclerosis (and other demyelinating diseases), inborn errors of metabolism, and 
neurodegenerative diseases, such as Alzheimer’s. 
 
 

Pre-RT @ recurrence

Figure 2. Abnormalities in Cho/NAA describe regions at high risk for recurrence before
RT in GBM. The yellow contour illustrates the regions that exhibit a Cho/NAA
abnormality ≥ 2-fold higher than normal contralateral brain co-registered with T1w-CE
taken before RT (left) and at the first recurrence after RT (regions of tumor recurrence -
blue contour). Though no T1w-CE abnormality was found before RT, preRT Cho/NAA
abnormality (yellow) clearly shows infiltration of subependymal space that becomes
contrast-enhancing 4 months later. Red contour was where 60 Gy (CTV60) was applied
for RT. The fusion of 2.0-fold Cho/NAA abnormalities to the CTV60 resulted in a target
covering a significantly larger proportion of the recurrence.
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Figure 3. We have developed an imaging technology known as “spectroscopic
MRI,” which can detect changes in tissue metabolism. This helps us monitor the
response to therapy in patients by tracking the changes in the metabolism of
tumor cells without the need for any injected contrast agents. sMRI clinical
interface is an easy-to-use web application for visualization and collaborative
treatment planning using sMRI. The left image shows a 51 year old female
diagnosed with glioblastoma before standard care treatment, and the right image
shows the same patient after. Unfortunately, she did not respond to chemo &
radiation, and the sMRI highlights the corresponding metabolic response (red
represents tumor infiltrative activity, blue represents healthy tissue).

Figure 4: The image shows a 28 year old female diagnosed with GBM who was treated
with HDAC inhibitor, an investigational drug being tested in the current U01 study, in
addition to standard chemo and radiation therapy. The left image is before treatment and
the right image is 4 weeks after treatment completion. As the sMRI highlights, the
metabolic changes show that she positively responded to the therapy (red represents
tumor infiltrative activity, blue represents healthy tissue, and lack of metabolite signals
represents necrosis).
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COLLABORATIONS WITHIN THE NETWORK 
 

Our current project is a two-site clinical study, with the Emory team collaborating 
with Johns Hopkins. The sMRI clinical interface has been shared between these sites, and is 
in the process of expanding testing to the University of Miami and New York University. 
We hope to deploy this technology with several QIN sites later in 2017. 
 

PLANS FOR NEXT YEAR 
 

We plan to continue with patient enrollment for our clinical study at two sites. We 
will continue to develop easier (automated) quality control components to display and report 
the reliable sMRI results: we are now focusing on developing spectral quality filter to 
eliminate the voxels with poor quality spectra or poor fitting.  
 

Our sMRI resolution is 108 microliters and the scan time for 3D whole brain sMRI 
for 6 different metabolite maps takes 15 mins. We have purchased a new Siemens Prisma 3T 
scanner with 32 channel head coil array that will be available for use in February 2017. We 
are working together with Dr. Maudsley at University of Miami (consultant) and Siemens to 
implement the same advanced sMRI sequence on Prisma. We anticipate a 40% signal-to-
noise ratio improvement while maintaining the same spatial coverage as our current systems. 
 

PUBLICATIONS AND PRESENTATIONS FROM QIN 
INVOLVEMENT 

 
§ Manuscripts published directly as a result of this grant 
 
Cordova, J.S., Shu, H.G., Liang, Z., Gurbani, S. S., Cooper, L.A.D., Holder, C.A. Olson, 
J.J., Kairdolf, B., Schreibmann, E., Neill, S., Hadjipanayis, C.G., Shim, H. (2016) Whole-
brain, spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. 
Neuro-Oncology, Neuro-Oncology, 18(8): 1180-9. PMC4933486 
 
Cordova, J.S., Gurbani, S. S., Olson, J.J., Liang, Z., Cooper, L.A.D., Shu, H.G., 
Schreibmann, E., Neill, S., Hadjipanayis, C.G., Holder, C.A., Shim, H. (2016) A systemic 
pipeline for the objective comparison of whole-brain spectroscopic MRI with histology in 
biopsy specimens from grade III glioma. Tomography, 2(2): 106-116. PMC4968944. 
 
Cordova, J.S., Kandula, S., Gurbani, S. S., Zhong, J., Tejani, M., Kayode, O., Patel, K., 
Prabhu, R., Schreibmann, E., Crocker, I., Holder, C.A., Shim, H., Shu, H.G. (2016) The 
impact of integrating volumetric whole-brain spectroscopic MRI into radiation treatment 
planning for glioblastoma.  QIN special issue, Tomography 2(4): 366-73.  
 
Schreibmann, E., Cordova, J.S., Gurbani, S., Holder, C.A., Cooper, L.A., Shu, H.G., Shim, 
H. (2016) Automated segmentation of high resolution 3D wholebrain spectroscopic MRI for 
glioblastoma treatment planning. Medical Physics 43(6) 3428. 
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§ National meeting education session presentations directly as a result of this grant 
 
 We organized several CME sessions during SNMMI mid-Winter meeting in 
Orlando. One of them was First-in-Human MR Molecular Imaging that included our 
research talks. In addition, we organized several sessions during SNMMI 2016 Annual 
Meeting in San Diego including CME Categorical Whole day Session and a NCI Cancer 
Imaging Program (CIP) Quantitative Imaging Network (QIN) session.  
 
§ National Presentations directly as a result of this grant 
 
 Invited Lectures at the National Meetings: 
 
Shim H. et al “IDH mutation detection in gliomas” – Society of Nuclear medicine mid-
Winter meeting, a continuing education session, Orlando, January 2016 
 
Shu H. et al. “Spectroscopic MRI identifies infiltrating margins in glioblastoma for 5-ALA 
fluorescence-guided surgery” - Society of Nuclear medicine mid-Winter meeting, a 
continuing education session, Orlando, January 2016 
 
Barker, P. et al. “Tumor tutorial” – International Society of Magnetic Resonance in 
Medicine, a continuing education session, Singapore, May 2016 
 
Barker, P. et al. “Brain Tumor Spectroscopy” – American Society of Neuro-Radiology, 
SAM session, Washington DC, May 2016 
 
Shim H. et al “Overview of cancer metabolism: glucose and amino acids” – Society of 
Nuclear medicine Annual meeting, a continuing education session, San Diego, June 2016 
 
Shu H et al. “1. Critical unmet needs for treatment planning imaging in brain tumor patients; 
2. Spectroscopic MRI for brain tumor patients” - Society of Nuclear medicine Annual 
meeting, a continuing education session, San Diego, June 2016 
  
Shu H. et al. “Feasibility of whole brain, high resolution spectroscopic MRI for glioblastoma 
tumor imaging” – American Society for Radiation Oncology, Boston, September 2016 
 
Shim H. et al. “Molecular Imaging mini-course: Clinical application of molecular imaging – 
Neuro” RSNA Refresher Course, Chicago, December 2016 
 

Invited Lectures at the Academic Centers: 
 
Shim H. et al. “The use of high resolution 3D whole brain MR spectroscopic imaging in the 
management of brain tumor patients”, Cedars Sinai Hospital, February 2016 
 
Shim H. et al. “Critical unmet needs for treatment planning imaging in GBM patients & 
spectroscopic MRI”, Cedars Sinai Hospital, June 2016 
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Shim H. et al. “Critical unmet needs for treatment planning imaging in GBM patients & 
spectroscopic MRI”, Mount Sinai, July 2016 
 
Shim H. et al. “Critical unmet needs for treatment planning imaging in GBM patients & 
spectroscopic MRI”, New York University, July 2016 
 
Barker, P. et al. “Brain Tumor Spectroscopy”, German Cancer Research Center in 
Heidelberg, Germany, August 2016. 
 
Shim H. et al. “The use of high resolution 3D whole brain MR spectroscopic imaging in the 
management of brain tumor patients”, Georgia State University, October 2016 
 
Shim H. et al. “Improved whole brain spectroscopic MRI to guide radiation dose escalation 
for glioblastomas”, University of Pennsylvania, Radiology Grand Rounds, December 2016 
 
Shim H. et al. “Improving cancer patient management through drug discovery and whole 
brain spectroscopic MRI” Seoul National University Hospital, Nuclear Medicine Grand 
Rounds, December 2016 
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INTRODUCTION 

 
The overall goal of this project is to develop and validate both standard and novel 

perfusion-weighted MRI (PWI) and diffusion-weighted MRI (DWI) biomarkers to monitor 
treatment response for both therapeutic clinical trials and standard of care treatment patients 
with brain tumors.  This goal addresses an urgent need for better ways to monitor targeted 
therapies, for which standard measures of enhancing tumor volumes are no longer sufficient.  
Two PWI methods will be characterized for clinical trials. The first more wide-spread DSC 
(dynamic susceptibility contrast) approach provides tumor rCBV (relative cerebral blood 
volume) measurements obtained after a pre-load of contrast agent and corrected for 
confounding contrast agent leakage effects.  The second approach, while less-proven has 
high-potential to become the most comprehensive perfusion solution.  It consists of using a 
dual-echo gradient-echo spiral method, which enables the simultaneous collection of both 
DSC (dynamic susceptibility contrast) and DCE (dynamic contrast enhanced) perfusion data 
using only a single dose of contrast agent and incorporates comprehensive correction for 
leakage effects [1-3].  In addition, we will continue to explore the potential of DWI methods 
for the evaluation of treatment response, specifically by computing changes in the apparent 
diffusion coefficient (ADC) across time and creating functional diffusion maps (fDM) 
within non-contrast-agent-enhancing regions.  

 
While both PWI and DWI have demonstrated great promise for treatment 

monitoring, studies defining their test-retest repeatability, necessary for use of these 
techniques in clinical trials, are lacking, and thus represent the focus of Aim 1. In addition, 
early results suggest that hybrid PWI/DWI maps will likely provide the most complete 
assessment of treatment response, a hypothesis that will be tested in Aim 2. Finally, in order 
to make the optimized PWI/DWI technology and workflow available in a robust and cost-
effective manner for clinical trials and standard practice, Aim 3 involves the development of 
a commercial integrated image analysis platform for use in large-scale multi-center clinical 
trials.   
 

DISCUSSION OF PROGRESS 
§ Specific Aim1  

 
Manuscripts: Published and in Progress 

 
Perfusion Repeatability: In collaboration with Massachusetts General Hospital, 

another QIN member, we published two papers describing the repeatability of DSC-pMRI 
methods [4, 5], and their dependence on post-processing methods, as well as the minimum 
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number of patients need to power a clinical trial [4]. The results show that when ordered by 
the RC, methods utilizing post-processing leakage-correction and ∆R2*(t) techniques 
largely offered superior repeatability. Across processing techniques the standardized 
RCBV[6] estimates were less variable (13-20%) than normalized rCBV (nRCBV) (24-67%) 
estimates.  It was also found that normalization of rCBV rather than AIF deconvolution (to 
estimate an ‘absolute’ value of CBV) resulted in a more repeatable measurement.[5]  

  
Significance: Knowledge of the repeatability of DSC-MRI perfusion 

methods has been lacking. These first reports providing this information are 
important for clinical translation and use in clinical trials. 

  
SPICE:  We recently published a paper describing the theory and initial feasibility 

of the dual-echo sequence, which has been renamed SPICE (spiral perfusion imaging with 
consecutive echoes) [7].  This paper appeared in the December 2016 issue of the journal, 
Tomography, includes a detailed mathematical description of the novel SPICE perfusion 
imaging acquisition and post-processing method.  This method can be used to 
simultaneously acquire DSC- and DCE-MRI data with only a single dose of gadolinium 
contrast agent.  It also does not require the collection of a precontrast T1 map for DCE-MRI 
processing and eliminates confounding contrast agent effects due to contrast extravasation.  

 
Significance: We are hopeful that the publication of the theory 

underlying SPICE will motivate more groups to adopt dual-echo sequences 
for perfusion. 

 
Prostate AIF Challenge: Dr. Peter LaViolette, Co-Investigator on this grant, has 

participated in the arterial input (AIF) challenge headed by Wei Huang from Oregon Health 
Science University (OHSU) by applying independent component analysis to extract the 
AIFs automatically. He processed both prostate cancer and sarcoma datasets and submitted 
them to the host institution. This study was recently published [8].  

 
Significance: There was good consistency across DCE parameter 

estimations using a variety of AIF tools.  Only the ICA tool, contributed by 
Dr LaViolette, showed the greatest discrepancy. 

 
Ongoing Experimental Studies 

 
SPICE vs DSC-MRI study: We completed the study to compare SPICE-derived 

rCBV maps to DSC-derived rCBV maps.  The results demonstrated that the rCBV values 
are comparable in both low-grade and high-grade tumors.  This is further proof that the 
SPICE method may provide similar information, yet be superior to standard methods since it 
requires only a single dose of Gd contrast agent while also providing additional (ie DCE) 
perfusion metrics.  An initial submission of the manuscript was not accepted.  A primary 
concern of the reviewers was the extra leakage-correction analysis and comparisons that 
were included.  (We had data to show the importance of preload to standard DSC-MRI.)  
However, this secondary comparison is not necessary for the validation of SPICE and served 
only to confuse the readers. It will therefore be removed and the manuscript submitted to 
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another journal and will focus more on the rCBV comparison and applications.  In the 
interim we decided it was important to get a description of the basic theory and feasibility 
published, which resulted in the SPICE manuscript described above. A revised paper of the 
comparison will be submitted in 2017 Q1. 

 
Significance:  The validation of SPICE is quite timely given the 

many discussions regarding the optimal dose of contrast for DSC studies in 
the context of using the least amount possible.  With SPICE this discussion 
will eventually become a non-issue since all data can be acquired with a 
single dose of contrast agent.  Publication of this work will also move us 
closer towards a QIN network goal of distributing the acquisition and post-
processing software to all interested QIN sites for further evaluation. 

 
Collection of double-baseline SPICE and diffusion data: Double-baseline data 

will be collected in patients with high-grade brain tumors within a short time-interval during 
which no change in tumor status is presumed to occur. As described previously, the 
prospective collection of the SPICE repeatability data has been delayed due to an upgrade of 
our GE MRI system, which made a current version unworkable.  The sequence and image 
reconstruction software have now been revised and recompiled for the GE 3T clinical 
platform as well as the GE 3T research MRI. This software upgrade together with the 
purchase of a power injector and the hiring of a certified radiology technologist for the 
research GE 3T MRI system enables us to perform many more add-on research studies.  The 
number of SPICE datasets collected has increased tremendously over the past two months 
such that we should be able to easily complete this study during this next funding cycle.  

 
Significance:  Previous studies to determine the repeatability of 

diffusion have not been performed and thus is the focus of the planned 
studies.  At the same time, the repeatability of SPICE, the new perfusion 
imaging method will be undertaken. 

 
§ Specific Aim 2   
 
 Manuscripts: In progress 
 
 Using Perfusion and Diffusion MRI to Distinguish Tumor from Treatment 
Effect:  We demonstrated that normalized and standardized rCBV values could be used to 
distinguish tumor from treatment effect (TE). Forty-eight tissue samples from sixteen brain 
tumor subjects were spatially correlated with pre-surgical MRI, which included DSC-MRI 
and DWI [9]. Biopsy locations were determined via a StealthStation® S7™ surgical 
navigation unit (Medtronic, Minneapolis, MN). Pathologic diagnosis confirmed 11 samples 
with pure treatment effect and 37 samples with pure GBM. All perfusion metrics 
distinguished treatment effect from GBM while ADC did not (Table 1). Of particular note, 
the normalized rCBV threshhold determined by us is comparable to the threshold 
determined by Dr Leland Hu (QIN associate member) at Barrow Neurological Institute in 
Phoenix Arizona.  A manuscript describing this work was submitted to the journal, 
Radiology, but not accepted.  It is being revised for submission in another journal. 
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Table 1: Image parameter results for distinguishing tumor from treatment. 
 
 

Significance:  This study is a first step towards addressing the 
longstanding need for a method to accurately distinguish true treatment 
response from pseuodprogression or pseudoresponse.  Given the consistency 
of results between two institutions, it appears that this is a good approach to 
develop test further and possibly become the basis of a new QIN network 
challenge. 

 
Fractional tumor burden (FTB) maps to predict treatment response:  Using the 

thresholds obtained for nRCBV (or sRCBV), fractional tumor burden (FTB) maps can be 
created to spatially visualize the portion of enhancing tumor that is treatment effect or GBM 
(Figure 1).  Preliminary results, shown in Figure 2, demonstrate that FTB may serve as an 
important marker useful for treatment management decisions.  In this group of patients with 
newly diagnosed GBM, and after undergoing chemo-radiation therapy, only FTB was useful 
for distinguishing both PFS and OS.  A similar result was found for patients treated with 
bevacizumab (not shown).  This work has been submitted as two separate abstracts for the 
2017 International Society of Magnetic Resonance in Medicine meeting.  In addition, a 
manuscript describing these FTB results is being prepared for journal submission in early 
2017. 
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Significance:  These results demonstrate that rCBV metrics provide 
information relevant to treatment evaluation, and can be used to create 
fractional tumor burden (FTB) maps, which are demonstrating promise as a 
new biomarker for evaluating treatment response. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Radiomic Profiling:  Additional studies using diffusion MRI and radiomic profiling 

demonstrate promise to distinguish tumor from TE and predict prognosis.  This work, led by 
co-investigator Dr Peter LaViolette is described in detail in two recently published journal 
articles [10, 11]. 
 

Significance:  These results demonstrate that diffusion MRI 
continues to play in role in understanding treatment response and together 
with other parameters, via radiomic profiling, can predict prognosis. 
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DSC-MRI Challenge:  A DSC Challenge was undertaken to boost confidence in 
DSC-MRI post-processing across sites and platforms.  The purpose of this challenge was to 
reach consensus regarding the post-processing of DSC-MRI data through a comparison of 
multi-site/multi-platform analyses of a shared brain tumor patient data set.  A total of 49 
low-grade (n=13) and high-grade (n=36) glioma DSC-MRI datasets were uploaded to the 
cancer imaging archive (TCIA). All glioma grades were confirmed by histopathology within 
41 days following the DSC-MRI study.  The datasets were co-registered with T1w images 
and included a predetermined AIF, necessary for the determination of CBF, ROIs of whole 
brain for efficient DSC processing, normal appearing white matter (NAWM), for the 
creation of normalized parameter maps, normal appearing cerebral cortex (NACC), as well 
as enhancing tumor ROIs.  Seven sites using seven different software (SW) platforms 
provided median ROI values for 18 different normalized rCBV (nRCBV), 2 standardized 
rCBV (sRCBV) and 12 normalized CBF (nCBF) metrics.  As listed in Table 2, there was 
excellent concordance across sites and platforms and each could statistically distinguish 
low-grade from high-grade glioma.  However, the thresholds that gave the best sensitivity 
and sensitivity varied from 1.3 to 1.7.  But with a nRCBV of 1.45 all platforms had a 
sensitivity and specificity of at least 80%.  This work was submitted as an abstract for the 
2017 International Society of Magnetic Resonance in Medicine meeting.  In addition, a 
manuscript describing theses results is being prepared for journal submission in early 2017. 

 
Significance:  These results demonstrate that DSC-MRI methods 

can be used more routinely, with confidence, for the evaluation of adult 
primary brain tumor. 
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§ Specific Aim 3  
 

IB Rad Tech 
 
IB Rad Tech is a customizable workflow wizard developed by our industrial 

collaborator, Imaging Biometrics (IB), to service many different “work in progress” 
workflows such as those being developed by QIN members. (See: 
http://69.162.134.80/~imagingb/files/9914/3050/6176/IB_Clinic.pdf)  It was recently 
enhanced with longitudinal processing capability, allowing the generation of comparison 
data for multiple patient time points.  

 
The core processing library used by IB Rad Tech was enhanced by the additional of 

several DWI-based outputs, including alpha-diffusion and IVIM parameter maps.  This 
technology was tested as part of one of the diffusion MRI challenges led by Dr David 
Newitt.  It is being further revised in response to feedback resulting from the participation. 
This functionality has not yet been exposed in the IB Rad Tech workflows, but is planned to 
be implemented during year four. Meanwhile, IB Rad Tech 2.0 is expected to be released as 
an FDA-cleared and CE-Marked product late in 2016 or early in 2017. 

 
In addition, a workflow for the creation of FTB (fractional tumor burden maps) as 

described under Specific Aim 2, has been developed.  It was used entirely for the processing 
described and will thus make it seamless to distribute the workflow to others for testing and 
use. 

Significance:  Having parallel development of an industrial 
platform ensures efficient and timely translation of the most proven 
technologies for widespread use in both the research and clinical 
communities. 

 
 

PLANS FOR NEXT YEAR 
 
§Specific Aim1  
 

Characterize the repeatability of DSC and DEGES PWI and DWI (fDM) parameters 
in primary brain tumors. 

 
• Revise and submit SPICE comparison paper with a working title of “Spiral Perfusion 

Imaging with Consecutive Echoes (SPICE) for the Simultaneous Mapping of DSC- and 
DCE-MRI Parameters in Brain Tumor Patients using a Single Dose of Gadolinium 
Contrast.” 

• Increase prospective data collection using SPICE sequence on both the clinical and 
research 3T MRI systems. 

• Complete diffusion and perfusion MRI repeatability studies. 
• Initiate new perfusion QIN network challenges, which may include the determination of 

AIF for DSC-MRI studies and/or the ability of each site to distinguish tumor from 

http://69.162.134.80/%7Eimagingb/files/9914/3050/6176/IB_Clinic.pdf)
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treatment effect with the upload of a new patient dataset with the appropriate diagnostic 
information. 

 
§ Specific Aim 2   
 

To prospectively determine the ability of pMRI and DWI to predict treatment 
response in glioblastoma patients. 

 
• Revise and submit the “Tumor versus Treatment Effect” paper. 
• Submit manuscript describing fractional tumor burden (FTB) results in patients treated 

with chemo-radiation therapy and bevacizumab therapy.  This may be one or two 
separate papers. 

• Complete and submit the “DSC-MRI Platform Challenge” paper. 
• Begin to evaluate the role of FTB in distinguishing pseudoprogression and 

psuedoresponse from true response. 
• Continue to evaluate the role of diffusion, and in particular the different diffusion 

approaches (IVIM, flow-compensated diffusion, and RSI (restricted spectrum imaging)) 
for treatment evaluation. 

• Continue to evaluate radiomic profiling for the detection of response, prediction of 
outcomes and, of great interest, the ability to detect tumor that is “invisible” with 
standard imaging. 
 

 
Specific Aim 3 
 
To develop a commercial integrated PWI/DWI image analysis platform for use in large-
scale multi-center multi-platform clinical trials.  
 
• Re-analyze the data from the (Dr David Newitt) DWI challenge.  In particular, the IVIM 

metrics need to be recalculated using the newly incorporated/modified Imaging 
Biometrics plugins. 

• Finish the dual-echo (ie SPICE) post-processing plugin tools.  Test these tools on both 
SPICE and EPI-based dual-echo datasets.  Accomplishing this task will position us well 
for a possible dual-echo DSC challenge. 

• MRI processing and workflows.  Test standard methods and models against the “fixed 
T1” model, which has been recently incorporated.  Initial results show that this may 
provide more useable DCE parameter maps. 

• Finalize testing on the deltaT1 standardization workflow.  Upon completion Imaging 
Biometrics plans to initiate another QIN challenge regarding tumor image segmentation. 
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INTRODUCTION 

 
Bladder cancer is a common type of cancer that can cause substantial morbidity and 

mortality among both men and women. Bladder cancer causes over 16,870 deaths per year 
in the United States [1]. It is estimated that 79,030 new bladder cancer cases will be 
diagnosed in 2017. Early diagnosis and treatment of these lesions is important to reduce 
the morbidity, mortality and their attendant costs compared to diagnosis at a later, more 
symptomatic stage that might involve deep invasion and/or metastasis. 

 
Correct staging of the bladder cancer is crucial for the decision of neoadjuvant 

chemotherapy treatment and minimizing the risk of under-treatment or over-treatment [2-8]. 
Only patients with stage T2 to T4 of muscle-invasive operable urothelial carcinoma of the 
bladder are recommended for treatment with neoadjuvant chemotherapy. If the response to 
chemotherapy can be estimated with sufficient accuracy and precision, it is possible to 
identify those patients that do not respond, stop the treatment early, and seek alternative 
treatment [8].  CT is an effective non-invasive modality for measuring primary site gross 
tumor volume (GTV) and the addition of MRI is on the rise. GTV has been used as a 
biomarker for predicting treatment outcome of bladder tumors [9]. Other pathological 
information and diagnostic test (bimanual evaluation, cystoscopy) results and 
immunohistochemical biomarkers are also useful for staging and treatment response 
monitoring. Although CT and MRI are promising methods for evaluation of a variety of 
bladder cancers, the time and costs required for the clinicians to outline cancer margins on a 
large number of CT and MRI slices for each case makes it difficult to advocate the use of 
this method for GTV estimation of every patient and of every pre- and post-treatment tumor 
evaluation.  

 
The goal of this project is to develop a novel multimodality quantitative image 

analysis tool for bladder cancer (QIBC) to assist radiologists in estimation of GTV and 
analysis of image characteristics, thereby improving the efficacy of image biomarkers. The 
QIBC will be designed to use either one or more than one modalities from CT and MRI.  

 
Another goal of this project is to develop novel decision support systems CDSS-S 

and CDSS-T for bladder cancer staging and for monitoring of bladder cancer treatment 
response based on multi-modality image-based, pathology-based and immunohistochemical 
biomarkers. The proposed QIBC, CDSS-S and CDSS-T have the potential to provide non-
invasive, objective, and reproducible decision support, thereby reducing the subjectivity and 
variability in these processes. In order to achieve these goals we are performing the 
following specific tasks: (1) to collect a database of multi-modality MR, CT exams of 
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bladder cancers for development, training and testing of the QIBC and CDSS algorithms; (2) 
to develop advanced computer vision techniques to quantitatively estimate bladder GTV and 
image characteristics; and (3) to develop predictive models using machine learning 
techniques to combine multimodality image based, pathological and immunohistochemical 
biomarkers for cancer staging and determination of non-responders. 

 
In addition, although we will focus on the specific application to the bladder tumors 

in this project, we plan to design the image analysis and decision support tools in a modular, 
expandable, and re-trainable framework. The software packages will be versatile and can be 
adapted to other tumor types or imaging modalities in the future by proper retraining with 
case samples of the tumor type of interest and expansion of the decision support tools as 
needed.  Therefore, the development of the QIBC, CDSS-S and CDSS-T will potentially 
benefit not only the bladder tumor patients but also patients with other types of tumors that 
require staging and monitoring of treatment response. 
 

DISCUSSION OF PROGRESS 
 

§ Specific Aim 1: Data Collection 
 

During the current time period of the project we have collected additionally 102 
CTU bladder cancer cases from CTU examinations performed at University of Michigan. 
This includes 81 pre- and post- neoadjuvant chemotherapy treatment cases with clinical 
stage larger than T1, and 21 cases of which the clinical stage were called T1 and did not 
underwent neoadjuvant chemotherapy treatment. As a result we have collected in total 226 
CTU bladder cancer cases: 132 pre- and post- neoadjuvant chemotherapy treatment cases 
and 94 cases of clinical stage T1. For each patient, the images are downloaded from the 
PACS system. The treatment records, pathology reports, and the clinically estimated 
treatment outcome after completion of the chemotherapy, are collected from patient files. 
All collected images and clinical information are stored into our CAD Lab information 
infrastructure (CADii). At present all patients undergo 3 cycles of chemotherapy. After 
completion of the chemotherapy treatment, the patients undergo radical cystectomy. The 
gold reference standard for the chemotherapy treatment outcome is determined by 
histopathology findings after radical cystectomy. Our clinical co-investigators marked each 
lesion and provided descriptors seen on the images. Two radiologists have manually drawn 
3D outlines as gold standard for 171 cases. 

 
In addition, we are part of a team which has started prospective collection of 

pathological information, diagnostic test results, immunohistochemical biomarkers, and CT 
scans from bladder cancer patients after the first cycle of chemotherapy. The protocol for 
data collection is approved by IRB. We have started the data collection. We have full access 
to the collected data. So far we have collected 13 cases. This will be very valuable dataset 
allowing us to develop tools for very early prediction of response to treatment. 

 
 

  



183 
 

§ Specific Aim 2: Design of quantitative image analysis tool (QIBC) for evaluation of 
bladder GTV and image characteristics 
 

For both decision support systems CDSS-S and CDSS-T, an important component is 
to quantify the bladder gross tumor volume (GTV) and image characteristics. During the 
current time period of the project we have continued the development of a quantitative 
image analysis tool for bladder cancer, QIBC, specifically designed for these applications. 
We have been exploring further the use of a deep learning convolution neural network (DL-
CNN) in QIBC. The details of the QIBC design and evaluation of the segmentation of the 
bladder lesions and bladder wall thickenings are presented in the following: 
 

Segmentation of Inner and Outer Bladder Wall using Deep-Learning 
Convolutional Neural Network in CT Urography 
 

We have explored the use of a deep-learning convolutional neural network (DL-
CNN) to segment the bladder wall. This task is challenging due to differences in the wall 
between the contrast and non-contrast-filled regions, significant variations in appearance, 
size, and shape of the wall among cases, overlap of the prostate with the bladder wall, and 
the wall being extremely thin and occasionally invisible compared to the overall size of the 
bladder. 
 

Methods:  We trained a DL-CNN to distinguish the bladder wall from the inside of 
the bladder and the outside of the bladder using neighborhood information. A training set of 
about 240,000 regions of interest (ROIs) (Figure 3) were extracted from training cases for 
which the boundaries of the inner and outer wall of the bladder had been manually drawn. 
Half of the 16x16-pixel ROIs were determined to include the bladder wall and the other half 
were selected to exclude the bladder wall with some being inside the bladder wall and the 
rest outside the bladder entirely. The DL-CNN trained on these ROIs was applied to the test 
cases slice by slice to generate a bladder wall likelihood map where the gray level of a given 
pixel represents the likelihood that a given pixel would belong to the bladder wall. In 
addition, we used the DL-CNN likelihood map as an energy term in the energy equation of a 
cascaded level sets method to segment the inner and outer bladder wall (Figure 1 and Figure 
2). A data set of 173 cases collected as described in Specific Aim 1 was used in this study. 
The data set was randomly split into two independent sets of training (81 cases) and testing 
(92 cases). Of this data set, 79 of the training cases and 37 of the test cases were hand 
outlined for both the inner and outer wall and used in this study. The DL-CNN segmentation 
with level sets was compared to these 3D hand-segmented contours as a reference standard. 
The accuracy of the segmentation was evaluated with four performance metrics: average 
volume intersection %, average % volume error, average absolute % volume error, and 
average distance. These performance measures were applied to the inner and outer wall 
contours independently. We compared the outer wall contours to the bladder segmentation 
contours based on our previous method. We also evaluated the accuracy of the bladder wall 
segmentation by the average bladder wall volume intersection %, average % bladder wall 
volume error, and average absolute % bladder wall volume error. 
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Figure 1:  Flowchart of DL-CNN segmentation that shows generation of a 
bladder wall likelihood map and use of level sets to obtain inner and outer wall 
contours. The DL-CNN likelihood map was used as an energy term in the 
energy equation of a cascaded level sets method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Example of bladder 
segmentation. The blue contour is 
for the outer wall and the pink 
contour is for the inner wall. (a) The 
DL-CNN effectively follows the 
inner and outer wall with slight 
over-segmentation of both. (b) The 
DL-CNN under-segments the inner 
contour, but successfully segments 
the thickened wall pointed to by the 
arrow.  

 

(a) 

(b) 
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Figure 3:  Subset of 240,000 ROIs used to train the DL-CNN. Each ROI is 
16x16 pixels. (a) ROIs that are labeled as within the bladder wall. (b) ROIs that 
are labeled as outside the bladder wall.  

 

Results:  For the training set, the inner wall contour achieved the average volume 
intersection %, average % volume error, average absolute % error, and average distance of 
90.0±8.7%, -4.2± 18.4%, 12.9±13.9%, and 3.0±1.6mm (Table 1). For the test set, the inner 
wall achieved values of 86.9±9.6%, -8.3±37.7%, 18.4±33.8%, and 3.4±1.8mm respectively. 
For the training set, the outer wall contour achieved the values of 93.7±3.9%, -7.8±11.4%, 
10.3±9.3%, and 3.0±1.2mm respectively. For the test set, the outer wall contour achieved 
values of 87.5±9.9%, -1.2±20.8%, 11.9±17.0%, and 3.5±2.3mm respectively (Figure 4). The 
outer bladder wall segmentation was compared to the bladder segmentation based on our 
previous method in Table 2. If the segmented bladder wall was evaluated with the average 
bladder wall volume intersection %, average % bladder wall volume error, and average 
absolute % bladder wall volume error, the values were 61.0±11.4%, -13.7±49.1%, and 
34.5±37.3%, respectively, for the training set, and 54.6±10.4%, 10.7±28.0%, and 
25.1±15.8%, respectively, for the test set. The direct measurement of the bladder wall 
obtained less accurate results because slight deviations of the wall contour would lead to a 
much larger % error due to the much smaller wall volume compared to the inner and outer 
bladder volume.   

Conclusions:  A DL-CNN with level sets can effectively segment bladder walls 
from the inner bladder and outer structures despite a lack of consistent distinctions along the 
inner wall. The outer wall segmentation was improved compared to our previous method 
and the DL-CNN was also able to segment the inner bladder wall with similar results. 
(QIN Publications and Presentations: #10). 
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Figure 4:  Histograms of the (a,b) volume intersection %, (c,d) volume % error, and 
(e,f) average distance for the training and test sets, respectively for the inner and outer 
bladder wall segmentations 
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Table 1:  Performance metrics for inner and outer bladder wall. 
 

 
 
 
 
 
 
 
 
 
 
 

Table 2:  Comparison between current and previous DL-CNN outer 
wall contours for volume intersection % and volume percent error. 

 
 

Segmentation of Bladder Cancer for Treatment Response Assessment using 
Deep-Learning Convolution Neural Network 
 

In this study, we applied DL-CNN to bladder lesion segmentation. The DL-CNN 
was trained to recognize the patterns in the regions that were inside and outside of the 
bladder lesion and generate a lesion likelihood map. Minor refinement on the likelihood map 
was performed by level sets to obtain the segmented boundaries of the bladder cancer.  
 

Methods:  A data set of 62 cases was collected as described in Specific Aim 1. All 
of the patients in the data set had undergone CT examination before and after chemotherapy. 
The data set contained 64 tumors. A reference standard for the computerized segmentation 
was obtained via 3D hand-segmented contours of the bladder tumors in the pre- and post-
treatment CTs by two radiologists (reference standard 1 and reference standard 2, 

Inner 
Training

Outer 
Training

Outer 
Testing

Volume 
Intersect %

90.0 ± 8.7 93.7 ± 3.9 87.5 ± 9.9

Volume % 
Error

-4.2 ± 18.4 -7.8 ± 11.4 -1.2 ± 20.8

Absolute 
Volume % 
Error

12.9 ± 13.9 10.3 ± 9.3 11.9 ± 17.0

Average 
Distance(mm)

3.0 ± 1.6 3.0 ± 1.2 3.5 ± 2.3

Inner Testing

86.9 ± 9.6

-8.3 ± 37.7

18.4 ± 33.8

3.4 ± 1.8

Method

Training 
Volume 

Intersection 
%

Testing 
Volume 

Intersection 
%

Training 
Volume % 

Error

Testing Volume 
% Error

DL-CNN LS 93.7 ± 3.9 87.5 ± 9.9 -7.8 ± 11.4 -1.2 ± 20.8

Previous 86.5 ± 6.4 77.6 ± 12.0 7.3 ± 9.1 18.0 ± 12.5
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respectively). The DL-CNN by Krizhevsky et al. called cuda-convnet [10, 11] was used. The 
neural network was trained to classify regions of interests (ROIs) on 2D slices as being 
inside or outside of the bladder cancer. Details on the DL-CNN can be found in the literature 
[12]. The DL-CNN was trained with the pre-treatment scans of the cases. For each axial 
slice of the cases, a large number of overlapping 16 x 16-pixel ROIs were extracted from the 
region including the cancer marked by the radiologist. If more than 80% of an ROI was 
within the hand-outlined bladder cancer, the ROI was labeled as being inside of the cancer, 
whereas the ROI had to be completely outside of the cancer in order for it to be classified as 
being outside the cancer. ROIs not labeled as either inside or outside of the cancer were 
excluded. Figure 5 shows an example of ROIs obtained from a CT slice. The number of 
ROIs within the two classes was balanced, resulting in approximately 65,000 ROIs. The 
output of the DL-CNN can be interpreted as the likelihood of an input ROI being classified 
into one of the two categories. Leave-one-case-out cross-validation was employed for this 
study. In each of the leave-one-case-out partitions, all ROIs associated with a case were 
removed and the DL-CNN was trained using the remaining ROIs.  For each leave-one-case-
out partition, the trained DL-CNN network was applied to the removed case to generate the 
bladder cancer segmentation likelihood map.  Figure 6 shows the bladder cancer likelihood 
map for the CT slice shown in Figure 5.  The DL-CNN was applied to the CT scan for both 
the pre- and post-treatment scans for each bladder cancer case. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  An axial slice of a pre-treatment CT scan from a training case. (a) Cropped 
CT slice centered at the bladder. (b) Radiologist’s hand-outline of the cancer overlaid 
on the CT slice. (c) ROIs extracted from this slice. The yellow ROI shows the size of a 
16 x 16-pixel ROI. The ROIs are partially overlapping. The blue ROIs are labeled as 
inside the bladder cancer. The pink ROIs are labeled as outside the bladder cancer for 
training the DL-CNN. 

 
 

 
 
 
 
 
 
 

(a) (b) (c) 
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Figure 6:  Bladder Cancer likelihood map of the CT slice shown in Figure 5. 
Regions that are highly likely to be bladder cancer have higher intensity 
values. The VOI that was used for this lesion is shown in blue. For 
demonstration purposes, the bladder cancer likelihood map was generated in 
the region around the entire bladder. 

 
 
As seen in the example of Figure 6, the likelihood map identifies the bladder tumor 

region very well but the tumor boundary is not sharply demarcated. 3D and 2D level sets, 
are used to perform minor refinements to the contour. A 3D level set is applied to the initial 
segmentation surface, and the segmentation on each slice is further refined by a 2D level set. 
Details on the level sets used can be found in the literature [13]. Figure 7 shows the final 
contour of the bladder cancer on the CT slice from Figure 5 using the likelihood map shown 
in Figure 6. Segmentation performance was evaluated by comparing quantitatively the 
automatic segmentation results to the 3D hand-segmented contours. The average minimum 
distance, and the Jaccard index [14] between the hand-segmented contours and computer 
segmented contours were calculated. 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 7:  Bladder cancer segmentation on the CT slice shown in 
Figure 1 using the bladder likelihood map shown in Figure 6. 
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Figure 8:  Examples of segmentations of bladder tumors in pre-treatment (a, c, e) 
and post-treatment (b, d, f) CT scans. The DL-CNN segmentation is shown in 
light blue. The AI-CALS segmentation is shown in pink. The hand outline is 
shown in dark blue. (a) DL-CNN segmentation with AI-CALS segmentation and 
hand outline for the cancer shown in Figure 5. Both computer methods segmented 
the lesion reasonably. (b) The cancer shrunk due to treatment, and became a part 
of the bladder wall. The DL-CNN under-segmented the cancer, not extending 
enough into the bladder wall. AI-CALS over-segmented the lesion, leaking into 
the bladder. (c) The DL-CNN segmentation outlined the cancer relatively 
accurately, while the AI-CALS segmentation leaked. (d) In this post-treatment 
scan, the cancer along the bladder wall was reasonably segmented by DL-CNN, 
while the AI-CALS was unable to follow the shape and leaked into the bladder. 
(e) Both DL-CNN and AI-CALS segmented the bladder cancer reasonably well, 
but the AI-CALS slightly under-segmented the cancer. (f) The bladder cancer 
responded to treatment, thus had shrunk considerably, making the segmentation 
difficult. Both the DL-CNN and the AI-CALS under-segmented the lesion. 
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Results:  Examples of DL-CNN segmented bladder cancer on pre- and post-
treatment CT scans, along with the AI-CALS segmentation, are shown in Figure 8. The 
segmentation performance measures of both the DL-CNN and AI-CALS methods compared 
with reference standard 1 are presented in Table 3. For all lesions, the difference in the 
average minimum distance was statistically significant with a p-value of 0.001, while the 
difference in the Jaccard index approached significance with a p-value of 0.058. The 
differences in the pre-treatment lesion segmentation performances were statistically 
significant with p-values of less than 0.001 and 0.015 for the average minimum distance and 
the average Jaccard Index, respectively. The differences in the post-treatment lesion 
segmentation performances did not reach statistical significance. The segmentation 
performance measures of the DL-CNN and AI-CALS methods compared with the two 
reference standards averaged over the pre-treatment lesions, post-treatment lesions, and both 
pre- and post-treatment lesions for a subset of 29 cases are presented in Table 4. None of the 
differences reached statistical significance for this subset of cases. 
 

Conclusions:  Our results demonstrate that DL-CNN is useful for 3D segmentation 
of bladder cancers for a variety of bladder cancer shapes and sizes. The DL-CNN and the 
AI-CALS methods were able to automatically segment the cancers, with results similar to 
those of the radiologists. This study suggests that computerized segmentation of bladder 
cancers using DL-CNN has the potential to assist in the assessment of tumor volume of 
bladder cancer by providing the more accurate 3D information without the extensive effort 
of manual segmentation.  (QIN Publications and Presentations: #3) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3:  Lesion segmentation 
evaluation using reference 
standard 1 (RS1). The results are 
shown in groups of pre-treatment, 
post-treatment, and both pre- and 
post-treatment lesions (126 
lesions). The p-values from 
Student’s two-tailed paired t-test 
for the differences between the 
DL-CNN and the AI-CALS 
segmentation methods are also 
shown. Some post-treatment 
lesions were determined to have 
shrunk completely by radiologist, 
thus no segmentation was 
performed 

DL-CNN vs 
RS1

AI-CALS vs 
RS1

p-value

Average 
minimum 
distance

Pre-
treatment

4.8 ± 2.3 mm 6.1 ± 3.6 mm 0.001*

AVDIST Post-
treatment

4.6 ± 1.8 mm 4.9 ± 2.6 mm 0.389

Both 4.7 ± 2.1 mm 5.5 ± 3.2 mm 0.001*

Jaccard 
index

Pre-
treatment

39.5 ± 17.1% 34.7 ± 15.8% 0.015*

JACCARD 3D Post-
treatment

32.6 ± 17.8% 32.7 ± 14.4% 0.936

Both 36.3 ± 17.7% 33.8 ± 15.1% 0.058

* Statistically significant at p < 0.05
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§ Specific Aim 3: Design of CDSS-S and CDSS-T decision support systems to assist 
clinicians in staging and monitoring of treatment response of bladder cancer. 

 
During the current time period of the project we have continued the development of 

the decision support systems for bladder cancer staging and treatment response monitoring. 
 
Specific Aim 3.1: Design of computer decision support system (CDSS-S) for 

bladder cancer staging. 
 
Correct staging of bladder cancer is crucial for the decision of neoadjuvant 

chemotherapy treatment and minimizing the risk of under-treatment or over-treatment. At 
clinical staging, approximately 30% of patients are under-staged or over-staged. Subjectivity 
and variability of clinicians in utilizing various diagnostic information may lead to 
inaccuracy in staging bladder cancer. An objective decision support system that merges the 
information in a predictive model based on statistical outcomes of previous cases and 
machine learning may assist clinicians in making more accurate and consistent staging 
assessments. 

 
We have continued the design of CDSS-S. During the current time period of the 

project we have developed a CDSS-S to stage bladder cancer based on different machine 
learning techniques. The details of the CDSS-S design and evaluation are presented in the 
following:  
 

Methods:  A data set consisting of 84 bladder cancer lesions from 76 CTU cases 
collected as described in Specific Aim 1, was used to train and test the classifier. The cases 
were grouped into two classes based on pathological stage ≥T2 or below T2, which is the 
decision threshold for neoadjuvant chemotherapy treatment clinically. There were 43 

Table 4:  Lesion segmentation 
evaluation results for a subset 
of 29 cases divided into pre-
treatment, post-treatment, and 
both pre- and post-treatment 
lesions (58 lesions) between 
hand-segmented reference 
standards (RS1, RS2) by two 
different readers for DL-CNN 
and the AI-CALS 
segmentation methods.  None 
of the paired differences 
between the two methods 
reached statistical significance 
for this subset, probably due to 
the small sample size. 

DL-CNN vs 
RS1

AI-CALS 
vs RS1

DL-CNN vs 
RS2

AI-CALS 
vs RS2

Average 
minimum 
distance

Pre-
treatment

4.8 ± 1.8 mm
5.3 ± 2.7 

mm
4.9 ± 3.4 mm 4.5 ± 1.9 mm

AVDIST Post-
treatment

4.3 ± 1.7 mm
4.4 ± 1.8 

mm
4.7 ± 3.1 mm 4.9 ± 3.7 mm

Both 4.6 ± 1.8 mm
4.8 ± 2.3 

mm
4.8 ± 3.2 mm 4.7 ± 2.9 mm

Jaccard index Pre-
treatment

45.3 ± 8.5%
42.5 ± 
14.1%

46.8 ± 9.3% 42.8 ± 12.5%

JACCARD 3D Post-
treatment

29.8 ± 
17.7%

32.9 ± 
14.8%

28.8 ± 19.7% 28.6 ± 18.2%

Both
37.5 ± 
15.8%

37.7 ± 
15.2%

37.8 ± 17.8% 35.7 ± 17.1%
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cancers below stage T2 and 41 cancers at stage T2 or above. All 84 lesions were 
automatically segmented using our previously developed auto-initialized cascaded level sets 
(AI-CALS) method. Each lesion was marked with a bounding box by a radiologist. This box 
served as the input to our 3D AI-CALS automated segmentation system. The segmentation 
of bladder lesions can be challenging as some lesions are very small, subtle in contrast, or 
have irregular boundaries. Additionally, lesions are sometimes located in the non-contrast 
enhanced region of the bladder and the contrast between the lesion boundary and the 
surrounding background is very low. 

 
Morphological [15] and texture features [16, 17] were extracted. The morphological 

features included gray level features, contrast features, and the lesion volume. The texture 
features included filtered Disarthy East-West and Horizontal direction features, and the gray 
level radial gradient direction features. The features were divided into subspaces of 26 
morphological features only, 65 texture features only, and a combined set of 91 
morphological and texture features.  

 
The data set was split into Set 1 and Set 2 for two-fold cross validation. The cancers 

were evenly and randomly split into two sets with 42 cancers each by balancing the number 
of cancers of each class. Set 1 consisted of 22 cancers below stage T2 and 20 cancers stage 
T2 or above. Set 2 consisted of 21 cancers below stage T2 and 21 cancers stage T2 or above. 
The average size for cancers of stage <T2 and ≥T2 in Set 1 were 26.4±17.3 mm and 
45.6±19.1 mm, respectively (Figure 9). The average size for cancers of stage <T2 and ≥T2 
in Set 2 were 27.3±10.8 mm and 40.6±17.3 mm, respectively (Figure 9). Stepwise feature 
selection was used to select the most effective features. A linear discriminant analysis 
(LDA), a neural network (NN), a support vector machine (SVM), and a random forest 
(RAF) classifier were used to combine the features into a single score. In the first fold, Set 1 
was used for feature selection and for training of the classifiers. The trained classifiers were 
then tested on Set 2. In the second fold, feature selection and classifiers’ training were 
performed on Set 2 and then tested on Set 1. The classification accuracy was quantified 
using the area under the ROC curve (Az) for both the training and test sets. 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 9:  Distribution of tumor sizes for Set 1 and Set 2. (a) Set 1: The 
average tumor sizes of stage < T2 and ≥ T2 were 26.4±17.3 mm and 
45.6±19.1 mm respectively. (b) Set 2: The average tumor sizes of stage 
< T2 and ≥ T2 were 27.3±10.8 mm and 40.6 ±17.3 mm respectively. 
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Results:  The performance of the classifiers based on different machine learning 
techniques, the LDA, NN, SVM, and RAF is summarized in Table 5. Different feature 
spaces containing the morphological features, the texture features, and the combined set of 
both morphological and texture features were used for classification. The features selected 
with LDA were used in the SVM and NN classifiers. The LDA classifier with 
morphological features achieved a training Az of 0.91 on Set 1 and a test Az of 0.81 on Set 2. 
For training on Set 2 it achieved a Az of 0.97 and a test Az of 0.90 on Set 1. The selected 
features on the training sets included volume, a contrast feature, and gray level features. The 
test Az of the NN for Set 1 and Set 2 was 0.88 and 0.91 respectively. The SVM achieved test 
Az of 0.88 on Set 1 and test Az of 0.90 on Set 2. The test Az of the RAF for Set 1 and Set 2 
was 0.83 and 0.88 respectively. The distribution of the discriminant scores from the four 
classifiers for testing on Set 1 and Set 2 in two fold cross-validation in the morphological 
feature space are presented in Figure 10. It can be observed that most of the classifiers were 
able to provide a relatively good separation between the two classes.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5:  Summary results for LDA, NN, SVM and RAF classifiers in morphological, 
texture, and combined feature spaces. 

 
 

By using the texture features the LDA classifier achieved a test Az of 0.91 on Set 1 
and a test Az of 0.88 on Set 2. When trained on Set 1 and Set 2 the LDA classifier selected 
subsets of the filtered Disarthy East-West direction features, the filtered Disarthy Horizontal 
direction features and the gray level radial gradient direction features. The test Az of the NN 
classifier for Set 1 and Set 2 was 0.89 and 0.92, respectively. The SVM classifier achieved 
test Az of 0.91 on Set 1 and test Az of 0.89 on Set 2. The test Az of the RAF classifier for Set 
1 and Set 2 was 0.89 and 0.97, respectively. 

 
 
 
 
 

 

Feature Type
Number of 
Features

Training Testing Training Testing Training Testing Training Testing

Morphological
Features

Training (Set 1)
Testing (Set 2)
Training (Set 2)
Testing (Set 1)

Texture Features
Training (Set 1)
Testing (Set 2)
Training (Set 2)
Testing (Set 1)

Combined Features
Training (Set 1)
Testing (Set 2)
Training (Set 2)
Testing (Set 1)

0.86

1 0.96

7 1 0.89 1 0.91 1 0.92 1

0.91 1 0.89

3 0.92 0.9 0.97 0.95 0.92 0.89

7 1 0.91 1 0.89 1

0.83

2 0.91 0.88 0.95 0.92 0.92 0.89 1 0.97

1 0.88

4 0.97 0.9 0.98 0.88 0.97 0.88 1

4 0.91 0.81 0.96 0.91 0.95 0.9

LDA NN SVM RAF
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Figure 10:  Distribution of the classifiers discriminant scores for testing on 
Set 1 and Set 2 in two-fold cross validation using the morphological features. 
(a) LDA (Set 1) Az = 0.90, (b) LDA (Set 2) Az = 0.81, (c) SVM (Set 1) Az = 
0.88, (d) SVM (Set 2) Az = 0.90, (e) NN (Set 1) Az = 0.88, (f) NN (Set 2) Az 
= 0.91, (g) RAF (Set 1) Az = 0.83, (h) RAF (Set 2) Az = 0.88. 
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When the morphological and the texture features were combined, the LDA classifier 
achieved a test Az of 0.89 on Set 1 and a test Az of 0.90 on Set 2. When trained on Set 1 and 
Set 2 the LDA classifier selected a contrast feature, subsets of the filtered Disarthy 
Horizontal direction features, and subsets of the gray level radial gradient direction features. 
The test Az of the NN classifier for Set 1 and Set 2 was 0.91 and 0.95, respectively. The 
SVM classifier achieved test Az of 0.92 on Set 1 and test Az of 0.89 on Set 2. The test Az of 
the RAF classifier for Set 1 and Set 2 was 0.86 and 0.96, respectively. The test ROC curves 
for all of the classifiers when tested on Set 1 and Set 2 in the two fold cross-validation in the 
different feature spaces are shown in Figure 11. 

 
The classifiers achieved slightly higher Az values in the texture feature space than in 

the morphological and combined feature spaces; however, the differences did not achieve 
statistical significance. Examples of bladder cancers with stages ≥ T2 or < T2 with the 
corresponding computer outlines and classifier scores are presented in Figure 12. 
 

Conclusion:  Staging of bladder cancer is crucial in minimizing the risk of under-
treatment or over-treatment. The performance of the LDA classifier in staging different 
bladder cancer lesions shows promise in assessing bladder cancer stage using quantitative 
image analysis from CTU. Our preliminary results demonstrate the feasibility of an image-
based predictive model that can assist with bladder cancer staging.  (QIN Publications and 
Presentations: #7) 
  

Specific Aim 3.2: Design of computer decision support system (CDSS-T) for 
bladder cancer treatment response monitoring. 

 
Early assessment of therapeutic efficacy and prediction of treatment failure would 

help clinicians decide whether to discontinue chemotherapy at an early phase before 
additional toxicity develops,  and thus improve the quality of life of a patient and reduce 
unnecessary morbidity and cost. The ultimate goal is to improve survival for those with a 
high risk of recurrence while minimizing toxicity to those who will have minimal benefit. 
Therefore, development of an accurate and early predictive model of the effectiveness of 
neoadjuvant chemotherapy is important for patients with bladder cancer. 
 

We have continued the design of CDSS-T by merging (1) image biomarkers 
obtained by QIBC, and (2) changes in descriptors of local tumor tissue characteristics. We 
designed predictive models using the image biomarkers and local tumor descriptors to 
distinguish between bladder cancers that have fully responded to chemotherapy and those 
that have not, based upon analysis of pre- and post-treatment CT images. We evaluated 
three unique predictive models, which employ different fundamental design principles:  1) a 
pattern recognition method (DL-CNN), 2) a more deterministic radiomics feature based 
approach (F-SL), and 3) a bridging method between the two, which extracts features from 
image patterns (F-ROI). We studied both the properties of the different predictive models 
and the relationship between these different radiomics approaches. We also compared the 
performance of the models in predicting a complete response of bladder cancer to 
neoadjuvant chemotherapy with that of expert physicians. The details of the study are 
presented below. 
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Figure 11:  ROC curves for testing on Set 1 and Set 2 in two-fold cross 
validation for LDA, SVM, NN, and RAF classifiers: Left column: testing on 
Set 1, right column: testing on Set 2.  (a) and (b) morphological features; (c) 
and (d) texture features; (e) and (f) combined features. 
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Figure 12:  Examples of bladder cancers with stages ≥ T2 or < T2. The blue outlines 
represent the AI-CALS segmentation. The reported scores are test scores for the LDA, 
SVM, NN, and RAF classifiers based on the morphological features. The two cases in 
(a)(b) and (c)(d) both contained is a T1 stage cancer that was properly classified with low 
scores from all classifiers. (e)(f) is a T3 stage case that was properly classified with high 
scores from all classifiers. (g)(h) is a T2 stage case that was properly classified with high 
scores from all classifiers. (k)(l) is a case that was clinically identified as T1 pre-surgery 
but was identified as a T2 stage cancer post-surgery. The classifiers classified the cancer 
as ≥T2 with high scores. (m)(n) is T2 stage cancer that was incorrectly identified by the 
LDA, SVM, and NN classifiers with low scores and correctly identified by the RAF with a 
high score. 
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 Methods:  A training data set of 82 patients with 87 lesions who underwent pre- 
and post-neoadjuvant chemotherapy CTU scans was collected as described in Specific Aim 
1. Using the 87 lesions, 104 pre- and post-treatment lesion pairs were generated, and 27% of 
the training set patients had T0 cancer stage after neoadjuvant chemotherapy. T0 stage 
corresponds to a complete response to treatment. An additional 41 patients with 43 lesions 
were collected as a test set. Fifty-four pre- and post-treatment pairs were generated from the 
42 lesions, and 22% of the test set lesion pairs had T0 cancer after neoadjuvant 
chemotherapy. Cystectomy was performed at the end of treatment, and the cancer stage after 
treatment was used as the reference standard to determine if a patient responded to 
treatment. Bladder lesions in the CTU scans were segmented using our Auto-Initialized 
Cascaded Level Sets (AI-CALS) system. 
 
 Regions of interests (ROIs) were extracted from within the segmented lesions from 
corresponding pre- and post-treatment scans of a patient and were paired together in 
multiple combinations to generate pre-post-treatment paired ROIs (Figure 13). We trained a 
DL-CNN to distinguish between bladder lesions that were diagnosed as stage T0 post-
treatment and those that were greater than stage T0. The “per-lesion” score was obtained by 
using the average value among the ROI scores associated with the lesion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13:  Creating ROIs to train the DL-CNN. (a) ROIs were generated by 
combining regions from the pre- and post-treatment scan lesions. In this example, 
the pre-treatment stage was T3, and the post-treatment stage was T2. Therefore, the 
ROI was labeled as being greater than stage T0 after treatment. (b) ROI of a case 
that was stage T3 pre-treatment and stage T0 after treatment. (c) ROI of a case that 
was stage T2 pre-treatment and stage T4 post-treatment. Therefore, the ROI was 
labeled as greater than stage T0 after treatment. 

 
 
 A radiomics-feature-based analysis was applied to the segmented lesions (RF-SL) 
to build a classifier for the prediction of complete responders to chemotherapy. Ninety-one 
features were extracted from every segmented lesion, which included morphological 
features, gray level features, texture features, and gradient field features. For every temporal 
lesion pair, the percent change between each radiomics feature extracted from the pre- and 
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post-treatment lesion was calculated. The percent change of each of the feature values 
before and after the treatment was calculated. Feature selection was performed and a random 
forest classifier (RAF) was trained to use the selected radiomics features to predict the 
likelihood of the post-treatment lesion being T0 stage. 

 
 Radiomic features from paired ROIs (RF-ROI) were also used to build a classifier 
for the prediction of complete responders to chemotherapy. Gray-level and texture features 
were extracted from the paired ROIs used for the DL-CNN. Thirty-eight features, including 
gray-level histogram statistics, and run length statistics features, were calculated for every 
ROI. The “per-lesion” features were generated by averaging the feature values among the 
ROIs associated with the lesion. Similar to the RF-SL model, feature selection was 
performed and a RAF classifier was trained to use the selected radiomics features to predict 
the likelihood of the post-treatment lesion being T0 stage.  
 
 An observer performance study with two experienced radiologists was also 
performed independently, in which the radiologist estimated the likelihood of stage T0 after 
viewing each pre-post-treatment CTU pair. ROC analysis was performed and the Az was 
calculated for the DL-CNN and radiologists’ estimates. 
 
 Results:  Table 6 shows the performances for the DL-CNN, RF-SL, and RF-ROI 
methods, along with the radiologists’ results for the test set. Figure 14 shows the ROC 
curves for the DL-CNN, F-SL, and F-ROI methods, and the radiologists for the test set. The 
test Az values for prediction of T0 disease after treatment were 0.73 ± 0.08, 0.77 ± 0.08, 0.67 
± 0.08 for the DL-CNN, F-SL, and F-ROI methods, respectively. The two radiologists had 
Az values of 0.76 ± 0.08 and 0.77 ± 0.07 on the test set. None of the pairwise differences in 
the methods reached statistical significance. 
 
 
 

 
 
 
 
 

DL-CNN: Deep-learning convolution neural network 
RF-SL: Features extracted from segmented lesions 
RF-ROI: Features extracted from pre- and post-treatment paired ROIs 
The area under the curve (Az) is shown with the standard deviations 
 
Table 6:  Performances of bladder cancer treatment response assessment on the test 
set. 
 

 
 
 
 

DL-CNN RF-SL RF-ROI Radiologist 1 Radiologist 2

AUC 0.73 ± 0.08
0.77 ± 
0.08

0.69 ± 
0.08

0.76 ± 0.08 0.77 ± 0.07
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Figure 14:  Test set ROC curves for the three models and two 
expert radiologists. The results from the test set for prediction of T0 
stage after neoadjuvant chemotherapy for the three models. The 
differences between any pairs of Az values did not reach statistical 
significance. 

 
 
Examples of the treatment response prediction of pre- and post-treatment case pairs 

are shown in Figure 15. Given the fact that in some instances the computer models were 
correct about complete tumor responses and the radiologists were incorrect, we speculate 
that use of one or more of these models alongside a radiologist might improve the 
radiologist’s ability to identify patients who responds fully to chemotherapy. In cases like 
that in Figure 15(d), radiologists will generally decide that the case is a non-responder 
because they see residual bladder wall thickening, which is an indicator of cancer. If the 
computer models suggested that there was a high likelihood of T0 after treatment in this 
case, it might lead the radiologists to re-evaluate their decision, and, possibly come to a 
different (and correct) conclusion. Of course, it is also possible for the computer models to 
sway a radiologist’s decision in the wrong direction.  Further study of the accuracy of the 
computer models in tandem with radiologist assessment is needed to determine whether or 
not such decision support systems will improve radiologist performance in treatment 
response assessments for bladder cancers. 
 
 Conclusion:  This study indicates the potential of using DL-CNN and image features 
obtained by QIBC, as well as the changes in the descriptors of local tumor tissue 
characteristics from the pre- and post-treatment CT of patients who have undergone 
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neoadjuvant chemotherapy for bladder cancer has the potential to assist in assessment of 
treatment response. (QIN Publications and Presentations: #4, #8, and #9) 
 

Figure 15:  Examples of pre- and post-treatment bladders and their predictions. (a) The 
computer methods and the radiologists correctly predicted the treatment outcome for this 
case, which was a non-responding, progressive disease that went from stage T2 before 
treatment to T3a after treatment. (b) In this stable disease case (stage T3), the computer 
methods and the radiologists correctly identified the case as non-responding. (c) This case 
fully responded, going from stage T2 to T0, and the computer methods and the 
radiologists correctly predicted the treatment response. (d) A full-responding case, going 
from stage T3 to T0. The computers correctly predicted the response, while the 
radiologists did not. The region around the right ureterovesicular junction was 
asymmetrically thickened, which might have misled the radiologist to assess that cancer 
was present. The pre-treatment scan is on the left and the post-treatment scan is located on 
the right of each pair. The box on the pre-treatment scan represents the location of the 
lesion as marked by one of the radiologists. 

 
 

COLLABORATIONS WITHIN THE NETWORK 
 

We are actively involved in the collaboration activities within the QIN.  
 
§ QIN committees and working groups 
 

We participate in the QIN committees (the Executive Committee and the 
Coordinating Committee) and in the QIN working groups (PET-CT working subgroup, 
Image Analysis Performance Metrics working group, Bioinformatics/IT & Data Sharing 
working group, and Clinical trial Design & Development working group). Dr. Hadjiyski 
serves as a chair of PET-CT working subgroup. 
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§ QIN Grand Challenges 
 

We also participate in two grand challenges organized within the PET-CT working 
subgroup: (1) Use of NLST as a dataset for assessing lung nodule interval change, and (2) 
CT Feature Comparison Study. We are very enthusiastic about this QIN opportunity, 
because this allows to test our tools on a different modality and different type of lesions 
(lung nodules) as well as to compare the tools to the systems of the other QIN participants in 
the challenges. We actively participate in the data analysis and the publications preparation 
related to the challenges, which resulted in a joint publication in the QIN Special issue of 
Tomography. (QIN Publications and Presentations: #11) 

 
§ Computer demonstrations at the QIN face to face meeting 
 

We also have participated in the live computer demonstrations at the Face to Face 
meeting in April 2016 and have demonstrated our GUI and QIBC segmentation tool. We are 
also very enthusiastic about this QIN opportunity, because (1) it was possible to present our 
tool to the other members of QIN, (2) we got very useful feedback from the experts in the 
field and (3) it allowed discussions for potential collaboration for integration of our GUI in 
Slicer.  
 

PLANS FOR NEXT YEAR 
 

In the next year we will continue to collect CTU pre- and post- neoadjuvant 
chemotherapy treatment cases. We also will continue the prospective collection of 
pathological information, diagnostic test results, immunohistochemical biomarkers, and CT 
scans from bladder cancer patients after the first cycle of chemotherapy. Our clinical 
collaborators will continue to annotate and outline the bladder lesions. We will concentrate 
our efforts to continue the development of our segmentation bladder lesion system (QIBC) 
and the decision support systems for bladder cancer staging (CDSS-S) and treatment 
response monitoring (CDSS-T) with a larger data set. We also will continue to extract 
additional 3D morphological and texture radiomic descriptors, define new descriptors, and 
use machine learning methods for the design of the predictive model to predict the cancer 
stage and to combine the descriptors in a “combined response index” as a predictor of the 
treatment response. 
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INTRODUCTION 
 
Despite concerns over radiation dose, CT continues to be widely used for assessing 

response to therapy in many clinical trials settings. There have been significant developments 
which allow the reduction of radiation dose from CT, including advances in iterative 
reconstruction techniques, detector technologies and others that promise significant dose 
reductions (50-60%) to patients, while maintaining clinical image quality. While these 
technologies should be investigated wherever possible in a clinical environment, their effects 
on quantitative measures extracted from CT images are unclear and need to be investigated 
before they are deployed in clinical trials. Simply reducing tube current time product (mAs) 
will increase image noise, which may increase variability in quantitative measures. Size 
measures may be affected differently depending on the anatomic region; lung lesions 
(typically high contrast objects) may be affected differently from liver lesions (typically lower 
contrast). Peak values measured when contrast enhanced studies are used may also respond to 
dose reductions differently. In addition, because new iterative reconstruction methods reduce 
noise, they often also smooth the image somewhat, which may affect size and density (e.g. 
average HU) measures. Therefore, this application proposes to systematically investigate the 
effects of radiation dose reduction methods on quantitative metrics used in clinical trials. The 
goal is to determine how far we can decrease dose under different conditions before we 
increase variance to unacceptable levels in the context of using quantitative measures to assess 
response to therapy. 

 
We have proposed two specific aims to carry out this research. In the first aim, we 

proposed to create a collection of cases that represent a range of low dose acquisition and 
reconstruction scenarios in specific quantitative imaging tasks. This is being accomplished 
using a calibrated dose reduction simulation method (noise insertion tool) and then 
reconstructing images under a variety of dose reduction levels and reconstruction methods. In 
the second specific aim, we are extracting quantitative Imaging measures from these 
reconstructed image data sets and analyzing the variance of quantitative measures across dose 
levels and reconstruction methods. The overall goal is to provide guidance to the QIN, and 
clinical trials in general, regarding the use of both standardized protocols and the use of dose 
reduction methods, with the ultimate goal of determining the levels of dose reduction that 
yield acceptable levels of measurement variance in several assessment tasks/environments. 
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DISCUSSION OF PROGRESS 
 
Since the beginning of the project period, we have made progress on a number of 

projects. These are reported below.  
 
§ The Effects of Radiation Dose and Reconstruction Method on Tumor Volumetrics 
 

A study into the effects of radiation dose level and reconstruction method on 
estimating the volume of lesions observed on CT was published in Medical Physics (Young 
et al, Medical Physics, May 2015). In this study, we analyzed the effects of radiation dose 
level and reconstruction method on measured lesion volumes of lung lesions in cancer 
patients. We used the original dose level (approximately 20 mGy) and then simulated reduced 
dose levels of 25% 10%, and 3% of the dose of our clinical protocol. Simulated reduced-dose 
data were reconstructed with both conventional filtered backprojection (B45 kernel) and 
iterative-reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab 
technologist readers contoured “measurable” nodules in 33 patients under each of the different 
acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 
17 were used to estimate repeatability with our clinical reference protocol, as well as interdose 
and inter-reconstruction-method reproducibility.  

 
The clinical-dose repeatability experiment yielded a mean proportional difference of 

1.1% and SD of 5.5%. The inter-dose reproducibility experiments gave mean differences 
ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-
method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% 
(I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter-
reconstruction-method mean/SD pairs were (1.4%, 6.3%) and (-0.7%, 7.2%) for I44 strength 
3 and I50 strength 3, respectively. Analysis of representative nodules confirmed that reader 
variability appeared unaffected by dose or reconstruction method.  

 
Lung-nodule volumetry was shown to be extremely robust to the radiation-dose level, 

down to the minimum scanner supported dose settings. In addition, volumetry was robust to 
the reconstruction methods used in this study, which included both conventional filtered back 
projection and iterative methods. 

 
§ The Effects of Radiation Dose and Reconstruction Methods on Lung Lesion Density 
and Texture Based Features 
 

Following the above effort, we investigated the effects of radiation dose level and 
reconstruction method on other features of interest to the Quantitative Imaging community, 
namely those based on density and texture (local variations). So using the lesions identified 
and analyzed in the Young study described above (and previously contoured as well), we 
extended the analysis to features extracted from the nodule contours. Our study had two major 
components. In the first component, a uniform water phantom was scanned at 3 dose levels 
and images were reconstructed using both conventional filtered back-projection (FBP) and 
iterative reconstruction (IR) methods with four kernels for each method for a total of 24 
different combinations of acquisition and reconstruction conditions (4 FBP reconstructions 
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and 4 IR reconstructions at each of 3 dose levels).  Example water phantom images are shown 
in Figure 1. In the second component, raw projection data (sinogram data) was obtained for 
33 lung nodules from patients scanned as part of our clinical practice. For the nodule cases, 
low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose 
level and then reconstructed using one FPB kernel and 2 IR kernels for a total of 12 conditions 
(4 dose levels and 3 reconstructions at each dose level). Examples of these are shown in Figure 
2.  

 
For the water phantom, spherical regions of interest (ROI) were created at multiple 

locations within the water phantom on one reference image obtained at a reference condition. 
For the lung nodule cases, the ROI of each nodule (represented as a three dimensional 
boundary) was obtained using semi-automated contouring methods with manual editing 
allowed from images obtained at a reference condition. All ROIs were then applied to their 
corresponding images constructed at different conditions. For 17 of the nodule cases, repeat 
contours were performed to assess repeatability. For all ROIs, both histogram (8 features) and 
gray level co-occurrence matrix based texture features (34 features) were computed. For the 
lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP 
reconstruction using the B45f kernel; feature values calculated under all other 
acquisition/reconstruction conditions were compared to this reference condition. In order to 
measure the stability of features across different combinations of acquisition and 
reconstruction parameters, a Q measure was introduced, which is defined as the ratio of 
reproducibility (across acquisition/reconstruction conditions) to repeatability (across repeat 
contours) of each feature.  

 
 

 
 
 
 
 
 
 

Figure 1: (Images from Figures 1 and 2 of Lo et al, Med. Phys. 2016).  CT images of a 
water phantom illustrating differences in appearance and HU value distribution across 
different dose levels and reconstructions for: (a) Original clinical dose with iterative recon 
(I26 Str 5); (b) Reference condition – Original dose, FBP recon (B45 kernel) and (c) 
Simulated reduced dose with sharp FBP recon (B70). The next plots show feature valuess 
from these water phantom ROIs across different dose/reconstruction conditions, where the 
points and whiskers indicate the mean and the standard deviation of the feature value, 
respectively. The y-axes are the mean feature value at each condition and the x-axes are 
the various dose/reconstruction conditions. These are shown for: (d) mean intensity value 
and (e) Spatial Gray Level Dependence Matrix texture value Intensity Entropy. These 
plots show that the mean intensity value is stable across conditions, while this texture value 
varies substantially across conditions.   
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Figure 2 (Images from Figures 4 and 5 of Lo et al, Med. Phys 2016) describing nodules 
used in [26] and specifically describing CT images of a lung nodule illustrating differences 
in appearance and HU value distribution across different dose levels and reconstructions 
for: (a) Original clinical dose with iterative recon (I44 Str 3); (b) Reference condition – 
Original dose, FBP recon (B45 kernel) and (c) Simulated reduced dose FBP recon (B45). 
The overlaid red lines are the histogram of HU values within the nodule. Similar to Figure 
1  above, the next plots show feature valuess from these lung nodules across different 
dose/reconstruction conditions. These are shown for: (d) mean intensity value and (e) 
SGLDM texture value Intensity Entropy. These plots also show that the mean value is 
stable across conditions, while this texture value again varies substantially across 
conditions. 

 
 
The water phantom results demonstrated substantial variability among feature values 

calculated across acquisition and reconstruction conditions, with the exception of the mean 
value of the density (mean HU of the region) which was robust across all conditions. Features 
calculated from lung nodules demonstrated similar results with histogram mean as the most 
robust feature (Q <= 1), having a mean and standard deviation Q of 0.37 and 0.22 respectively. 
Surprisingly, the other two histogram features that are also quite robust were standard 
deviation and variance. Some of the GLCM measures were also quite robust across different 
conditions, namely diff. variance, 35 sum variance, sum average, variance and mean. As 
expected, the histogram mean is the most robust feature in our study. The effects of acquisition 
and reconstruction conditions on GLCM texture features vary widely, though there was a trend 
toward features calculated based on the sum of the product of intensities and probability being 
more robust in general, with a few exceptions.  

 
The conclusion of this work was that care should be taken to account for variation in 

density and texture features if a variety of dose and reconstruction conditions are used for the 
quantification of lung nodules in CT, otherwise a change in quantification results may be more 
reflective of acquisition and reconstruction conditions than the nodule itself. Preliminary 
results of this work were presented at AAPM in July 2015 and a peer-reviewed manuscript 
was published this past year (Lo et al, Medical Physics, 2016). 

 
§ Extensions to Previous Software and Data Collection Efforts 
 

During the current project period, we have: (a) extended the capabilities of our 
software that reads sinogram data from Siemens Scanners to read several different formats 
(.IMA, .CTD and .PTR) as well as reading the files from the newest CT scanner from Siemens 
– the Dual Source Definition Force (adding to our capabilities to read data from the Sensation 
64, Definition AS); (b) extended the software that adds noise to sinogram data and simulates 
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specific amounts of radiation dose reduction. The new capabilities reflect an improved 
capability to both characterize and model the effects of reduced electronic noise in newer 
scanners with advanced detector technologies. This will be critical as we move to lower and 
lower doses in more modern scanners where the electronic noise might provide a substantial 
limit to dose reduction; (c) Extended our collection of anonymized image data. These datasets 
represent a wide range of reduced dose acquisition levels as well as reconstruction methods 
(both conventional filtered back projection –FBP – as well as scanner provided iterative 
reconstruction methods (Siemens Safire or Admire). 

 
Our current inventory of raw data (sinogram) from different clinical protocols 

includes: 
 

 

 
Table 1: Description of raw data inventory for different types of scans. Note: “NLST” 
cases were acquired with fixed tube current protocols (see Cagnon et al, Academic 
Radiology, 2006). “Current” cases were acquired with tube current modulation 
(CareDose4D, Siemens Healthcare). 
 

 
§ Lung Nodule Detection for Reduced Dose CT Scanning  
 

For the low dose Lung Cancer Screening Cases obtained during the NLST, we have: 
(a) an inventory of 481 cases; (b) using our noise addition software, we have simulated 
reduced dose acquisitions for all cases at both 50% of the original dose (~1 mGy) and 25% of 
the original dose (~0.5 mGy); (c) and all 3 dose levels (original and 2 reduced dose levels) 
have been reconstructed using conventional Filtered Back Projection (FBP) on the Siemens 
scanner. Of these 481 cases, 82 had at least one nodule (prevalence of 17%) and 399 did not 
(83%).  A total of 118 nodules were identified: 27 nodules (23%) corresponded to LungRADS 
category 4 based on size and composition, while 18 (15%) corresponded to LungRADS 
category 3 and 73 (61%) corresponded to LungRADS category 2.  The lungs were segmented 
semi-automatically, and all images and segmentations were input to an in-house CAD 
algorithm trained on higher-dose scans (75-300 mAs).  CAD findings were compared to a 
reference standard generated by an experienced reader.  Nodule- and patient-level sensitivities 

Protocol Name Total # of Cases

NLST Low Dose Lung Cancer Screening 481

Low Dose Lung Cancer Screening (Current)  (to date) 583

Routine Chest (Diagnostic) Cases 99

Renal Cell Carcinoma (3 phase) (to date) 27
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were calculated along with false positives per scan, all of which were evaluated in terms of 
the relative change with respect to dose.  Nodules were subdivided based on size and solidity 
into categories analogous to the LungRADS assessment categories, and sub-analyses were 
performed.   

 
For solid nodules ≥ 8 mm, patient-level median sensitivities were 100% at all three 

dose levels, and mean sensitivities were 72%, 63%, and 63% at original, 50%, and 25% dose 
respectively.  Overall mean patient-level sensitivities were 38%, 37%, and 38% at original, 
50%, and 25% dose. These low sensitivities were primarily due to the prevalence of smaller 
nodules and non-solid nodules in our reference standard.  The mean false-positive rates were 
3, 5, and 13/case.   

 
This work showed that CAD sensitivity decreased very slightly for larger nodules as 

dose was reduced, indicating that reducing the dose to 50% of original levels may be 
investigated further for use in CT screening.  However, the effect of dose was small relative 
to the effect of the nodule size and solidity characteristics.  The number of false positives per 
scan increased substantially at 25% dose, illustrating the importance of tuning CAD 
algorithms to very challenging, high-noise screening exams. This work has been presented at 
both AAPM and RSNA conferences and was just accepted for publication and is in press at 
Medical Physics with an expected publication date of Feb. 2017.  

 
§ Open Source Image Reconstruction Software (wFBP) and Creation of an Image 
Acquisition/Reconstruction Pipeline 
 

One of the issues that we have been running into in our research is just the size and 
scale of the problems we are trying to address in terms of the numbers of cases (quite large 
for the NLST cases) and the number of dose levels and reconstruction kernel settings we wish 
to analyze. Though we have been successful in reconstructing raw projection data at the 
scanner on which the data was originally acquired, clinical CT scanners are not designed for: 
(a) high throughput of raw projection data files and subsequent reconstructions; (b) multiple 
versions of the same patient dataset (at different reduced dose levels); (c) batch mode 
processing for a large variety of reconstruction conditions such as different reconstruction 
kernels and slice thicknesses. So, we developed an open source implementation of a 
commonly used reconstruction method referred to as weighted Filtered Backprojection 
(wFPB). Our implementation was based on the original article published by Stierstorfer et al 
(Physics and Biology, 2004). Our project successfully implemented the wFBP algorithm on a 
medium cost GPU and showed excellent image quality and computational performance. This 
approach will help us overcome many of the limitations described above in that this can be 
done in batch mode with multiple prospective reconstructions performed over a relatively 
short period of time. This work is critical in the development of our image 
acquisition/reconstruction pipeline (described below). This work was published in Medical 
Physics as a technical note and available online at  
http://scitation.aip.org/content/aapm/journal/medphys/43/3/10.1118/1.4941953 

 
With the availability of an offline, GPU implementation of image reconstruction, we 

were able to create a pipeline that is capable of high throughput processes for our research. 

http://scitation.aip.org/content/aapm/journal/medphys/43/3/10.1118/1.4941953
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Specifically, the raw data reading modules, the noise addition (simulating reduced dose 
acquisitions) and wFBP reconstruction engine have been organized into a fully automated 
pipeline (Figure 3) that take the raw data files and creates the desired set of image datasets 
that represent a range of dose levels, slice thicknesses and reconstruction kernels for wFBP.  
These datasets will be used (see future plans) in large scale investigations into the effects of 
acquisition and reconstruction parameters on quantitative imaging tasks.  

 
 

 
 

Figure 3: Diagram illustrating the components and data flow for the image 
acquisition/reconstruction pipeline, which takes raw projection (sinogram) data and 
creates image datasets that represent a range of image acquisition and reconstruction 
parameter settings.  
 
 
The operation and control of the Pipeline was designed to be fully automatic and 

provide a high-throughput system for the creation of a large number of image datasets 
representing a wide range of acquisition and reconstruction conditions. To accomplish this, 
the initial system uses an HT condor computation environment which allows the queuing of 
jobs (using HTCondor queuing) with python control script to initiate each job and execute 
each step.  We are currently developing the ability to execute all steps in one system (linux 
based machine with GPU capabilities). Initial performance benchmarks indicate that on a 
system with 4 GPUs (e.g. a “Deep Learning” system from NVIDIA), a performance of 1.25 
minutes per case/condition. Table 2 illustrates the expected benefits from the pipeline 
implemented on a 4 GPU system using an example comparing our previous experience with 
481 NLST cases reconstructed at 3 dose levels (1 thickness, 1 kernel) (Young et al, Med. Phys. 
2017) to the performance we expect to get with the described pipeline with 500+ UCLA lung 
cancer screening cases we have collected to create datasets that represent 3 dose levels 
(original plus two simulated reduced doses), 3 slice thicknesses (0.6, 1 and 2mm) and 3 
reconstruction kernels (smooth, standard and sharp). Thus, the high throughput, batch mode 
processing used here will allow us more than 2 orders of magnitude increase in throughput, 
which provide a much broader exploration of the acquisition and reconstruction parameter 
space than is currently achievable.   
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Table 2. Illustration of increased throughput from Acquisition\Recon Pipeline 
described in Figure 3 when implemented on a 4 GPU system compared to throughput 
when using current conventional approach.  

 
 
§ Automating Phantom Assessment for Clinical Trials Using Quantitative Imaging 
 

One of this issues for clinical trials that seek to use quantitative imaging methods is to 
assure that the acquisition and reconstruction parameters specified are indeed being used at 
each participating site. Preferably this should be done prospectively to avoid having to exclude 
a case because of technical differences. In addition, trials may also desire to have some 
assurance that the CT scanner is performing well (e.g. is calibrated) prior to scanning subjects. 
In some trials, the use of a phantom (test object) is used to evaluate both of these objects 
(protocol adherence and system performance under the desired protocol). However, the use 
of phantoms can be a burden as each site has to scan the phantom according to the protocol 
and then someone (e.g. a central site) has to read and evaluate the phantom scan. Through our 
extensive experience with clinical trials in CT, we have developed standardized processes for 
evaluation phantoms scanned on CT scanners at participating sites. 

 
Recently, we have developed methods to perform these assessments automatically. 

While the assessment seems reasonably straightforward, there are several issues that needed 
to be addressed including: (a) the heterogeneity of available CT phantoms at sites (each 
manufacturer supplies a QC phantom, but they are quite different between manufacturers), so 
identification of the phantom is a first step; (b) phantom scanning may or may not include the 
entire phantom or just the water portion of the phantom, so identification of the water region 
needs to be done. (c) the manufacturers report some (but not all) technical parameters in the 
DICOM headers and there is heterogeneity in how these values are reported, especially in the 
context of modern scanners using Automatic Exposure Control (e.g. Tube Current 
Modulation) systems and iterative reconstruction methods. 

 
This approach that we developed was based on several computer vision techniques as 

well as registration methods (e.g. automatically matching the submitted phantom to one of the 
known types of phantoms). Further analysis was needed to correctly identify the image on 
which the desired analysis was to be performed. Then the desired analyses (e.g. water 
calibration, scan field homogeneity) were designed to be performed automatically. Finally, an 
analysis of the DICOM headers was designed with manufacturer-specific analyses to account 

Cases
Dose 

Levels Thicknesses Kernels # Datasets
Time to 
Create

481 NLST (scanner 
recon) 3 1 1 1,443 ~ 6 months

500 UCLA screening 
cases (Acq/Recon 
Pipeline)

3 3 3 13,500 11.25 days
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for different reporting schemes and then compared to the scanner specific properties spelled 
out in the trial’s protocol documents. We have presented this work at the AAPM conference 
in 2016 and are preparing a peer-reviewed publication (target submission date is 1st quarter 
2017). 

 
§ Participation in QIN PET-CT Group “Feature Challenge” 
 

The UCLA QIN team participated in the CT Image Feature Challenge (coordinated by 
Moffit QIN). We submitted a limited set of feature data (15 features, one from several different 
categories) to participate in this challenge. The purpose of this study was to investigate the 
sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate 
comparisons across different feature types and features computed by different 
implementations of feature extraction algorithms. The concordance correlation coefficients of 
the features were calculated as a measure of their stability with the underlying segmentation. 

 
This study showed that 68% of the 830 features in this study had a concordance CC of 

0.75. Pairwise correlation coefficients between pairs of features were used to uncover 
associations between features, particularly as measured by different participants. A graphical 
model approach was used to enumerate the number of uncorrelated feature groups at given 
thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, 
respectively, providing a measure for the features’ redundancy. This work resulted in a peer-
reviewed publication in the special issue of the journal Tomography 
(DOI:10.18383/j.tom.2016.00235 . 

 

PLANS FOR NEXT YEAR 

During the next year we will extend our work in several different ways as described 
below. 

 
§ Construction of a Pipeline for Open Source Image Reconstruction Software (wFBP) 
 

The first activity will be to extend the pipeline described above (illustrated in Figure 
3) by bringing it together with two other components to create a tightly integrated, high 
throughput system (illustrated in Figure 4).  The image acquisition/reconstruction pipeline 
will create inputs to the segmentation/CAD/Quantitative Imaging feature pipeline that will 
identify anatomic and pathologic structures and extract features of interest.  A performance 
evaluation pipeline will compare the extracted results (e.g. detections or feature values) to 
reference condition results (e.g. radiologist markings, feature values obtained under a 
reference condition) and evaluate performance metrics across acquisition and reconstruction 
conditions (e.g. changes in feature values across dose levels and/or reconstruction conditions). 
This is all being designed for high throughput performance for large numbers of cases and 
with a wide variety of acquisition and reconstruction parameters.  
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Figure 4. Diagram illustrating the relationship and workflow between the different 
components of the overall pipeline. This will allow evaluation of large numbers of 
cases with a range of acquisition and reconstruction parameter settings.  

 
 
 
§ Extension of Image Reconstruction Capabilities 
 

We also plan to extend our image reconstruction capabilities beyond wFBP to an 
iterative reconstruction algorithm while allowing the reconstructions to be performed in batch 
mode using a computationally efficient approach. This will allow us to create a wide range of 
simulated reduced dose scans reconstructed under a wide variety of approaches (conventional 
wFPB and iterative), which will allow us to assess the robustness of quantitative features being 
extracted from image data.  

 
§ Perform Analysis on 3-Phase Kidney CT scans to evaluate Renal Cell Carcinoma 
(RCC) 
 

We have been collecting raw projection data from patients undergoing our RCC 
protocol and we have been reviewing medical records to establish diagnoses on these scans. 
In coming year we plan to evaluate the effects of dose reduction and reconstruction method 
on the ability to distinguish cell types in RCC using methods already published by our 
investigators This will further extend our work to go beyond just volume and texture to 
quantitative features that are derived from contrast enhancement (functional features). We 
hope to be able to publish our results on iterative reconstruction methods, automated phantom 
QA as well as contrast uptake information in RCC during the coming reporting period. 
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INTRODUCTION 

 
§ The Clinical Problem 

 
Current state-of-art therapy of high-risk, advanced head-and-neck cancers (HNC) 

(e.g., HPV-), concurrent radiation therapy with chemotherapy and followed by adjuvant 
chemotherapy, still leads to 30-50% of local and regional failure.  Physiological imaging 
based adaptive radiation boosting of the resistant subvolume of the tumor has the potential 
to improve outcomes.  However, clinical utilization of metabolic and physiological imaging 
is challenging due to issues such as reproducibility of physiological images, tumor 
heterogeneity, and lack of tools to support therapy adaptation.  
 
§ Quantitative Image Features  

 
We have been developing and investigated quantitative image tools using pattern 

recognition techniques to identify the subvolumes of HNC with low blood volume (LBV) 
derived from DCE MRI and low ADC quantified from diffusion-weighted MRI (Figure 1).  
Currently, these tools are used to support a randomized phase II clinical trial for boosting the 
potential “risk for failure” subvolumes of the tumor in the advanced HNC.  This trial 
involves two sites, University of Michigan Hospital and VA hospital at Ann Arbor.  This 
phase II clinical trial allows us to test feasibility of using our QI tools in the clinical 
environment.  Also, the clinical trial allows us to further identify issues and barriers that 
need to be overcome before deploying them in a multi-center clinical trial.   

PROGRESS  

§ Standardization of Delineation of the LBV Subvolumes in HNC 

 Evaluation of Basic Methodology on Different Scanners: The basics methodology 
was developed using the DCE scans acquired on one vendor scanner.  After quantifying 
physiological parameters e.g., blood volume, from DCE data using the modified Toft model, 
we applied our methodology to delineate the low blood volume (LBV) component of the 
tumor using a pattern recognition technique.  For clinical usage, a threshold was established 
from a probability map of LBV of the tumor to define the subvolume with LBV.  If the DCE 
data acquired on a different vendor scanner using a different pulse sequence with different 
acquisition parameters would lead to different BV values even though quantification is done 
by using the same software, this threshold simply cannot be applied.  We further realized 
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that “standardizing” or “harmonizing” acquisition is not always possible due to differences 
in underlying technologies of each vendor.  Then, we attempt to “standardize” the “content”, 
e.g., BV derived from DCE MRI acquired from different scanners. 

 

 

 

 

 

 

 

 

Figure 1: The subvolume of the tumor with low blood volume (dark region) 
indicates tumor resistance to treatment (up), while the subvolume with low 
ADC (dark region) suggests high cellularity of the tumor.  Cyan color depicts 
the gross tumor volume (GTV). 

 

 Standardization of Blood Volumes (“content”):  We hypothesize that measured 
BV in a certain type of tissue should follow a same distribution in the population even the 
data acquired on different scanners and using different pulse sequences.  We selected 
cerebellum as the tissue of interest for ‘standardization” since cerebellum is always in the 
FOV when imaging HNC (that requires a large FOV to cover the extended primary and 
nodal diseases. We found that the mean and standard deviation of BV in the cerebellum 
VOIs of a group of patients scanned on one vendor scanner differed from those on another 
vendor scanner.  If the measured BV values are normally distributed, based upon our 
hypothesis, we can have: 

𝐵𝐵𝐵𝐵1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1
𝑆𝑆𝑆𝑆1

=
𝐵𝐵𝐵𝐵2 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑆𝑆𝑆𝑆2
 

where index 1 or 2 indicates scanner 1 or 2.  The equation suggests that the distribution of 
BV in cerebellum should be the same regardless how the measurement is done.  Using this 
equation, we related the BV values measured from scanner 1 to the BV values from scanner 
2 to “standardize” the “BV” values.  Using this approach, we overcome the “non-
standardized” acquisition-caused discrepancies in the parametric maps and subsequent 
threshold values for the LBV subvolume of the tumor.  This concept can be generalized to 
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other body sites, for which a standardized tissue of region is selected for “standardization” 
of the “content” of interest.  Using this approach, we standardize our threshold to define the 
subvolume of the tumor with LBV for different scanners. 

 Individual Patient QA:  Although the system QA is performed and quality of 
images is controlled, sometimes, the quantitative parametric maps of an individual patient 
scan still can be off from the distribution of the group or population.  Then, we used the 
same concept described above to re-normalize the BV values of individual patients to the 
group mean if the BV in the cerebellum VOI of the individual patient is 2SD above or below 
the group mean. 
 

We have been using this approach to “standardize” our results from two different 
vendor scanners, and to control the unexpected variations in individual patients in 
supporting the phase II clinical trial that has enrolled approximately 40 patients. 

 
We have presented this concept in the Quantitative Imaging Track in the annual 

meeting of AAPM 2014, Quantitative Imaging Series in the annual meeting of RSNA 2015 
and the QIN panel at 2016 ASTRO annual meeting. [1-3]. 

 
§ Automation of Delineation of LBV Subvolumes in HNC 
  
 Our current workflow for delineation of the LBV subvolume of the tumor in the 
clinical trial involves a two-step image process: 1) quantification of the parametric maps 
from the DCE MRI using a pharmacokinetic model and 2) delineation of the subvolume of 
the tumor with LBV.  The question is whether we can fully automate this process and reduce 
the process to a single step.  A fully automated process will be better for supporting the trials 
in the clinical environment. 
 
 We applied the basic principles in the radiomics and machine learning to the 
temporal-domain analysis of DCE MRI.  Development of this approach involves training 
and testing.  After the algorithm is trained and tested, we were able to delineate directly the 
subvolume of the tumor with LBV from extracted DCE features, which is a rapid process.  
Compared to the conventional two-step approach, we were able to achieve the similar 
accuracy (Figure 2). 
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Figure 2: Subvolumes extracted by the two-step method via PK modeling (top row), the 
Wavelet-based method (middle row), and the PCA-based method (bottom row).  Note the 
similarity of voxels identified to be LBV among the three methods.   

 
We further tested whether the algorithm trained on one dataset could be applied to a 

dataset acquired with different parameters using different pulse sequence on different 
scanners.  The results from our preliminary test indicated that the accuracy for the data 
acquired differently was not lower than the data acquired using the exactly same parameters.  
This algorithm can tolerance to differences in data acquisitions than the pharmacokinetic 
models.  This type of the algorithms has the potential to support variations in DCE 
acquisition in the clinical environment with further development and validation.  We believe 
this is unique in the field. 

 
 We have presented this work in the annual meeting of AAPM 2015 and in the 2016 
MRI in RT workshop and a paper is published in Tomography of the QIN special issue in 
2016. [4-6] 

§ Reduction of Susceptibility Effects on Diffusion Weighted Images in HN 

Anatomy in the neck and the base of skull produces large variations in magnetic 
susceptibility, and results in signal loss and geometric distortion in diffusion weighted 
images (Figure 3).  Also, metals in dental works cause signal loss and geometric distortion.  
In order to support precision radiation therapy, e.g., boosting the high cellular subvolume 
(low ADC) of the tumor, and quantitative analysis of diffusion weighted images in HN, it 
requires to have a pulse sequence that reduces the susceptibility effect in the diffusion 
weighted images. 
 



225 

 

 One solution is to adopt the RESOLVE pulse sequence that can reduce susceptibility 
effects on diffusion weighted images dramatically. A trade-off of the RESOLVE pulse 
sequence is the longer scanning time and sensitive to motion.  We have optimized the 
parameters to balance the acquisition time and quality of diffusion weighted images, 
including geometric and signal quality.  Examples of the slices acquired by the RESOLVE 
and single shot EPI sequences are shown in Figure 3. 
 
 We have been evaluating both geometric distortion and signal quality of diffusion 
weighted images acquired by the RESOLVE sequence compared to the convention sequence 
in HN. We have presented the preliminary results in the MRI in RT workshop in 2016.[7] 
We will continue this evaluation in the next year.  
  

 

 

 

 

 

 

F
i
gure 3: Post-Gd T1 weighted image (left), and ADC maps acquired using the 
RESOLVE pulse sequence and single shot EPI pulse sequence (middle and right, 
respectively). Red and green contours are gross tumor volumes of primary cancer and 
affected nodes.  Note that the geometric distortion and signal loss in the ADC map 
acquired by the single shot EPI.   

 

 

 

 

 

 

§ Optimization of the HN MRI Protocol for the RT Workflow 

Figure 4: The RT HN protocol including 
both conventional and advanced imaging 
sequences. 
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 Using the quantitative MR images for RT planning requires to position a patient in 
the RT treatment configuration during the MRI scan.  This requires to use the RT 
immobilization devices, such as five-point mask and bit bar, for the HN MRI scan, which 
limits the duration of the scan due to patient tolerance. Also, RT planning has unique 
requirement on the FOV, slice thickness, 2D or 3D, orientation, with or without fat 
saturation and so on.  We have optimized the RT MRI scanning protocol by working with a 
group of users including radiation oncologists, radiologists, and physicists (Figure 4).  We 
have shared our protocol at national and international conferences in last two years. 
 
§ Analysis of Heterogeneity in the advanced HN Cancer 
  
 Heterogeneity in the cancers represents a challenge on treatment and assessment of 
response.  Tumor heterogeneity leads to that a single imaging modality often is insufficient 
to guide for precision treatment and inadequate or even mis-led on response.  We leveraged 
on the image data collected in the randomized phase II clinical trial, including pre-RT FDG 
PET, and DCE and diffusion MRI pre-RT and during RT, to analyze the image-phenotype 
features in the advanced HNC and early changes during the course of RT.  These image-
phenotype features as well as early changes during RT will be correlation with local and 
regional outcomes, which will tell us which image-phenotype features could be the best 
radiation boosting target. 
 

Spatial Overlap Between Low Blood Volume and Low ADC in HNC:  We have 
described that the subvolume of the tumor with LBV is potentially radiation resistant while 
the subvolume with low ADC had high cellularity.  The question is whether these two 
subvolumes of the tumor in HNC have any spatial overlap. Our preliminary analysis of 28 
patients showed that 26% and 14% of primary gross tumor volumes (GTVs) had LBV pre-
RT and after receiving two weeks of RT, respectively; while 35% and 19% of primary 
GTVs had low ADC (<1.2x10-3 mm2/s). However, only 9% of the GTVs had both LBV and 
low ADC before RT and two weeks radiation reduced it to 4%, suggesting the two image-
phenotype features represent the two different aspects of the HNC (Figure 5).  This work 
was presented in the annual meeting of ASTRO in 2016 as a research paper as well as in a 
QIN panel [8-9].  This work will be extended to the 40 patients who have been enrolled in 
the clinical trial. 

 

Figure 5: Spatial relationships 
between the subvolumes of the 
tumor with LBV and low ADC 
pre-RT and after receiving 2 
weeks RT. 

 
Spatial Relationship Between FDG PET, LBV and Low ADC in the HNC: FDG 

PET plays an important role in HNC management, including RT target and response 
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assessment.  However, how does the metabolic tumor volume (MTV) defined based FDG 
uptake have LBV or low ADC is largely unknown.  We investigated this question.  Table 1 
show the volumes defined based upon these metabolic images.  Note that the MTV based 
upon a threshold of 50% of SUV max (MTV50%) was only approximately ¼ of the primary 
GTV defined based upon the post-Gd T1 weighted images; while the MTV50% was 
approximately ½ of the nodal GTV.  The median subvolume of the tumor with LBV of the 
primary tumor was 11 cc, which was approximately 2/3 of MTV50%.  The subvolume of the 
tumor with low ADC was 26 cc.  

 

                 

Median volume(cc) Range(cc)
GTVp 69.1 10.2-595.2
MTV50%p 15.5 2.2-259.7
MTV30%p 33.7 3.9-362.0
LBVp 10.9 0.2-158.8
LADCVp 25.9 1.1-180.6
GTVn 11.2 1.3-172.5
MTV50%n 5.2 0.7-61.5
MTV30%n 12.7 1.9-126.4
LBVn 4.6 0-114.2  

Table 1: Tumor Volumes Based upon FDG, LBV and Low ADC.  
p indicates primary tumor; n notes nodal tumor. 

 

We further investigated the spatial overlaps between these subvolumes defined based 
upon FDG, LBV and low ADC. We found that 98% and 86% of MTV50% within the primary 
and nodal GTVs, respectively.  However, only 10%-12% of MTV50% had LBV and 13-15% 
of MTV50% had low ADC.  Table 2 shows these spatial relationships in detail. 
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Table 2: Spatial Relationship Between of GTV, MTV, LBV and low ADC 
 

In the 40 HN tumors, the voxel-level correlations between SUV FDG and BV values 
had the correlation coefficients varied from 0.55 to -0.12, and between SUV FDG and ADC 
had the correlation coefficients from 0.15 to -0.6. 

   
These data suggest that advanced HN cancers exhibit a large extent of heterogeneity.  

However, which of these image-phenotype features represent the most aggressive or 
radiation resistant subvolume of the tumor is to be determined when we correlate the 
features with outcomes. 

§ Participation in QIN Challenges 
 

We participated in several QIN challenges: 1) arterial input function for DCE 
analysis led by Wei Huang, 2) diffusion quantification challenge led by David Newitt; 3) T1 
measurement challenge led by Octavia Bane, and 4) DSC challenge led by Kathleen 
Schmainda.  All challenges led to submitted abstracts for the 2017 ISMRM annual 
meeting[10-12].  The third challenge has a RNSA abstract.  The first part of the first 
challenge had led to one publication in Tomography [13]. 

 
 
 
 
 

§ Development and Evaluation of Other QI Tools  
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We have developed other QI tools that are not directly related to our QIN HNC 
project. 

Hypercellularity Volume Delineation for GBM: GBM represents many challenges, 
including target definition for surgery and radiation and response assessment due to diffuse 
disease and edema.  We have developed a QI tool to delineate the hypercellular tumor 
volume (HCV) by suppressing edema using high b-value diffusion weighted imaging to 
reveal the solid tumor (Figure 6).  We have found that 40% of the HCV were non-enhanced.  
The large HCV was associated with short progression-free survival, suggesting that HCV 
represents one of aggressive components of GBM.  We have published a paper on this 
research. [14] 

 

   

Figure 6: Post-Gd T1 weighted, T2 FLAIR and diffusion weighted images with b=3000 
s/mm2.  Red, green and yellow contours represent enhanced GTV, FLAIR abnormality 
volume and hypercellularity volume.  Dark pink contour depicts the 95% prescribed 
dose volume which missed a portion of HCV based upon the conventional treatment 
planning. 

 

Recently, we have tested whether we can bring this QI tool to a site where there is no 
MRI expert to conduct a multi-center clinical trial.  First, we tested diffusion imaging on the 
ice water phantoms at both sites and led to 1.3% discrepancies between two sites.  Secondly, 
we implemented a fully automated version of software to delineate the HCV for defining the 
radiation boost target.  Thirdly, we tested the geometric accuracy of diffusion weighted 
images using a RESULVE sequence.  Except the first 1-2 mm around the brain surface, the 
diffusion images have the accuracy at the level of the spatial resolution uncertainty.  This 
technique does not require a long time for image acquisition.  This technique is ready to be 
deployed in different sites for support clinical trials.  Also, this technique could be a useful 
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tool to differentiate true progression from pseudo-progression, particularly when the GBM 
vasculature is altered by anti-angiogenesis drugs. 

 
T1 Repeatability Test:  We have performed T1 repeatability tests on brain since T1 

is important in DCE quantification.  In this work, we compared two methods for T1 
quantification.  Our results are published in 2015 [15-16]. 

PLANS FOR NEXT YEAR 
 

1. We will continue to support the workflow for image acquisition and analysis for the 
randomized phase II clinical trial. Right now, we have enrolled approximately 40 
patients from two sites. 

2. We will complete analysis of the image-phenotype features in advanced HN cancers, 
and write two papers. 

3. We will develop a method to automate our current workflow to reduce expert efforts 
required to support the clinical trial. 

4. We will participate in other QIN challenges. 
5. We will further improve and develop the one-step method to delineate the 

subvolume of the tumor with LBV. 
6. We will collaborate with other sites to explore the radiomics analysis.   
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INTRODUCTION 
 

Since it’s inception in 2011 the Cancer Imaging Archive (TCIA) has been NCI’s 
primary resource for acquiring, curating, managing and distributing images and related data 
to support Cancer Research.  TCIA is visited each month by more than 4000 users from 
around the world, actively supports over 8000 registered users (and a larger community who 
access data anonymously) and has provided data used in over 400 peer reviewed 
publications and graduate theses.  Figure 1 summarizes some of the key TCIA utilization 
metrics and of June 2016. 
 

TCIA is the primary image repository for the Quantitative Imaging Network (1), the 
Center for Multiple Myeloma Nanotherapy (2), the National Lung Screening Trial (3), and a 
number of NCI internal and sponsored research programs including the exceptional 
responder’s initiative and the Data Science Bowl 2017 Challenge.  TCIA also supports 
challenge competitions organized and/or managed by QIN and ITCR funded researchers and 
NCI (4-6). With NCI’s approval, TCIA is currently supporting a PCORI funded prospective 
clinical trial as the Radiorepository for all image and radiation oncology planning data (7). 

 
TCIA is a Recommended Data Repository for Nature Scientific data (8), one of the 

repositories recommended by PLOS One as part of its Open Data Policy(9), an Elsevier 
Supported Data Repository (10) and a repository recommended by F1000Research (11). 
BioSharing.org maintains a complete list of publishers that consider TCIA as an approved 
repository. 

 
Careful curation and strict quality control processes are two key activities that have 

led to the success of TCIA. The TCIA service includes expert curation and quality control of 
incoming data sets, extension of the software/technology used to meet production standards 
of service and availability, and dissemination of knowledge to the wider research 
community in areas of DICOM de-identification and open data. Significant advances have 
been made in TCIA curation automation and accuracy. 

 
TCIA is a data platform to support radiomics research.  We continue to expand this 

capability by using the TCIA API to stream data into radiomics pipelines under the control 
of the QIN Portal. The Galaxy Project (https://galaxyproject.org/) provides a web-based 
interface for biomedical research. There are a wide range of Galaxy plugins that support 
such tasks as accessing data from existing repositories, processing data, converting between 
data formats, statistical analysis and data visualization.  The vast majority of these tools are 

https://galaxyproject.org/
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based on Next Generation Sequencing.  The Galaxy plugin interface has been identified as 
the basic mechanism for integrating radiomic analysis pipelines into the Galaxy framework 
to create a QIN Portal.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: TCIA Utilization Metrics 
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The analysis of radiomics feature sets combined with clinical data to produce 
imaging phenotypes remains a key focus of our team’s research.  We have made progress in 
our radiomic pipeline development and in the use of Eureka to identify cancer phenotypes. 

 
PROGRESS OVER THE PREVIOUS YEAR 

 
Curation workflows for Radiology data are now implemented in TCIA using the 

Posda open source toolkit (12, 13). Posda is a custom set of curation workflow tools 
developed by our team and currently in daily use by TCIA staff. Posda relies heavily on our 
in-depth knowledge of the DICOM standard and employs a DICOM validation rule set. 
Posda supports inspection and editing of PHI, and allows editing of the data to correct 
inconsistencies found particularly in complex DICOM data objects such as those associated 
with Radiation Therapy. The current Posda release supports: DICOM send and receive, 
summary spreadsheets of image counts by subject, study, series and modality for 
verification that the data was received or sent; automatic detection of subject, study, and 
series level DICOM inconsistencies, semi-automatic correction of inconsistencies; detection 
and correction tools for RTSTRUCT linkage errors; checks for duplicate SOP Instance 
UID’s; semi-automated detection and correction of PHI. A publication detailing the rapid 
evolution of Posda is ready for submission. 

 
RT collections have been acquired from a number of sites, stored in TCIA but not 

yet linked to treatment records.  Because of the use of TCIA for the PCORI RT trial 
referenced above we have moved beyond the proposed verification study for this aim and 
we are demonstrating the ability to download longitudinal RT data sets and generate a 
composite dose for each subject as part of the PCORI trial. All calculated dose results for the 
trial will be added back to the TCIA collection once the trial is fully underway.  

 
The TCIA infrastructure has been enhanced by extending the application 

programming interface (API). The API’s security infrastructure has been upgraded and now 
includes security fixes to avoid SQL injection attacks. Progress has been made on support of 
secure programmatic access to QIN private collections. The overall workflow is as follows: 
TCIA users are mapped to groups, with one group per TCIA collection. This group 
information is maintained in a central authorization database. We have developed plugins 
that inspect incoming API requests and can make authorization decisions (allow/deny). 
These authorization plugins have been developed to work with LDAP as the central 
authorization database where user-group mapping is maintained. NBIA currently uses CSM 
(common security module) as its authorization database. However, CSM is being retired by 
the NBIA development team. We are currently collaborating with the NBIA team and 
evaluating authorization databases such as LDAP. 

 
 

 
§ Data Integration and Mashups 

 
During the past year we began work on a data integration layer, called Data Café, 

which facilitates the creation of domain/problem specific data cohorts called biomedical data 



236 
 

lakes. These lakes can contain imaging metadata, radiomic features, clinical data and other 
structured data sets. They are stored in HDFS (Hadoop File System) and accessed via 
Apache Drill. This was presented at the VLDB workshop on Data Management and 
Analytics for Medicine. Additionally, we have also used the TCIA API to develop a data 
sharing middleware, called MeDIATOR that extends the TCIA shared list capability. TCIA 
shared lists are a popular way for creating a sharable reference. MeDIATOR expands upon 
the shared list paradigm, and allows investigators to create references of images as well as 
non-imaging data. With an increase in the number of TCIA collections that include clinical 
data as well as derived imaging feature data, MeDIATOR is expected to play a major role in 
encouraging and facilitating reproducible research with TCIA. MeDIATOR works by 
providing an API that can be integrated within the TCIA API ecosystem. 

  
§ QIN Portal 

 
We proposed extending the Galaxy Project web-based interface for biomedical 

research to include custom processing tools for radiomic analysis creating a QIN portal.  
One of the first tasks was extending Galaxy to recognize the DICOM and NIfTI imaging 
formats.  We initially did this by triggering on the image suffix, which is similar to the 
method used by many imaging libraries such as the ITK.  This proved impractical, as Galaxy 
renames all files internally using a generic name scheme dataset_XXXX.dat.  This required 
us to further extend Galaxy by providing a binary ‘sniffer’ function to read and recognize 
the magic number of the imaging formats (Figure 2). We next added the capability to view 
DICOM/NIfTI files utilizing Papaya, a Javascript-based DICOM/NIfTI viewer.  We were 
able to use the Galaxy visualization plugin tools to associate DICOM/NIfTI files with the 
Papaya viewer (Figure 3). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: QIN Portal Control panel. On the image on the 
left, we see two files that have been uploaded into Galaxy 
named foo and bar with no file suffixes.  In both cases Galaxy 
was able to identify the file type by reading the image header.  
In the image on the right, if we hover over the visualization 
button for the data set, we see the option to visualize the data 
set using Papaya. 
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Figure 3: QIN Portal Image Viewer. Papaya provides a Javascript-based 
DICOM/NIfTI viewer, which has been integrated into our instance of Galaxy to 
provide visualization capabilities within our QIN portal. 
 
 
We have an operational lung segmentation pipeline that includes extraction of a 

feature set defined by Gierada et al.(14).  This pipeline has been implemented as a Galaxy 
plugin and is currently running on the high performance computing system at Washington 
University (CHPC). 

 
We have also been exploring the use of Docker containers as a means to encapsulate 

Radiomics and Radiogenomics applications and deploy imaging pipelines on the cloud. We 
have developed a tool called YunPipe (https://github.com/sharmalab/yunpipe) that allows 
researchers to execute imaging pipelines on the cloud. Imaging pipelines are authored using 
the Common Workflow Language (CWL). YunPipe is capable of running pipeline on 
Amazon Cloud. In the coming year we will be extending YunPipe to work with Google 
Cloud, and integrating it with TCIA, via the TCIA API. We will also be containerizing a 
lung segmentation pipeline that was developed at Washington University, St. Louis and 
UAMS (lead by Dr. Prior). A paper describing YunPipe is under preparation. Dr. Sharma is 
leading this work. 

 
This complements and enhances our parallel efforts with Galaxy. Galaxy supports 

the dockerized deployment of tools as well as execution of these tools on public cloud 
environments. The eventual goal remains one where QIN researchers will be provided a 
Radiomics portal that would allow them to upload Radiomics tools and execute them on 
TCIA image data without an explicit download of images 

 
 
 

https://github.com/sharmalab/yunpipe
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§ Lung Cancer Radiomics Pipeline 
 

We are continuing our work exploring radiomic analyses of lung cancer using TCIA 
data and further developing pipelines for deployment in QIN Portal.  We previously reported 
preliminary work using NLST data(15) in which we first segmented the lung and then all 
closed objects in the lung that are larger than a voxel. We used hierarchical clustering to 
produce object classes then attempted to determine which feature classes best correlated 
with clinical outcomes (cancer diagnosis in this instance). Unfortunately the results thus far 
have not been promising. 

 
We shifted focus to improving feature extraction using radiologist-identified objects 

of interest.  We chose the LIDC/IDRI dataset to train and test two kinds of models to 
identify image features for prediction of lung cancer. One model is based on the set of image 
features defined by Gierada et al.(14), the other is based on deep convolutional neural 
networks (CNN)(16), which learn a feature set. The LIDC/IDRI datasets contains 1018 CT 
cases with “truth” established by four experienced thoracic radiologists, which makes it 
optimal for testing and validation of the models. Both models were given segmented nodules 
and randomly selected regions of healthy lung as illustrated in Figure 4. All analyses were 
performed over the population of nodules. We used 1000 non-nodules and 1065 nodules 
with 80% of the data used for training the models and 20% for validation. 

  

 
Figure 4: Nodule vs. non-nodule comparison.  The left image is a nodule (rated 
malignancy = 3 from LIDC-IDRI) with consensus radiologist segmentation (red). The image 
on the right is a "non-nodule", with computer segmentation (green). 

 
 

The Gierada feature set was extracted from segmented regions.  A principal 
components analysis (PCA) was performed for dimensionality reduction.  As shown in 
Figure 5A, the first 3 components (representing 50 features) explained most of the data.  A 
support vector machine (SVM) with a radial basis function was trained to partition the test 
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set. The resulting ROC analysis is illustrated in Figure 5B. 
  

Figure 5: Preliminary Radiomics results derived from LIDC data. A) PCA analysis 
of feature space, B) ROC analysis of Gierada et al. feature set and Support Vector 
Machine classifier; C) ROC analysis using 2 different sized voxel cubes as input to the 
CNN. 

 
Recently we started working on a CNN, which used cubes of voxels centered in the 

region of interest (nodule, non-nodule region) and learns a 200 dimensional feature 
representation that partitions the training set.  Preliminary results from the CNN are 
presented in Figure 5C.  Relative to the literature these preliminary results are too precise 
suggesting the models are over fitting the data. Independent test sets are currently being 
acquired and experiments with differing percentages of the data allocated to the training and 
test sets are underway. 

 
§ Eureka 

 
In support of evaluating and validating clinical-imaging phenotypes, Eureka 

implements processes for parsing diverse data and exporting it into diverse tools for clinical 
research. Eureka provides APIs for creating data adapters that can be configured to parse a 
variety of clinical datasets in flat file and database formats. A data adapter was implemented 
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for QIN for accessing NLST data. Similar adapters have been implemented as part of other 
projects for accessing data from Emory’s clinical systems and the publicly available MIMIC 
II dataset. Data thus transformed can be output by Eureka into a graph database or into the 
widely deployed i2b2 data warehousing system. I2b2 supports rapid interactive data query 
and export from a web browser into formats expected by standard statistical analysis tools. 

 
§ Outreach 

 
End user training and easily accessible documentation and tutorials are an essential 

component of community engagement.  Each year we present hands-on TCIA training 
courses at professional society meetings including the Radiological Society of North 
America annual meeting. A short course on the advanced features added to TCIA was 
presented at RSNA 2016: Course number RCA55 (Accessing and using 'Big Data' 
Diagnostic Image Archives for the Study of Cancer Proteomics, Genetics and Pathology). In 
the past year we also presented a demonstration of Eureka at the QIN annual meeting.  The 
complete list of presentations and training courses is included in other sections of this report. 

 
The imphub open source community support and software development environment 

was ported to the University of Arkansas for Medical Sciences and is in general use to 
support TCIA operations, Posda and API development, and other aspects of this project. 
This site also supports interactions with Google Summer of Code students. 

 
§ Personnel Changes 

 
In year 3, two new faculty joined the QIN team — Dr. Suprateek Kundu and Dr. 

Yasir Rahmatallah. Dr. Kundu is on the faculty of the Biostatistics and Bioinformatics 
department at Emory. Under his direction, we will continue work on developing graph-
based statistics, that use phenotypes that are developed with Eureka, and helps researchers 
evaluate and validate these integrated clinical-imaging phenotypes. This work was carried 
out using the NLST datasets, as well as other, publicly available, TCIA datasets. We will 
also explore integration with genomic data, via the Genomic Data Commons. Dr. 
Rahmatallah is an assistant professor of biomedical informatics at UAMS. He will work 
with Dr. Prior to explore new approaches to graph based analysis of radiomics features. 
 

COLLABORATIONS WITHIN THE NETWORK 
 

Collaboration with the Mayo-QIN: We are evaluating Grunt — a Docker middleware 
developed by the Mayo-QIN that supports the creation of REST APIs for Docker containers. 
We have dockerized our lung segmentation algorithm, and integrated it with Grunt. We have 
since deployed it on AWS. In the coming months, as part of a BIDS WG project, we will be 
evaluating various workflow techniques such as the Common Workflow Language. 

 
Collaboration with members of the BIDS and IAMS WG: We are conducting a study 

that is evaluating the integration of imaging data with non-imaging and clinical data. The 
objective of this study is to determine best practices for data curation and management, as 
well as outlining the value proposition of such integration. The goal is to publish a white 
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paper and begin QIN projects involving curation and sharing of radiomics feature data. 
 

Collaboration with prospective members: Our QIN team has partnered with Stony 
Brook University on a new QIN proposal and an ITCR U24 proposal. These collaborations 
establish cross network projects at the outset.  

 
RELATED COLLABORATIONS OUTSIDE THE NETWORK 

 
Dr. Sharma is a member of the BIDS working group and is participating in two WG 

projects. Dr. Sharma is working with the MGH team and Dr. Jayashree Kalpathy-Cramer 
(ITCR U24) on a project where the Emory team will deploy lung segmentation pipelines 
onto AWS using YunPipe. Dr. Sharma has also started collaboration with the ISB Cancer 
Genomics Cloud Pilot, to explore an integration of TCIA data with the cloud pilots. These 
collaborations will continue in the upcoming year. 

 
Dr. Bosch is an active member of DICOM WG-7 (RT Information Objects) where he 

is currently involved in the development of second-generation DICOM RT Dose objects and 
ROI templates.  Dr. Bosch serves as Connectathon Test Manager for the IHE Radiation 
Oncology (IHE-RO) Domain, which seeks to improve interoperable exchange of DICOM 
RT objects among commercial software systems.  He also participates in AAPM TG-263, 
which seeks to standardize nomenclature for radiotherapy treatment planning. 

 
Dr. Bosch (lead PI) and Dr. Prior direct the Radiorepository core of the PCORI 

funded Pragmatic Randomized Trial of Proton vs. Photon Therapy for Patients with Stage II 
or III Breast Cancer (PI: Bekelman). The Radiotherapy Comparative Effectiveness 
(RADCOMP) Consortium was given permission by NCI to use TCIA in this prospective 
trial.  The ability of TCIA to support this trial was a direct result of our efforts under AIM 1 
to expand the capabilities of TCIA to collect and curate RT objects. 

 
The UAMS-Emory team joined Dr. Saltz and his Stony Brook university team to 

submit a QIN application focusing on radiomic-pathomic correlations and management of 
feature space representations. This application featured cross-network projects.  

 
§ Summary of Progress 

 
Table 1 lists the publications and presentations produced by the UAMS-Emory team 

during the past year.  Figure 6 summarizes the tools our team has produced thus far and how 
they are deployed in trials or other applications. 
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Figure 6: Tools developed by the UAMS-Emory QIN 

 
 

Tool Name Tool Type Tool Description Create
d as 

part of 
QIN? 

Clinical 
trials & 

other uses 

TCIA Open Access 
Information 
Repository  

An information resource 
that provides open access 
Radiology and Pathology 
images, clinical trial and 
other patient related data to 
support cancer research.   

Partially PCORI 
Pragmatic 
Randomized 
Trial of Proton 
versus Photon 
Therapy  

POSDA Curation and 
De-
identification 
Software for 
DICOM 
images and 
objects 

A Database for storing 
relationships among 
DICOM images and a set of 
tools and user interfaces for 
exploring relationships 
among DICOM Images, 
making bulk changes to 
DICOM images, and 
removing PHI. 

Partially Deployed in 
TCIA 

Project 
Bindaas 

Data 
Management 
and Sharing 

A middleware tool to 
simplifies the development 
and deployment of 
programmatic interfaces for 
databases.  

No Deployed in 
TCIA 

YunPipe Cloud Based 
Data 
Processing 

A tool that allows you to run 
imaging worksflows on 
Amazon Cloud Services. 
The tool requires that all 
components of the workflow 
be containerized as Docker 
images. Workflows are 
authored using CWL 

YES   

DataScope Data 
Exploration 
and 
Visualization 

A platform for creation of 
scientific mashups and 
visualizing multi-
dimensional datasets. 

NO   

Data Café Data 
Integration 

Big Data integration 
platform that can combine 
mutliple types of data such 
as clinical data and 
Radiomic/Pathomic 
features 

YES   

caMicroscope Digital 
Pathology 

A platform for digital 
pathology data 
management, visualization 
and analysis. 

NO Deployed in 
TCIA 

Eureka! 
Clinical 
Analytics 

Clinical 
Phenotyping 

Eureka! Clinical Analytics 
enables biomedical 
researchers to create 
databases containing 
clinical data of interest for 
cohort discovery and 
analysis. It allows one to 
define clinical or imaging 
phenotypes and represent 
these as graphs in a graph 
database.  

Partially   
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Table 1:  Publications and presentations from QIN involvement 
 
 
 
 

 

Rosenstein B, Capala J, Efstathiou J, Hammerbacher J, Kerns S, Kong F-M, Ostrer H, 
Prior F, Vikram B, Wong J, Xia Y, How Will Big Data Improve Clinical and Basic Research 
in Radiation Therapy? International Journal of Radiation Oncology, 2015; 
doi:10.1016/j.ijrobp.2015.11.009 
Benedict SH, Hoffman K, Martel MK, Abernethy AP, Asher AL, Capala J, Chen RC, Chera 
B, Couch J, Deye J, Efstathiou JA, Ford E, Fraass B, Gabriel PE, Huser V, Kavanagh  BD, 
Khuntia  D, Marks LB, Mayo C, McNutt T, Miller RS, Moore  KL, Prior F, Roelofs  E,  
Rosenstein  BS, Sloan J, Theriault A, Vikram B. Overview of the American Society for 
Radiation Oncology–National Institutes of Health–American Association of Physicists in 
Medicine Workshop 2015: Exploring Opportunities for Radiation Oncology in the Era of Big 
Data. International Journal of Radiation Oncology• Biology• Physics. 2016; 95(3):873-9. 
Kathiravelu, P. & Sharma, A. (2015). MEDIator: A Data Sharing Synchronization Platform 
for Heterogeneous Medical Image Archives. In Workshop on Connected Health at Big Data 
Era (BigCHat'15), co-located with 21st ACM SIGKDD Conference on Knowledge 
Discovery and Data Mining (KDD 2015). Aug. 2015. 
http://doi.org/10.13140/RG.2.1.3709.4248 
Post AR, Pai AK, Willard R, May BJ, West AC, Agravat S, et al. Metadata-driven Clinical 
Data Loading into i2b2 for Clinical and Translational Science Institutes. AMIA Summits 
Transl Sci Proc. 2016:184-93. 
Wu, M. (2016). Association between Clinic Characteristics and Positive Low-dose CT 
outcome among current and Former Smokers (Master’s Thesis). Retrieved from 
http://pid.emory.edu/ark:/25593/rhxbz 
Tobias M, Porter J, Sharma A, Politite D, Prior F, “Utilizing the Galaxy web-based platform 
to simplify access to imaging data and processing pipelines,” Abstract and poster 
presentation, Quantitative Imaging Network (QIN) Face-to-Face meeting in support of 
1U01CA187013-01, April 11, 2016.  
Bennett W, Bosch W, Smith K, Prior F, “Analysis and Remediation of DICOM consistency 
issues using the Posda open source DICOM toolkit,” Abstract and poster presentation, 
Quantitative Imaging Network (QIN) Face-to-Face meeting in support of 1U01CA187013-
01, April 11, 2016.  
Post A, Wu M, Sharma A, “Eureka! Clinical Analytics,” Abstract and Hands on 
Demonstration, Quantitative Imaging Network (QIN) Face-to-Face meeting in support of 
1U01CA187013-01, April 11, 2016.  
Sharma, A, Prior F. “Large Scale Data Management, Computation, and Analysis for 
Quantitative Imaging Research”, presented by A. Sharma, Quantitative Imaging Network 
(QIN) Face-to-Face meeting in support of 1U01CA187013-01, April 11, 2016 
Kathiravelu, P. & Sharma, A. “SPREAD - System for Sharing and Publishing Research 
Data”. In Society for Imaging Informatics in Medicine Annual Meeting (SIIM 2016). June 
2016. 
 “Informatics resources for cancer radiomics” Presented by F.W. Prior, NCI-Sponsored 
Session, AACR, New Orleans, LA, April 19, 2016. 
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PLANS FOR NEXT YEAR 
 
During the coming year we plan to complete the following work on each of our aims. 
 

§ AIM 1 
 

Create a mashup between TCGA clinical data (available in GDC) and TCGA images 
available in TCIA. This will allow researchers to create cohorts and access images using 
clinical and imaging data. As described earlier, we are working with members of the BIDS 
WG to develop an information model for clinical data that accompanies all non-TCGA 
images in TCIA. We will begin work on making this accessible via an API as well as link 
the clinical data to the imaging data. This work is in preliminary stages and will be limited 
to a prototype in the coming year. We will continue to upgrade the API and add new APIs to 
meet user needs. A publication summarizing our work in APIs and data mashups is under 
preparation and will be submitted in early 2017. 

 
§ AIM 2 

 
We will continue work on yunpipe (a cloud based imaging pipeline system). In the 

coming year, we will add support to retrieve data from TCIA. We will also test yunpipe 
using existing image pipelines. Some of this work will be done as part of an ongoing BIDS 
WG cooperative project. A publication describing yunpipe and cloud based image pipelines 
is under preparation and will be submitted in late spring. 

 
During the coming year we will work to refine our automated lung segmentation tool 

and its integration with the other Galaxy tools that we are developing.  We will also compare 
our automated routines to either manually segmented routines or manually seeded routines.  
We will also integrate tools for doing automated lung nodule characterization based on our 
preliminary experience with CNNs. 

 
We are currently summarizing our testing on image features and CNNs and 

preparing a manuscript for publication: Image features for prediction of lung cancer 
malignancy with low dose CT scan (LDCT). This manuscript will include the results of our 
over fitting analysis and utilization of independent test sets from LungX and Dr. Gierada. 

 
Based on the preliminary testing with the LIDC/IDRI dataset of the models, we plan 

to return to the NLST problem where lesions are not identified and explore the use of 
Convolutional Neural Networks to learn how to identify patients who developed lung cancer 
from those who did not using the entire lung as input to the analysis.  

 
§ AIM 3 

 
We will continue our work on statistical methods to develop graph based imaging 

phenotypes that combine clinical data and imaging features. The first case study on this 
topic is looking into LungRADS and how it’s precision can be improved. The existing 
LungRADS relies on clinical features to determine risk and then relies exclusively on 



245 
 

imaging features to recommend a screening protocol. We are exploring alternate scoring 
criteria, in a retrospective study of NLST subjects that uses imaging features as well as 
clinical and demographic features, when recommending a screening protocol. The goal is a 
publication outlining this work, as well as a specific plan to proceed with this work, 
assuming a successful outcome, in an observational study with patients undergoing lung 
screening using LDCT. 

 
Over the coming year, we will implement data adapters for additional TCIA datasets. 

As part of this work, we expect to enhance Eureka to process non-clinical data in order to 
incorporate imaging features into graphs and support a wider range of studies that compare 
populations by imaging features in addition to clinical data. This will support our goal of 
making TCIA datasets broadly accessible to QIN investigators in graph form. We will also 
advance making TCIA datasets broadly available for secure interactive query in i2b2, which 
will provide data export that is suitable for a broader range of statistical analysis methods.  

 
§ AIM 4 

 
A short course on the advanced features added to TCIA has been accepted for 

presented at RSNA 2017. Presentations are planned for the 2017 QIN annual meeting. 
Several new cross-network collaborations are in the planning stage. 
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INTRODUCTION 

. 
Despite the advances in treatment strategies, lung cancer remains the leading cause of 

cancer related death globally. Early prediction of treatment response and clinical outcomes 
may help tailor therapy for individual patients. Cancer genomics has demonstrated that the 
initiation and progression of lung cancer are caused by specific genetic abnormalities, such as 
mutations in EGFR, KRAS, and ALK and therapies that target these genetic abnormalities 
have shown great promise. Tumor tissues acquired from biopsies and surgical resection are 
used for genotyping but these procedures are invasive and are not generally repeated during 
treatment. 
 

Genetic mutations drive various biological processes in malignant tumors that may 
manifest in macroscopic phenotypic. Medical imaging can non-invasively and quantitatively 
assess lung cancer phenotype, and, possibly, the tumor genotype. Radiomics is capable of 
extracting a large number of quantitative imaging features that can be used to describe tumor 
phenotypes. Studies by our group and others have suggested that radiomic features are 
significantly associated with clinical outcomes, treatment response, and genomic mutations. 
The features have great potential for noninvasive and quantitative tumor characterization, and 
through integration with other sources of information, personalized therapy. 
 

The central hypothesis of our ongoing research is that radiomic features combined 
with genetic mutation profiles can improve tumor characterization and predict therapeutic 
response and clinical outcome. In addition, we are exploring the relationship between 
radiomic features and genomic abnormalities 
 

DISCUSSION AND RESULTS OF PROGRESS MADE OVER THE PREVIOUS 
YEAR 

 
In the past year, our research has been divided along the four main aims outlined in 

our funded project. We are actively building a large database consist of imaging and 
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mutational data (PROFILE) at DFCI/BWH. Currently, our database has the majority of 
PROFILE lung patients (~1000) were have been treated at DFCI/BWH since 2012. 
Investigators are actively engaged in this project and communicate through weekly meetings 
during which progress is assessed. Diagnostic CT and PET images have been curated by 
radiologists to define accurate tumor segmentations. Genomic and clinical data were collected 
and curated by medical and radiation oncologists. Moreover, we are developing a 3D-Slicer-
based platform for automatic radiomic feature extraction and analysis. 3D tumor masks have 
been segmented on all of our curated images for radiomic features extraction.  
 

As mentioned, tumor initiation and progression can be driven by somatic mutations, 
such as EGFR and KRAS, in NSCLC. These somatic mutations drive various biological 
processes that are ultimately reflected in tumor phenotypes. Quantitative radiomics non-
invasively characterizes tumor phenotypes by using a automatic image characterization 
algorithms to extract a large number of quantitative features from medical images. An analysis 
of a first batch of the PROFILE patients has been completed, allowing us to explore 
correlations between genomic and radiomic features and investigate the value of radiomic 
features in predicting tumor mutational status. 
  

18F-FDG-PET imaging is used to assess tumor glucose metabolism (Figure 1). Because 
mutations alter processes that control the cell cycle, one could hypothesize that mutations may 
each alter metabolism in distinct ways. However, it is unknown whether somatic mutations 
can be predicted by PET-based radiomic features that describe the tumor metabolic 
phenotypes. For the first time, we assessed the power of 18F-FDG-PET-based radiomic 
features to predict somatic mutations in non-small cell lung cancer (NSCLC) patients [1]. We 
identified 348 NSCLC patients who were profiled for somatic mutations and underwent 
diagnostic 18F-FDG-PET/CT scans. Of thesem 13% (44/348) and 28% (96/348) were found 
to harbor an EGFR (EGFR+) or KRAS (KRAS+) mutation, respectively. We used AUD to 
assess the ability of 21 PET-based radiomic features to predict mutation status. The 
significance of the AUC was compared to a random guess (AUC=0.5) using the Noether's 
test. All p-values were corrected for multiple hypothesis testing by controlling the false 
discovery rate (FDRWilcoxon, FDRNoether) with a significance threshold of 10%. 

 
 
 
 
 

 

https://paperpile.com/c/CNP13l/OZ0e


251 
 

 

 
Figure 1: From left to right are patients with EGFR mutation, KRAS 
mutation, and EGFR– and KRAS– tumors, respectively. Stage I and III 
tumors are shown in the top and bottom rows, respectively. Arrows indicate 
the locations of the lung tumors. 

 
 
 

Ten radiomic features were significantly predictive of EGFR mutation status (Figure 
2). One radiomic feature (normalized inverse difference moment) outperformed all other 
features in predicting EGFR status (EGFR+ vs EGFR-, AUC=0.67, FDRNoether=0.0032), as 
well as differentiating between KRAS+ and EGFR+ (AUC=0.65, FDRnoether=0.05). None of 
the features were associated with or predictive of KRAS mutation status (KRAS+ vs. KRAS-
, AUC=0.50-0.54). Our results indicate that EGFR mutations may drive different metabolic 
tumor phenotypes that are captured in PET images, whereas KRAS mutated tumors do not. 
This study sheds light on genotype-phenotype interactions, using radiomics to capture and 
describe the phenotype, and may have potential for developing non-invasive imaging 
biomarkers for somatic mutations [1].  

 
 
 
 
 
 
 
 
 

 
 

 

https://paperpile.com/c/CNP13l/OZ0e
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Figure 2: Area under the ROC curve (AUC). * indicates that the AUC is significantly 
> 0.50 (random guessing) assessed with Noether’s test (FDRNoether≤0.10). Note that there 
are a large number of features able to significantly predict EGFR positive tumors; 
however, they are not able to predict KRAS positive tumors. 

 
 
 

We recently published two papers focusing on lung cancer pathological response that 
have potential clinical implications [2, 3]. For patients with non-small cell lung cancer 
(NSCLC) treated with trimodality therapy (chemoradiation followed by surgery), pathological 
response is a direct measure of therapeutic response that is assessed at the time of surgery. 
Pathological response can be used as a surrogate marker to aid clinical decision-making. 
However, the benefits of adding surgery to chemoradiation for stage IIIA NSCLC remain 
unclear. Therefore, noninvasive early predictors of pathological response are needed to 
identify patients most likely to benefit from continuing chemoradiation versus proceeding to 
surgery. We investigated the value of radiomic data extracted from pretreatment CT images 
of the primary tumor and lymph nodes in predicting pathological response after neoadjuvant 
chemoradiation before surgery (Figure 3).  
 

After selecting features based on stability (test/retest robustness) and variance 
(Principal component analysis and correlation) we identified 10 features from the primary 
tumor and 10 from the lymph nodes. All results were corrected for multiple testing using false 
discovery rate. We found that tumors that did not respond well to neoadjuvant chemoradiation 
were more likely to present a rounder shape (spherical disproportionality, AUC = 0.63, p-
value = 0.009) and heterogeneous texture (entropy, AUC = 0.61, p-value = 0.03). 
Additionally, two features extracted from lymph nodes (quantifying homogeneity) were 

https://paperpile.com/c/CNP13l/miC7+2f3G
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predictive of non-response (AUC range 0.72–0.75, p < 0.05) and performed significantly 
better than information from the primary tumor site (AUC = 0.62). Multivariate analysis 
showed (Figure 4) the radiomic features set alone had the best-performing classification 
(median AUC = 0.68) for identifying complete responders. For non-responder classification, 
the combination of radiomic and clinical data significantly outperformed all other predictors 
(median AUC = 0.73). This project has potential to develop noninvasive biomarkers that could 
capture the total tumor burden and provide important complementary information to aid 
clinical decision-making. 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: A) Schematic of the radiomics quantification workflow demonstrating 
feature extraction from the lung primary tumor site (in green) and lymph nodes (in 
orange) from pre-treatment CT images. B) Radiomics could enable precision 
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medicine by classifying patients prior to therapy based on how they will respond to 
chemoradiation. 

 
 

 
 
Figure 4: The performances of random forest classification of models for A) 
pathological complete response (pCR) and B) gross residual disease (GRD). AUCs 
are reported from nested cross validation analysis. “*” indicates significant 
difference between the feature models (permutation test, p-value  0.05) 
 

 
 

Finally, because batch effects may be important in radiomic studies, we tested the 
effects of different image acquisition protocols. The majority of radiomics studies have used 
features extracted from a single image type. However, different imaging methods may be used 
to assess the tumor phenotype and different aspects of its behavior may be uniquely captured 
in different types of images, However, differences in collection protocol can introduce 
differences in radiomic features even within the same imaging modality. For example, in 
radiation therapy treatment planning, computed tomography (CT) is the primary imaging 
modality used, but different types of CT images are acquired to provide additional information 
for the treatment plan. Commonly, treatment plans are designed on static free breathing (FB) 
helical CT images, however, in cases where organ motion is a concern, such as with lung 
tumors, four-dimensional (4D) CT image datasets are also acquired and converted to 3D 
volumes using average intensity projection (AIP). This is the case for early stage non-small 
cell lung cancer (NSCLC) patients that are treated with stereotactic body radiation therapy 
(SBRT) (Figure 5). The use of both types of CT scans has contributed to the excellent survival 
and local control of NSCLC patients treated with SBRT. 
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Figure 5.: A) Examples of free breathing (FB) and average intensity projection (AIP) 
images, demonstrating the observable differences in tumor phenotype between each 
image type. AIP images were reconstructed from 4D computed tomography (CT) scans. 
B) Schematic representation of the radiomics workflow for FB and AIP images. I. CT 
images of the patient are acquired and the tumor is segmented. II. Imaging features 
(radiomic and conventional features) are extracted from the tumor volume. III. 
Radiomic features undergo a feature dimension reduction process to generate a low-
dimensional feature set based on feature stability and variance. IV. Imaging features are 
then analyzed with clinical outcomes to evaluate their prognostic power. FB and AIP 
radiomics features are compared. 

 
 
 

Nineteen radiomic features were selected for analysis from FB and AIP images. 
Notably, thirteen of the ninteen features were different between FB and AIP images. These 
features were selected based on maintaining the variance in the dataset, and therefore, the 
difference in feature sets indicates that the images contain different radiomics information and 
the image type influences the feature values. Only one AIP radiomics feature was associated 
with loco-regional recurrence (LRR), however, none of the conventional volumetric or 
radiomics features from FB or AIP images were prognostic for LRR. Furthermore, none of 
the imaging features were associated with distant metastases (DM), although several features 
were prognostic for DM.  
 

This highlights the important notion that although a feature may be associated with a 
clinical outcome, it may not necessarily be prognostic since the properties of the feature 
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distribution that qualify a feature as associative are not the same as the properties that qualify 
a feature as prognostic. The selected FB and AIP radiomic feature sets had six common 
radiomic features between both image types and thirteen funique features. None of the FB 
radiomic features were prognostic of DM, however, seven AIP radiomic features, that 
described tumor shape and heterogeneity, were prognostic (CI range: 0.638-0.676). 
Conventional volumetric features from FB images were not prognostic of DM, however, AIP 
conventional features were (CI range: 0.643-0.658). AIP radiomic multivariate models 
(median CI = 0.667) outperformed all other models (median CI range: 0.601-0.630) in 
predicting DM. None of the imaging features were prognostic of LRR (Figure 6).  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Performance of each multivariate model in predicting distant metastasis. 
Concordance indices are reported for the FB and AIP conventional and radiomic 
models, and a combined FB+AIP radiomics model, comparing the performance of 
each of model and image type. Cross validation was performed (80% training, 20% 
validation) to generate 100 models for each model type. Comb. Indicates the 
combined FB and AIP radiomics model. *p-value < 0.05; “ns” indicates not 
significant (p-value > 0.05). 
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COLLABORATIONS WITHIN THE QIN AND ITCR NETWORKS 
 
§Lung Nodule Segmentation algorithms.  
 

Our group also participated the regular teleconference of the PET/CT subgroup and in 
the nodule segmentation challenge 2016. In this challenge, we used a publically available 
semiautomatic segmentation algorithm that is implemented in the 3D Slicer 4.5 Chest Imaging 
Platform (CIP). A seed point needs to be placed within the nodule region to initialize 
segmentation. The nodule segmentation is then generated based on a level set formulation to 
propagate according to a Geodesic Active Contour functional. The robustness of the CIP-
based and radiologist manually-defined segmentation were assessed using the region of 
uncertainty (δ) and the Dice similarity index (dsi). The median computational time of the CIP 
segmentation on a personal computer was only 10s. CIP segmentations were significantly 
more robust than manual segmentations (Figure 7). We demonstrated that CIP segmentation 
can potentially reduce the physician workload and inter-observer variability owing to its 
computational efficiency and superior stability compared to manual segmentation (Yip et al 
submitted 2016b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Robustness (or Stability) of the manual and CIP-based segmentation assessed 
with the region of uncertainty (δ) and Dice similarity index (dsi). 
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§ Python Radiomics Platform: 
 
A large part of radiomics analyses rely on engineered hard-coded features. However, 

there is a lack of standardization both of the feature definitions and the preprocessing of the 
image, which has been shown to have a substantial impact on the performance of the extracted 
data. Many studies use in-house developed software, which is not always shared, making 
reproduction of results more difficult. By an ITCR funded effort, we aimed to  develop a 
supported open source comprehensive radiomics platform to simplify and clarify feature 
extraction from image to output. This resulted in the development of PyRadiomics, written in 
easy-to-read Python code with additional C extensions for performance, which is freely 
available on github. It is freely distributed and requires no expensive licenses to run the code, 
as the Python language itself is freely distributed open source.The extraction of radiomics 
features by PyRadiomics comprises of four main steps: 1) Loading and preprocessing of the 
image and segmentation maps, 2) Application of enabled filters, 3) Calculation of features 
using the different feature classes and 4) Returning results. The dynamic and modular design 
simplifies the addition or removal of features. In interactive mode, PyRadiomics can be 
incorporated in larger image analysis pipelines, while the CLI scripts combined with the 
parameter file facilitate feature extraction without requiring extensive programming skills of 
the user. Furthermore, generated results can be stored in a CSV-format, enabling easy import 
directly into many statistical packages for analysis, including R and SPSS. For more 
information see: www.radiomics.io and www.github.com/radiomics 
 

PLANS FOR NEXT YEAR 
 

During the next year, we plan to continue our successful research program, pursuing 
both the refinement of existing methods, the development of new analytical approaches, and 
the expansion our collection of integrated data sets. 
 

First, we will curate a second batch of Profile datasets by collecting and analyzing, 
imaging, genomic, and clinical outcome data. The analysis of the first batch of patients is 
finalized, and we aim to publish this analysis this year. 
 

Second, we will incorporate additional radiomic classification methods, including 
deep learning, into our machine-learning framework. We will refine these methods over time 
by integrating additional sources of data as they become available, benchmarking their 
performance against current methods. 
 

Third, we will develop further validate developed radiomic, genomic, and integrated 
biomarkers. For this purpose we have access to multiple independent datasets that we can use 
to develop and test signatures. Several machine-learning techniques have been evaluated and 
will be applied to build predictors for mutational status as well as clinically relevant outcomes, 
such as overall survival, local control, and distant metastasis. 
 

Fourth, we will make all computational resources that we develop freely available as 
open source tools. We will share the radiomic system implemented in the open source software 
suite 3D-Slicer and instantiate our data analysis methods in freely-available Bioconductor 

http://www.radiomics.io/
http://www.github.com/radiomics
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packages. We will educate and help other investigators with applying the radiomic system to 
their own data using the “project week” of 3D-Slicer, which is an open forum held twice each 
year.  
 

While the focus of this project is on NSCLC, we are using this disease as a model. Our 
ultimate goal is to develop computational methods that can be more broadly applied in cancer 
research and clinical applications. Therefore, we aim to make all software as independent as 
possible for disease site, imaging modality, and genomic data type.  Lastly, we are planning 
to design and participate in more QIN challenges for the coming year.  
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INTRODUCTION 

 
The goal of this project is to accelerate the development and deployment of quantitative 

imaging methods that improve the effectiveness and efficiency of clinical trials by using the 
combined resources of the NCI-sponsored cooperative group ECOG-ACRIN and the Quantitative 
Imaging Network (QIN). To achieve this goal, and in accord with NOT-CA-13-011 (PAR-11-
150), this project will create QIN-wide research resources.  

 
Aim 1: Optimize the efficiency of the qualification and QA/QC processes to reduce costs 

and improve the quantitative accuracy of multi-center trials using advanced imaging. 
 
Aim 2: Develop the ECOG-ACRIN QIN Resource to support retrospective testing for 

single- or multi-site QIN projects that seek to develop effective and efficient metrics and analysis 
methods for trials using advanced imaging. 

 
Aim 3: Develop the ECOG-ACRIN QIN Resource to support prospective testing of novel 

quantitative imaging methods developed in the QIN. 
 

 

 
 

Figure 1: The aims of the ECOG-ACRIN program. 
 
 
As part of the QIN, ECOG-ACRIN QIN Resource will act as a scientific site for evaluating 

methodologies and metrics for quality assurance of imaging and associated data, focusing on 
understanding the costs of efficient and effective site qualifications that result in high-quality 
imaging studies and the metrics required to appropriately define the number of participants 
required for adequate analysis.  
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This project will evaluate quality control at participating QIN laboratories, comparing 

practices currently applied by the NCI (e.g., CQIE) and ACR Imaging Core Laboratory (Aim 1) 
at each participating QIN site.  The ECOG-ACRIN QIN Resource will further act as a resource 
development platform (Aims 2 and 3). ECOG-ACRIN, in league with the Brown Statistical 
Center, proposes to develop datasets for method testing and validation using completed ACRIN 
research for assessment of QIN metrics and validation purposes (Aim 2). In the Resource, 
outcomes and progression data will be made available for correlation with computational findings.  

 
Finally, the ECOG-ACRIN QIN Resource will bring expertise across QIN Working Group 

platforms—in PET, MRI, CT, imaging statistical design, and informatics—to clinical trials by 
integrating quality assurance and QIN quantitative tools into prospective National Clinical Trial 
Network research (Aim 3). The ECOG-ACRIN QIN Resource PIs stand at the front lines within 
the ECOG-ACRIN clinical trials development structure as leaders of the Experimental Imaging 
Science Committee (EISC) and Biomarker Group and Imaging Science Advisory Committees 
(ISAC), which review imaging studies prior to submission to NCI for consideration, and thus open 
the door to identifying appropriate opportunities for prospective evaluation of QIN laboratory 
projects (Aim 3). 

 
 
 

 
 

Figure 2: The relationship between ECOG-ACRIN (left) and the QIN (right). 
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PROGRESS OVER THE PREVIOUS YEAR 
 

§ Major Activities:  
 
The scientific team has implemented monthly conference calls of the project team and 

weekly calls of the project team leadership in order to manage the activities funded through the 
grant and to ensure consistent progress with respect to all of the goals. This mechanism has proven 
to be an effective way to aggregate the unique expertise of the PIs and stakeholders who are 
associated with institutions across the country. Details associated with progress achieved within 
each of the 3 aims follows. 

 
Aim 1:  Manuscript entitled Performance Observations of Scanner Qualification of NCI-

designated Cancer Centers: Results from the Centers of Quantitative Imaging Excellence (CQIE) 
Program has been published by Academic Radiology, disseminating findings and standards for 
quantitative imaging in clinical research trials. The CQIE database has been used to identify QIN 
funded sites who have successfully met CQIE qualification standards in the past and this data is 
being used to create a site profile in the Qualification Utility for Imaging Clinical Trials (QUIC) 
of qualified QIN sites. This is intended to be dynamic as QIN sites change we will update the 
QUIC dataset.   

 
Aim 2: Established a prioritized list of completed trials with datasets that QIN sites felt 

were best positioned to support QIN development needs. Collaborated with NCI to develop 
standard guidelines and workflows for transferring the datasets to TCIA, resulting in the transfer 
of 4 trial datasets (with others in progress).  In parallel, EA QIN leveraged the ACR’s commitment 
to development of the Data Access and Retrieval Tool (DART) and developed a workflow 
involving anonymization methods which ensure compliance with safe harbor regulations and 
HIPAA standards. In addition to the datasets transferred to TCIA, fully anonymized datasets for 
these trials and for other ACRIN legacy trials will be made accessible to QIN and other 
researchers.  The DART environment will also offer the capacity to analyze datasets in the cloud 
and to process data through select applications hosted in DART, thereby enabling image 
processing to happen at the host and reducing the burden associated with transfers of large 
datasets.   

 
Aim 3: Working with NCI QIN leadership, the scientific team successfully carried out  a 

1-day planning meeting on 12/13/16 that brought together thought leaders from the NCTN 
together and leaders from QIN and other interested stakeholders.  Leading oncologists from 
different NCTN groups shared their perspectives on the value of quantitative imaging to therapy, 
while QIN representatives share their vision and perspective on how quantitative imaging may be 
able to benefit oncologists and provided a list of QI tools currently offered by QIN cites. Breakout 
sessions focused on 4 areas (response assessment, quantitative imaging biomarkers, informatics 
and precision medicine, and image/data curation and archiving) provided further discussion and 
yield of a number of ideas for the use of QIN tools in NCTN trials, and expanded use of NCTN 
image and clinical outcome datasets.  We identified several immediate opportunities to incorporate 
prospective testing of quantitative imaging tools in national level clinical trials that will be further 
developed. 
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COLLABORATIONS WITHIN THE NETWORK 
 

We successfully navigated numerous logistical issues related to data transfer and prepared 
4 datasets to be transferred to the TCIA. We completed building the infrastructure for sharing 
imaging datasets via the DART, including implementing safe-harbor method of anonymization 
and de-identification to ensure compliance with HIPAA standards. A total of 4 datasets have either 
been transferred to TCIA or are in the process of being transferred and available to the QIN 
membership. 

 
The scientific team hosted a 1-day planning meeting that brought together thought leaders 

from the NCTN together with leaders from QIN and related groups for some roundtable 
discussions on what oncologists need for quantitative imaging with their trials and what imagers 
have to offer. The outcome of the meeting is to generate 4 – 6 ideas on how to develop prospective 
testing of quantitative imaging tools in national level clinical trials. 

 
PLANS FOR NEXT YEAR 

 
Our plans for the coming year are as follows: 
 
Aim 1: We will leverage the information gained from Aim 1 to inform Aim 3 and provide 

centers with the capability to participate in a quantitative study. This step will include gathering 
information from previous ECOG-ACRIN studies with phantom use and development (Ex: 
ACRIN 6701). 

 
Aim 2: The EA QIN Resource Center will continue to interact with QIN leadership to 

establish prioritized datasets to be made available to QIN researchers, exploit the two alternative 
methods for making these datasets accessible (TCIA and DART), and develop optimal processes 
for accessing the data which reflect the intended use (multi-institutional trial process, single center 
test, or challenge grant process). Based on the needs of the QIN sites, EA QIN Resource Center 
will research additional datasets which would meet the needs of QIN sites to determine if there 
are opportunities to create new datasets that will better serve current QIN development needs.   

 
Aim 3: The EA QIN Resource Center will produce a report summarizing the results and 

future directions generated by the QIN-NCTN Planning Meeting held December 13, 2016.   Trials 
already approved or activated which are identified for hosting a QIN tool or method will be 
pursued through the clinical trial leadership of the LPO with oversight of that trial.  We also 
anticipate that we will develop improved processes to engage QIN researchers in the LPO 
meetings, with the goal of engagement in early clinical trial development activities. We also 
anticipate that the Planning Meeting will identify a need to consider the possible development of 
a clinical consulting board to support direction and development.  
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PUBLICATIONS AND PRESENTATIONS FROM QIN 
INVOLVEMENT 

 
The QIN team submitted two manuscripts for publication; one of the manuscripts has been 

published by Academic Radiology, disseminating findings and standards for quantitative imaging 
in clinical research trials (Performance Observations of Scanner Qualification of NCI-designated 
Cancer Centers: Results from the Centers of Quantitative Imaging Excellence (CQIE) Program. 
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INTRODUCTION 
 

In this second annual report on our research, we note that the goal of our research is to 
develop quantitative image-based surrogate markers of breast cancer tumors for use in 
predicting response to therapy and ultimately aiding in patient management.  There is a large 
variation in the clinical presentation of breast cancer in women, and it has been shown that in 
many instances, biological characteristics, i.e., features, of the primary tumor correlate with 
outcome. Methods to assess such biological features for the prediction of outcome, however, 
may be invasive, expensive or not widely available. Our hypothesis is that MRI-based features 
obtained through quantitative image analysis will prove useful as non-invasive biomarkers for 
the assessment of, and prediction of, the response of breast cancer to neoadjuvant therapy. We 
propose to validate such image-based biomarkers using magnetic resonance (MR) images of 
breast tumors from the ACRIN 6657 clinical trial, which includes pathological response data.   
Specifically, (1) We will investigate the relationship of breast cancer therapy outcome and 
MR image-based tumor characteristics (features), and changes in these features over time, 
using a University of Chicago database and the ACRIN 6657 I-SPY clinical trial dataset of 
breast cancer tumors from patients who have undergone neoadjuvant treatment, (2) We will 
develop and evaluate the MRI-derived ‘signatures’ of breast cancer tumors for the prediction 
of, and assessment of, response to therapy using the ACRIN 6657 dataset, and (3) We will 
conduct preliminary, initial stratification and association of the MRI features with cancer 
subtype and other clinical/histopathological data from the ACRIN dataset.  We will build on 
our 25-year history of taking innovation to the clinical setting by extending our prior 
development, validation, and translation of quantitative image analysis methods for computer-
aided diagnosis to the post-diagnosis, predictive component in order to assess response to 
neoadjuvant therapy. Our research addresses the development and validation of algorithms 
using the existing ACRIN 6657 dataset with the goal of “improving the ability to measure the 
response of targeted tumors to therapy quantitatively”.  Our proposed research is aligned with 
the QIN U01 PAR-11-150 goals of including robustness investigations and multi-site trial 
data (UChicago and ACRIN).  Through this QIN grant, our participation in the QIN 
community will yield deliverables including an open-platform system that will provide tools 
for linking segmentation/feature extraction/classification, for comparing performance metrics 
across acquisition and/or analysis systems, and for discovery through dimension reduction 
techniques.  Our research will yield a set of validated lesion signatures that will serve as 
quantitative tools for use in clinical studies/trials to predict and/or assess tumor response. 
Given that other studies/trials may use different treatments, we will make available to the QIN 
community our tools for training, testing, and presenting the quantitative signatures so that 
predictive signatures for a range of treatments can be determined. 
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DISCUSSION OF PROGRESS DURING PAST YEAR 

 
§ Relationship of breast cancer therapy outcome and MR image-based tumor 
characteristics (features), and changes in these features over time from patients who 
have undergone neoadjuvant treatment. 

 
 We modified our current quantitative MRI analysis software to automatically and 
objectively calculate pre-, during-, and post-treatment breast cancer tumor characteristics 
(features) including volumetric, morphological, textural, and kinetic features. These image-
based features are based on our investigations over the past 30 years in developing and 
translating CAD/quantitative image analysis methods and we have published extensively on 
the use of multi-modality features for diagnosis and prognosis, but not yet treatment response 
or risk of recurrence (Refs. 14,16,17,20,21,23,24,35,41,42-58, 107, 128).  

 
 During the summer, we participated in the QIN BMMR Challenge, which related 
MRI-based features (phenotypes) with “risk of recurrence” using a UCSF dataset for training 
and the I-SPY 1 dataset of 162 cases for testing. We used our automatic, computerized lesion-
segmentation algorithms and lesion feature-extraction algorithms on the breast MRIs.  Here a 
c-statistics, which was used in Hylton et al. (REF) along with race and receptor status in the 
model, served as the index of performance.  Of the four teams participating, we were the only 
one to use automatic lesion segmentation and also we did not use any of the given ACRIN 
data in our model in order to push the usefulness of quantitative radiomics in assessing risk of 
recurrence.   Participating in the Challenge yielded many “lessons learned”, which will be 
described in the group’s future publication.  One of our features – one that automatically 
assessed the tumor’s most-enhancing volume did well in the I-SPY 1 prediction model.  
Because of the varied differences between the training and testing datasets, robust merged 
models were difficult to train. 
 
§ Relationship of MRI phenotypes to genomics 
 

Using the collected de-identified datasets of invasive breast carcinomas from The 
Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), cancer research 
resources supported by the National Cancer Institute (NCI) of the U. S. National Institutes of 
Health (Ref. 3, 4), the TCGA Breast Phenotype Group (Link in Ref. 5) investigated 
relationships between computer-extracted quantitative radiomic MRI lesion features and 
various clinical, molecular, and genomics markers of prognosis and risk of recurrence, 
including gene expression profiles.   At the time of analysis, 91 biopsy-proven invasive breast 
cancers from the TCGA had DCE-MR images.   On these cases, we assessed the predictive 
ability of the quantitative radiomic MRI features relative to four tasks: (i) pathologic stage, 
(ii) cancer subtypes, (iii) risk of cancer recurrence, and (iv) genomics.   
 

Investigators have developed multi-gene assays with which to relate breast cancer 
expression profiles to risk of cancer recurrence, including the 21-gene Oncotype DC assay, 
the 50-gene PAM50 assay, and the 70-gene MammaPrint microarray assay.  To investigate 
the relationships between quantitative MRI radiomic features and risk of breast cancer 
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recurrence, we conducted association studies with research versions of these multi-gene 
assays (Ref. 8).  Multiple linear regression analyses demonstrated significant associations 
between the MRI radiomics signatures (incorporating tumor size and enhancement 
heterogeneity) and the multi-gene assay recurrence scores.  Use of radiomics in the task of 
distinguishing between high and low likelihoods of cancer recurrence yielded AUC values of 
0.88, 0.76, and 0.68 for MammaPrint, Oncotype DX, and PAM50 risk of relapse based on 
subtype, respectively, with all showing statistical difference from chance.  Such computer-
extracted MR imaging radiomics shows potential for image-based phenotyping in assessing 
the risk of cancer recurrence. 

 
Through an extensive investigation, we identified statistically significant associations 
between quantitative MRI radiomic features and various clinical, molecular, and genomic 
features in breast invasive carcinoma (Refs. 6-10).  Among the many novel findings, we 
discovered some highly specific imaging-genomic assocations, which may be potentially 
useful in (a) imaging-based diagnoses that can inform the genetic progress of tumor and (b) 
discovery of genetic mechanisms that regulate the development of tumor phenotypes. 

 
§ Robustness of MRI phenotypes 
 

We continue to investigate the robustness of our computer-extracted MRI lesion 
phenotypes. Our recent robustness study focused on the robustness of features across MR 
scanners of two different manufacturers, GE (N = 91 cases) and Philips (N = 332 cases), in 
the prognostic task of distinguishing positive and negative lymph node status and receptor 
statuses of breast cancers.  Our results demonstrated that robustness in values and in 
performance across MR scanners varies for different features. Additionally, we demonstrated 
that a classification model trained on a dataset of one MR manufacturer did not always 
generalize to a dataset of another MR manufacturer, thus requiring further optimization and 
harmonization.  We are now expanding this robustness study to include the UCSF and I-SPY 
1 datasets. 
 
§ Role of deep learning in assessing response to therapy 
 

We investigated CNN features extracted with pre-trained AlexNet, (AlexNet is the 
CNN that won the ImageNet Large Scale Visual Recognition Challenge in 2012) in the task 
of breast malignancy assessment on DCE-MRIs. The CNN features merged with a support 
vector machine (SVM) classifier showed promising performance with an AUC = 0.81 
(standard error (se) = 0.01) in the task of distinguishing between malignant and benign breast 
tumors on DCE-MRI.  Based on our promising preliminary results, we will assess these pre-
trained networks and optimize steps in the CNN feature extraction for use in assessing 
response to treatment, monitoring treatment, and assessing recurrence. 
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Table 1: Tasks to be performed within the specific aims of the project. 

 
 

PLANS FOR NEXT YEAR 
 

 We are now evaluating our MRI features relative to pathologic response to treatment 
on the full I-SPY 1 dataset of over 220 cases.   First, we will evaluate the predictive value of 
the pre-treatment MR image-based tumor features in the “prediction of response to therapy”.  
We will evaluate the image-based tumor features, calculated on the pre-treatment images, in 
terms of their ability to predict patient pathological response (pCR).  Performance for the 
predictive task of distinguishing between patients that responded to the treatment and those 
that did not will be assessed quantitatively through ROC analysis with the area under the ROC 
curve (AUC) as the performance metric.  
 

We will evaluate the predictive value of the pre-treatment MRI-based tumor features, 
the post-treatment MRI-based tumor features, and the changes in the pre- and post-treatment 
MR image-based tumor features in terms of “monitoring treatment response”. We will 

Gantt Chart of 
Progress:  We are 
on schedule with our 
aims. 

Year 1 Year 2 Year 3 Year 4 Year 5 

Aim 1:  We will 
investigate the 
relationship of breast 
cancer therapy 
outcome and MR 
image-based tumor 
characteristics 
(features), and 
changes in these 
features 

We further 
developed our 
quantitative 
radiomics 
workstation for 
response to 
therapy and 
incorporated 
deep learning. 

We participated 
in the QIN 
BMMR 
Challenge, using 
the datasets for 
training and 
testing for 
assessing 
recurrence. 

We will assess the 
deep learning-
based extracted 
features in 
predicting 
recurrence. 

  

Aim 2:  We will 
develop and evaluate 
the MRI-derived 
‘signatures’ of breast 
cancer tumors for the 
prediction of, and 
assessment of, 
response to therapy 
using the ACRIN 
6657 dataset. 
 

 We further 
incorporated the 
I-SPY 1 datasets 
into our analyses 
of robustness. 

Will extend our 
radiomics features 
to be evaluated 
over all the I-SPY 
1 data for 
response to 
therapy. 

Will extend our 
radiomics 
features to be 
evaluated over all 
the I-SPY 1 data 
for monitoring 
therapy. 

We will finalize 
our system for 
automatically 
analyzing 
(segmentation and 
feature extraction) 
for response 
prediction. 

Aim 3.  We will 
conduct preliminary, 
initial stratification 
and association of the 
MRI tumor features 
with cancer subtype 
and other clinical and 
histopathological data 
from the ACRIN 
dataset using 
unsupervised 
techniques. 

  We will 
investigate the 
merging of 
radiomics and 
genomic features 
for response to 
therapy by further 
conducting 
unsupervised 
discovery. 
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calculate the change in tumor characteristics obtained from the ratio of the tumor characteristic 
feature from before neoadjuvant therapy to that after therapy.  
 
 We will continue translating our findings from the TCGA Breast Phenotype Group to 
predicting response to therapy.  Our research with the Breast Phenotype Group was conducted 
for “discovery” of relationships, so that we can then assess which ones are complimentary and 
thus could potentially be merged to yield an improved predictive imaging-genomics signature.  
In this study, we will determine optimal dimensional reduction methods for use with deep 
learning to yield these signatures using both CAD-extracted features and CNN-extracted 
features. 
 
 Through this QIN grant, our participation in the QIN community will yield deliverables 
including an open-platform system that will provide tools for linking segmentation with 
feature extraction and classification and for comparing performance metrics across acquisition 
systems and/or image analysis systems.  
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Cancer Imaging Biomarkers 
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Sandy Napel, Ph.D. 

Daniel L. Rubin, M.D., M.S. 
 

INTRODUCTION 
 

The Quantitative Imaging Network (QIN) is a consortium of many centers where 
researchers are developing and evaluating many different quantitative imaging methods to 
assess cancer. Among them, quantitative image features that can be computed from medical 
images are proving to be valuable biomarkers of underlying cancer biology that can be used 
for assessing response to treatment and predicting clinical outcome. It is now important to 
discover the best quantitative imaging features for each cancer type and imaging modality 
that characterize cancers to detect response to new therapeutics, to identify subtypes of 
cancer, and to correlate with cancer genomics. However, progress is thwarted by the lack of 
shared software algorithms, architectures, and tools required to compute, compare, evaluate, 
and disseminate these quantitative imaging features within the QIN and the broader 
community. Our project will tackle these challenges by developing and evaluating a publicly 
available executable and open source software platform, the Quantitative Imaging Feature 
Pipeline (QIFP), which will give researchers these capabilities for characterizing images of 
tumors and surrounding tissues for use in multi-center clinical trials and patient monitoring 
in general. It will also allow researchers to add their own algorithms for computing novel 
quantitative image features for their own studies, and for the benefit of the community as 
appropriate. In this way, the QIFP will facilitate assessment of the incremental value of new 
vs. existing feature sets for these purposes. 

 
The QIFP will have the following key attributes that are needed to propel 

quantitative imaging research forward in the QIN and in the broader research community: 
• Web-based, graphical user interface for development of configurable quantitative 

image feature processing pipelines that will enable researchers to explore 
combinations of quantitative imaging features 

• Expandable and sharable library of quantitative image features algorithms  
• Support for a variety of languages for quantitative image feature algorithms, e.g., 

Matlab, Java, and C/C++, via Docker containers 
• Connectivity to images and other data stored in  

o the Cancer Imaging Archive (TCIA) 
o ePAD systems (another QIN project for image annotation/curation)  
o local data stores 
o PACS systems via DICOM 

• Cloud-based cache of data and software 
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• Machine learning algorithms that permit researchers to efficiently establish how well 
a quantitative image feature or combination of features predicts a clinical or 
molecular variable. 

 
The QIFP will fill a substantial gap in the science currently being carried out in the 

QIN by providing the tools and infrastructure to assess the value of novel quantitative 
imaging features of cancer, and thereby accelerate incorporation of new imaging biomarkers 
into single- and multi-center clinical trials. It will also have additional impact by providing a 
means to disseminate and to promote the use of the quantitative imaging methods being 
developed within QIN to the broader community. 

 
DISCUSSION OF PROGRESS 

 
§ Specific Aims 
 

Aim 1: Create an expandable library of quantitative imaging feature 
algorithms capable of comprehensive characterization of the imaging phenotype of 
cancer. QIFP will accept DICOM image sets linked to regions of interest (ROIs) specifying 
the locations of tumors and other tissues of interest in the image sets, and compute from 
them vectors of quantitative features of the objects. The QIFP will be applicable to several 
modalities (e.g., CT, MR, PET), and it will support algorithms developed using a variety of 
languages, including Matlab, IDL, C++, Python, and Java. We will initially populate the 
library with a broad set of algorithms, including those that provide volumetric and time-
varying assessment of lesion size, shape, edge sharpness, and pixel statistics, developed by 
our team and by QIN and other researchers. A plug-in architecture will allow the community 
to add and share novel algorithms developed for their own research. 

  
Aim 2: Build a cloud-based software architecture for creating and executing 

quantitative image feature-generating pipelines, and for using and comparing image 
features to predict clinical/molecular features. The QIFP will allow researchers to 
configure workflows that extract a selection of quantitative features from regions of interest 
on images, to upload private imaging datasets with associated ROIs, or to utilize images and 
ROIs stored in our system or linked to public repositories such as The Cancer Imaging 
Archive. Researchers will use a web-based interface to configure image processing pipelines 
including algorithms in the library (Aim 1) and/or those supplied by themselves and/or 
others as plug-ins. Quantitative features extracted from images can then be integrated with 
other data (e.g., gene expression, RNA sequence data, clinical data, outcomes), thereby 
making imaging data accessible for modern biological study, including the discovery of 
image biomarkers of specific disease subtype (a.k.a. radiogenomics), outcome, or response 
to treatment. Two novel aspects of QIFP will be (a) a Predictive Model Generation Engine 
that uses machine learning to let the user specify a dependent variable (e.g., progression-free 
survival) that the quantitative image features can be used to predict, and (b) a Feature 
Evaluation Engine that determines the values of particular features for predicting the 
dependent variable. Users will be able store and share their pipelines, promoting 
dissemination and widespread use of the feature computation algorithms. 
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Aim 3: Assess the QIFP’s ability to facilitate the development and evaluation of 
novel quantitative imaging biomarkers of cancer in multi-center clinical trials in four 
ways. First, we will apply the QIFP to the multi-center clinical trial data (ECOG: E2408) 
used in our existing QIN project, and assess its ability to reproduce the known result that 
SUVmax predicts survival in this cancer, while showing that using QIFP improves efficiency. 
Second, within this same trial, we will evaluate the ability of QIFP to facilitate 
investigations of novel quantitative imaging features by comparing linear measurement, 
metabolic tumor burden and novel combinations of the features in our library (Aim 1) for 
predicting one-year progression-free survival. Though this evaluation will be in a specific 
cancer and will assess particular imaging biomarkers, QIFP will be generalizable and easily 
applied to image datasets in other cancers for assessment of many other quantitative imaging 
biomarkers. Third, we will utilize QIFP to merge imaging features with known host-, drug- 
and tumor-based follicular lymphoma biomarkers in order to develop the most robust and 
integrative predictive model for patient outcomes. Fourth, we will show benefit to the 
community by using the QIFP to combine image feature algorithms developed by another 
QIN team and our own NCI-funded team in the study of radiogenomics of non-small cell 
lung cancer. 

 
§ Progress against Specific Aims 
 

Our specific objectives and progress against these Aims for Years 1 & 2 were to: 
(labels C.n.m refer to our grant proposal and the Gantt Chart (Fig. 1)): 

 
AIM 1: Develop a suite of configurable image feature characterization 

algorithms: 
 
C.1.1 Begin the development of configurable image feature characterization 

algorithms; initial version complete, refinement may follow, 
 
C.1.2 Begin the development of new pre- and post-processing algorithms; several 

modules complete; additional ones may follow, 
 
C.1.3 Complete the specification of input/output and parameter block requirements; 

initial specification complete and functional. However, we are currently 
considering a more robust design based on the Slicer Execution Model, 

 
C.1.4 Begin the development of a set of simulated DICOM objects with known 

features; in progress (Fig. 2); Digital phantom objects are currently internally 
generated by our initial 3D quantitative image feature engine, and we plan to 
externalize them as a set of DICOM objects. 
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AIM 2: Build a cloud-based software architecture: The architecture specification is 
complete (Fig. 3). Although not anticipated in the proposal: 
 

1. QIFP is based on Docker modules as plug-ins, facilitating community 
participation by allowing algorithms to be developed using any language 
on any computer platform, 
 

2. We have implemented connectivity to the ePAD web-based image 
viewing and annotation software (http://epad.stanford.edu), facilitating 
QIFP-based image feature computations to be included in annotations. 

 
C.2.2.1 Build QIFP cache of images, segmented regions, and clinical molecular 

data; complete; ahead of schedule, 
 
C.2.2.2 Build a library of quantitative image feature algorithms: 
 

1. The capability to store and select from a collection of Dockerized feature 
generation engines is complete,  
 

2. A lung field segmentation tool that generates a DSO for the complete 
lung field, given a chest CT DICOM series is complete, 
 

3. A lung nodule segmentation tool that generates a DSO for a lung nodule, 
given a chest CT DICOM series, a DSO defining the lung field in the 
series, and an AIM file containing a “seed circle” identifying a subset of 
the nodule, is complete, 

 
4. A 3D feature computation engine, that generates a spreadsheet where 

each column corresponds to a DSO for a lung nodule in a CT series and 
each row corresponds to one of 198 computed radiomics features 
(including intensity, edge sharpness, shape, and texture) given a 
collection of DICOM series and DSOs, is complete. Refinement may 
follow. 

 
C.2.2.3 Build a tool for selecting input data; complete (Fig. 4) 
C.2.2.3 Build a tool for configuring processing pipelines; deferred; we are starting 

with several preconfigured workflows (Fig. 4). 
C.2.2.3 Design/build provenance architecture; deferred 
C.2.2.3 Build predictive model engine; LASSO algorithm, implemented as a Docker 

container, is complete ahead of schedule 
C2.2.4 Build Web-based user interface; begun ahead of schedule, we are working 

on a more modern and flexible front end design (Fig. 5) using Omnigraffle 6 
for website wireframe development. 

 

http://epad.stanford.edu/
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Figure 1: Gantt chart showing planned developments per Specific Aims. Red line is 
current point in time. 

Figure 2: Example of cross-sections through simulated objects in DICOM images, 
showing different textures, shapes, and edge-sharpness; spreadsheet shows features 
computed using prototype feature computation engine for the three textured objects. 
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Prototype functionality: 

The current QIFP prototype allows the user to upload data sets, consisting of a set of 
subjects’ DICOM Series Data (DSD) + DICOM Segmentation Objects (DSOs), as well as 
clinical data for the subjects, in a variety of ways (Fig. 4): 

• Web services connection to TCIA  
• Web services connection to ePAD instances 
• DICOM connection to local and remote PACS systems 
• Direct upload from filesystem 

The currently preconfigured workflows support the following use cases: 
• Process DSD+DSOs using our 3D feature computation engine to produce 

quantitative features for each subject from volumes defined by the intersection 
of the DSOs with the DSDs  

• Process stored DSD+DSOs together with clinical data as described above using 
our LASSO machine learning engine to produce a predictive model for a clinical 
variable and evaluate its performance on the training cohort using cross-
validation. Process stored DSD+DSOs together with clinical data as described 
above and a previously computed and stored predictive model to predict a 
clinical variable for an uploaded cohort of DSD+DSOs and clinical data. 

 
 
 
 
 
 
 
 
 

Figure 3: QIFP architecture 
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PLANS FOR NEXT YEAR 
 
We will continue our software developments as follows (labels C.n.m refer to our 

grant proposal and the Gantt Chart (Fig. 1)): 

C.1.3 Complete the specification of input/output and parameter block requirements; 
We will finalize the specification of parameter passing to Docker modules 
and implement this for our existing modules (3D feature engine and LASSO 
machine learning engine), 

 
C.1.4 Begin the development of a set of simulated DICOM objects with known 

features. We will try to complete the externalization of the digital phantoms 
by the end of the following year, 

 
C.2.2.2 Build a library of quantitative image feature algorithms: 
  

1. We will engage with the QIN community, specifically the BIDS Working 
Group, to test interoperability of Dockerized processing modules, and 
deploy additional feature engines and machine learning engines. 
 

Figure 4: QIFP functional prototype implementation screens: allows selection of datasets 
(DICOM series, DSOs) from (a) ePAD instances, (b) TCIA, and (c) local filesystem.  User can 
(d) select from available Docker tools (currently (1) lung field segmentation, (2) lung nodule 
segmentation, (3) 3D feature computation, (e) configure a workflow involving one or more 
Docker tools and (e) monitor job status and retrieve results. 
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2. We will deploy at least one externally developed algorithm on the QIFP 
prototype 

 
C.2.2.3 Build a tool for configuring processing pipelines: We will begin the design 

graphical use interface for user configuration of workflows, 
 
C.2.2.3 Design/build provenance architecture: We will begin this design and 

implementation of a prototype system for recording experimental provenance 
 
C.2.2.4 Build Web-based user interface: We will complete this design and a working 

prototype implementation. 
In addition: 
1. We will make a working prototype available to interested QIN participants, 

 
2. We will release a working prototype by RSNA 2017 that will allow us to 

begin to train the broader community regarding the use of the QIFP. 
 

 
 
 
 
 
 
 
 

Fig. 5: QIFP front-end design 
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PUBLICATIONS AND PRESENTATIONS FROM QIN 
INVOLVEMENT 

 
§ Accepted Manuscripts 
 

1. S. Echegaray, O. Gevaert, R. Shah, A. Kamaya, J. Louie, N. Kothary, S. Napel, 
“"Core Samples" for Radiomics Features that are Insensitive to Tumor 
Segmentation: Example in CT Images of Hepatocellular Carcinoma,” J. of Med. 
Imag, 2(4):041011, 2015. PMID: 26587549. PMCID: PMC4650964. 

2. J. Kalpathy-Cramer, B. Zhao, D. Goldgof, Y. Gu, X. Wang, H. Yang, Y. Tan, R. 
Gillies, S. Napel, “A Comparison of Lung Nodule Segmentation Algorithms: 
Methods and Results from a Multi-institutional Study,” J Digit Imaging, 29(4):476–
487, 2016. PMID: 26847203. PMCID: PMC4942386. 

3. J. Wu, M. F. Gensheimer, X. Dong, D. L. Rubin, S. Napel, M. Diehn, B. W. Loo, R. 
Li, “Robust Intra-tumor Partitioning to Identify High-risk Subregions in Lung 
Cancer: a Pilot Study,” International Journal of Radiation Oncology, Biology, 
Physics 95(5):1504-12, 2016. PMID: 27212196. PMCID: PMC4969127. 

4. S. Echegaray, V. Nair, M. Kadoch, A. N. C. Leung, D. L. Rubin, O. Gevaert, S. 
Napel, “A rapid segmentation-insensitive "digital biopsy" method for radiomic 
feature extraction; method and pilot study using CT images of non-small cell lung 
cancer,” in press, Tomography, August 2016.  

5. J. Kalpathy-Cramer, A. Mamomov, B. Zhao, L. Lu, D. Cherezov, S. Napel, S. 
Echegaray, M. McNitt-Gray, P. Lo, J. C. Sieren, J. Uthoff, S. K. N. Dilger, B. 
Driscoll, I. Yeung, D. Goldgof, “Radiomics of lung nodules: a multi-institutional 
study of robustness and agreement of quantitative imaging features,” in press, 
Tomography, October 2016. 

6. K. Lekadir, A. Galimzianova, À. Betriu, L. Igual, D. L. Rubin, E. Fernández, P. 
Radeva, and S. Napel, “A Convolutional Neural Network for Automatic 
Characterization of Plaque Composition in Carotid Ultrasound,” in press, IEEE 
Journal on Biomedical and Health Informatics, October 2016 NIHMSID 832055. 

7. A. Hoogi, J. W. Lambert, Y. Zheng, D. Comaniciu, and D. L. Rubin, “A Fully 
Automated Pipeline for Detection and Segmentation of Liver Lesions and 
Pathological Lymph Nodes,” in press, Thirtieth Annual Conference on Neural 
Information Processing Systems 2016. 
 

§ Submitted Manuscripts 
 

1. M. Zhou, A. N. C. Leung, S. Echegaray, J. B. Shrager, K. C. Jensen, G. G. Berry 
MD, S. K. Plevritis, D. L. Rubin, S. Napel, O. Gevaert, “Radiogenomics mapping of 
non-small cell lung cancer identifies prognostic relationships between semantic 
image features and metagenes captured using RNA sequencing, revised and re-
submitted to Radiology August 2016. 

2. R. Minamimoto, M. Jamali, O. Gevaert, S. Echegaray, A. Khuong, C. D. Hoang, J. 
B. Shrager, S. K. Plevritis, D. L. Rubin, A. N. C. Leung, S. Napel, A. Quon, 
“Prediction of EGFR and KRAS Mutation in non-small cell lung cancer using 
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advanced quantitative 18F FDG-PET/CT metrics,” submitted to Oncotarget, 
September 2016.  

3. O. Gevaert, S. Echegaray, R. Shah, A. Kamaya, J. Louie, S. Napel, N. Kothary, 
“Non-invasive radiomics signature is predictive of microvascular invasion in 
hepatocellular carcinoma,” revised and re-submitted to Radiology, October 2016.  

4. O. Gevaert, S. Echegaray, A. Khuong, C. D. Hoang, J. B. Shrager, K. C. Jensen, G. 
J. Berry, S. K. Plevritis, D. L. Rubin, S. Napel, A. N. Leung, "Predictive 
radiogenomics modeling of EGFR mutation status in lung cancer,” revised and re-
submitted to Nature Scientific Reports, October 2016. 

5. A. Hoogi, C. F. Beaulieu, G. M. Cunha, E. Heba, C. B. Sirlin, S. Napel and D. L. 
Rubin, “Adaptive Local Window for Level Set Segmentation of CT and MRI Liver 
Lesions,” revised and resubmitted, Medical Image Analysis, November 2016. 

6. S. Echegaray, S. Bakr, D. L. Rubin, S. Napel, “Quantitative Image Feature Engine 
(QIFE): An open-source, modular engine for 3D quantitative feature extraction from 
volumetric medical images,” submitted to Medical Physics, Nov. 2016. 

 
§ Presentations 
 

1. O. Gevaert, S. Echegaray, A. Khuong, C. D. Hoang, J. B. Shrager, S. K. Plevritis, S. 
Napel, A. N. Leung, “Predictive modeling of epidermal growth factor receptor 
mutation status using semantic image features in non-small cell lung cancer 
(NSCLC),” Radiological Society of North America 101st Scientific Sessions, 
Chicago, December 2015. 

2. O. Gevaert, S. Napel, S. Echegaray, A. Khuong, C. D. Hoang, J. B. Shrager, S. K. 
Plevritis, A. N. Leung, “Radiogenomics mapping of non-small cell lung cancer 
(NSCLC) identifies prognostic relationships between semantic image features and 
metagenes captured using RNA sequencing,” Radiological Society of North America 
101st Scientific Sessions, Chicago, December 2015. 

3. V.S. Nair, A. Garcia, H. Chen, Y. Balagurunathan, T. Atwater3 O. Gevaert, S. 
Antic, M. Schabath, S. Napel, R. Walker, R. Gillies, P. P. Massion, “Validating a 
radiomic classifier for improved lung cancer prediction of indeterminate pulmonary 
nodules,” American Thoracic Society Annual Meeting, San Francisco, May 2016. 

4. M. Zhou, S. Napel, S, Echegaray, A. N. Leung, O. Gevaert, “Radiogenomics 
Mapping of Non-small Cell Lung Cancer Shows Strong Correlations between 
Semantic Image Features and Metagenes,” Radiological Society of North America 
101st Scientific Sessions, December 2016.  

5. S. Napel, S. Echegaray, D. Gude, O. Gevaert, D. L. Rubin, “The Quantitative Image 
Feature Pipeline (QIFP) for Discovery, Validation, and Translation of Cancer 
Imaging Biomarkers,” Radiological Society of North America 102nd  Scientific 
Sessions, Chicago, December 2016.   

6. D. L. Rubin, C. Altindag, E. Alkim, “New developments in the ePAD platform to 
support quantitative imaging assessment in the research workflow,” Scientific 
Exhibit in the Quantitative Imaging Reading Room of the Future (QIRR), 
Radiological Society of North America 102nd  Scientific Sessions, Chicago, 
December 2016. 

 



295 
 

 

 

 

 

 

 

 

 

 

 

Contributions to QIN from Canadian Research Teams 
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 In the fall of 2015, the Quantitative Imaging Network (QIN) welcomed two research 
teams from Canada.  The team from the University of British Columbia and the team from the 
University Health Network of Toronto each submitted applications to NCI for review in study 
section earlier that summer.  Both received favorable scores and funding was provided by the 
Institute of Canadian Research of the Canadian Institutes of Health Research and Genome 
BC. 
 

Dr. Francois Benard leads the group from the University of British Columbia.  His 
research topic has been Integrating Quantitative Imaging Methods and Genomic Biomarkers 
to Assess the Therapeutic Response of Cancers.  This team is developing improved methods 
to measure the volume of tumors and to measure their accumulation of PET radiotracers.  They 
will then correlate this measure of tumor mass to the amount of circulating tumor DNA in the 
blood.  The 2016 report of progress is included in this section of the overall QIN report.   
 

Dr, David Jaffrey and his team from the University Health Network is looking at 
Image-Based Quantitative Assessment of Tumor Hypoxia.  Using PET imaging, this group is 
detecting hypoxic regions of tumors non-invasively.  The goal is to be able to predict response 
to radiation therapy.  Translation of their methods to a clinical setting is also being studied. 

 
The Quantitative Imaging Network has been enriched by the participation of these two 

teams in the various network activities.  The reports provided indicate the progress each has 
made and the network activities of each. 
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U01CA190232: Integrating Quantitative Imaging Methods and Genomic 
Biomarkers to Assess the Therapeutic Response of Cancers 

 
University of British Columbia 

 
François Bénard, M.D. 

Anna Celler, Ph.D., Ghassan Hamarneh, Ph.D., Ryan Morin, Ph.D. 
 

INTRODUCTION 
 

The overall purpose of this project is to investigate methods for accurate quantitative 
measurements of functional tumor burden in cancer patients and develop robust criteria to 
define tumor boundaries, tumor uptake parameters and measure response in clinical trials. 
These data will be correlated with patient-specific circulating tumor DNA (ctDNA) levels 
measured serially over time in cohorts of subjects enrolled in clinical trials.  
 

In the first year of this research program, we focused our research efforts in developing 
physical and digital phantoms to assess quantitative measurement methods, and started testing 
segmentation algorithms using phantom data. We also conducted preliminary experiments to 
implement quantitative serial ctDNA measurements in patients, to eventually correlate these 
values to quantitative measurements of functional tumour burden. 
 

This year, additional work was done to optimize processing of PET data and generate 
models to better evaluate different algorithms and parameters. There has been further 
development of our segmentation technology, of tumour volume, and metabolic activity 
estimation from PET scans. Progress was made in ctDNA measurement and improvements were 
made to the underlying technology; ctDNA collection and analysis is ongoing with several new 
projects stated for 2017 with ctDNA correlation endpoints. Preliminary analysis of data from a 
pilot study evaluating the EF5 tracer has also been completed. 

 
PROGRESS OVER THE PREVIOUS YEAR 

 
One of the objectives of this project is to optimize processing of the PET data in order 

to obtain low-noise, high contrast quantitatively accurate images of activity distribution in the 
patient body. Since the recent studies strongly emphasize the critical need for standardization 
of PET/CT-derived metrics of tumor burden [1, 2] we focused our research on development 
of techniques which will allow us to objectively investigate accuracy and consistency of PET 
quantification for different imaging tasks when using different PET cameras and different 
reconstruction techniques. To this end, we investigated a number of image parameters and 
figures of merit which characterize the performance of the imaging system. 

 
The spatial resolution of PET images, which is defined by both the scanner 

characteristics and the reconstruction algorithm, is one of such crucial parameters as it 
determines the ability of an observer to identify and diagnose the disease. Considering 
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quantitative measures, image spatial resolution will affect the sensitivity of the texture-based 
biomarkers. Additionally, image reconstruction algorithms introduce noise texture into 
PET/CT images. It may therefore be important to characterize and harmonize both the spatial 
resolution and noise texture of PET/CT images. Our objective is to develop a framework for 
measuring, comparing, and standardizing the spatial resolution and noise texture of PET/CT 
images across different scanners and reconstruction algorithms and to correlate them with 
quantitative accuracy.  

 
Using digital and physical phantoms, we study the relationship between image spatial 

resolution and data quantification, and the properties of the imaged object, such as its size, 
shape, signal-to-background (SBR) ratio, noise, and its activity distribution. The analysis is 
being performed for different PET cameras, reconstruction algorithms (using a wide range of 
adjustable parameters) and different radioisotopes. 

 
Spatial resolution is typically characterized in terms of the system point spread 

function (PSF), edge spread function (ESF) or their Fourier transform, the modulation transfer 
function (MTF). Measuring the PSF and/or MTF requires that the images are linear and shift-
invariant, neither of which are satisfied for iteratively reconstructed PET images. However, it 
is possible to measure the MTF for a particular object under the assumption that linearity and 
stationarity are satisfied locally within the image. Spatial resolution must therefore be studied 
as a function of signal to background ratio (SBR), noise levels, and location. 

 
For this task, we have developed an experimental framework which allows to measure 

image spatial resolution for objects scanned using PET imaging systems.  We adapted the 
method of Richard et al [3] for measuring the MTF of CT images to the measurement of the 
task-based MTF of PET images. This algorithm was used to extract the transaxial MTF from 
PET images of a NEMA International Electrotechnical Commission (IEC) phantom 
containing F-18-filled spheres placed in a “hot” (radioactive) background. 

 
Using this framework, we have already characterized image spatial resolution and 

quantification accuracy for the two different PET reconstruction algorithms. These are: the 
ordered subsets expectation maximization (OSEM) method, which is routinely used in PET 
image reconstruction and the block sequential regularized expectation maximization 
(BSREM), which is the penalized-likelihood algorithm recently introduced by GE Healthcare 
(under the name Q-Clear). The BSREM algorithm has two user-defined parameters 𝛽𝛽 and 𝛾𝛾 
which control the smoothness and edge preservation, respectively. The analysis was 
performed for the standard and the time-of-flight (TOF) versions of both algorithms and for 
a number of reconstruction parameters and digital filters.   

 
This study was performed for two different radioisotopes:  
 

1.) 18F which is a pure positron emitter routinely used in a wide range of PET diagnostic 
studies and,  
2.) 90Y, an isotope used for liver radioembolization therapies, which rely on its pure 𝛽𝛽−  
decay (emission of electrons). PET imaging of 90Y uses an extremely weak (32×10−6) 𝛽𝛽+ →
𝛽𝛽− internal pair production from the 0+ → 0− monopole transition in 90Zr [4]. Imaging of 90Y 
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is very challenging, because low intensity of positrons combined with high background of 
Bremsstrahlung photons (created by 𝛽𝛽− emissions) results in high noise in the reconstructed 
images.  
 

In order to be able to compare different images, we decided to adjust reconstruction 
parameters and/or digital filters so that the background variability remains the same. To this 
end, the background variability (BV) figure of merit was used. The BV for each reconstruction 
was matched so that the image contrast could be objectively compared. 

The BV is defined as:  

𝐵𝐵𝐵𝐵 =
𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏
𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏

 
(2.  

where 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏 and 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏 are the standard deviation and mean of counts in the ROI, respectively, 
averaged over six spherical ROIs (each ROI volume equal to 80 mL) drawn at different 
locations in the phantom with uniform activity concentration (outside the region with 
spheres).  

The image quality was analyzed using the contrast-to-noise ratio (CNR) defined as: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑆𝑆𝑝𝑝𝑝𝑝 − 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏

𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏
 

(2.  

where 𝑆𝑆𝑝𝑝𝑝𝑝 is the peak activity, 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏 is the mean activity in the background, and 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏 is the 
standard deviation of the background. 𝑆𝑆𝑝𝑝𝑝𝑝 is defined as the most intense region within the 
analyzed volume. According to RECIST 1.1 (Response evaluation criteria in solid tumours), 
this region is defined as a 1.25 cm diameter spherical ROI [5]. Here, the background ROI is 
measured using a 200 mL spherical ROI drawn in the region with uniform activity. 

The quantification accuracy was analyzed using the recovery coefficient (RC) defined as: 

𝑅𝑅𝑅𝑅 =
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖
𝐴𝐴𝐷𝐷𝐷𝐷

 
(2.1 

where 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 is the activity or activity concentration of the imaged isotope in the specified ROI, 
and 𝐴𝐴𝐷𝐷𝐷𝐷 is the true activity measured using a dose calibrator (DC). 

The data used in these investigation were acquired experimentally using IEC 
phantoms and Discovery 690 PET/CT camera (GE Healthcare). Two series of experiments 
were performed. 

§ Experiments using 18F 
 

Methods 
 

An NEMA-IEC phantom containing four F-18-filled spheres (two spheres had 3.7 𝑐𝑐𝑐𝑐 
diameter and the other two 2.8 𝑐𝑐𝑐𝑐) placed in a “hot” background was scanned twice using a 
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GE Discovery 690. The activity concentrations in the spheres were equal to 44.0kBq/mL and 
24.9kBq/mL, resulting in SBRs for these two scans equal to 8.3 and 3.5, respectively. For each 
scan, list-mode data was collected and sorted into multiple frames with increasing duration. 
Each dataset was reconstructed using the OSEM algorithm with and without resolution 
recovery (RR), TOF and post-reconstruction Gaussian filtering (FWHM: 6.4 mm). The images 
were reconstructed with 32 subsets and 2 or 4 iterations. Additionally, the second series of 
reconstructions was performed using BSREM algorithm without TOF. The parameters used in 
these reconstructions were: 𝛽𝛽 = 200, 350, and 500 and 𝛾𝛾 = 2.  

 
The analysis was performed for the two largest spheres and for each combination of 

reconstruction algorithm and SBR. 
 
Highlights of results 

 
Figure 1 shows the ESF and MTF for OSEM with and without RR and TOF. As 

expected, both RR and TOF individually improve image spatial resolution and combining RR 
and TOF show the greatest improvement. However, RR introduces edge artifacts that appear 
as a ‘horn’ in the ESF and result in MTF values greater than 1. While applying RR and TOF 
improves the spatial resolution of the image, this improvement is less apparent when a post-
reconstruction filter is applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The ESF and MTF obtained from images reconstructed with OSEM, 
OSEM + RR, OSEM + RR + TOF, and OSEM + TOF reconstructions.  The left 
and right columns show the results with and without post-reconstruction filtering 
with a 6.4 mm Gaussian, respectively. 
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Figure 2 shows a comparison of the ESF (left) and MTF (right) for images 
reconstructed with OSEM and with BSREM using different 𝛽𝛽 values.  Although BSREM 
reconstructed imagers have better spatial resolution compared to OSEM+RR+6.4 mm 
filtering, OSEM+RR (without filtering) produces images with the best image spatial 
resolution. Furthermore, as expected, the BSREM reconstructed images using increasing 𝛽𝛽 
(smoother), show a decrease in spatial resolution. 

 
Figure 2: Comparison of the ESF and MTF obtained from the OSEM reconstructed images 
with those from the penalized-likelihood reconstruction algorithm (BSREM). 

 

 

§ Experiments using 90Y 
 

Methods 
 
To investigate image quality and quantification accuracy in the presence of high levels of 
randomness and noise in the data, a series of PET scans of the NEMA-IEC phantom filled 
with 90Y was performed.  We adapted the 90Y experimental protocol used in [6] which was a 
multi-center trial designed to investigate 90Y PET quantitation. In particular, to obtain data 
with different levels of noise, the phantom once filled with 90Y activity was scanned four 
times, on days 0, 3, 5 and 7.  Additionally, for comparison, a separate 18F scan with the same 
phantom and geometry was performed. In these experiments the phantom contained six 
fillable spheres (with diameters ranging from 10mm to 37mm) and a cylindrical lung insert 
filled with Styrofoam beads. Total activities, activity concentrations and SBR for these 
experiments are listed in Table 1. Subsequently, all these datasets were reconstructed using 
both OSEM and BSREM with RR and with and without TOF information.  
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Table 1: Values of total activity, activity concentration, and SBR used in the 18F and 90Y 
(Day 0) experiments. 

 

 

The OSEM and TOF-OSEM reconstructions were performed using 2 iterations and 
24 subsets with 5 mm and 8 mm Gaussian post-smoothing filter. These parameters were 
adapted from [6], while the post-smoothing filter size was chosen so that both images have 
the same BV. The BV value for the TOF-OSEM reconstruction of the 90Y day 0 data was 
equal to 0.6. 
 

The BSREM and TOF-BSREM reconstructions followed the procedure described in 
[7]. For BSREM and TOF-BSREM, the 𝛽𝛽 was chosen to be 950 and 1300, respectively so 
that BV of the reconstructed images matched that of TOF-OSEM. Moreover, 𝛾𝛾 was chosen 
to be 2 for both BSREM and TOF-BSREM, which was adapted from [8]. Additionally, the 𝛽𝛽 
parameter for TOF-BSREM was adjusted at a value of 4000, which created smoother images 
(denoted as adj-TOF-BSREM). 
 
Highlights of results 
 

Images reconstructed using OSEM, BSREM, TOF-OSEM and TOF-BSREM for the 
day 0 scan (highest activity) are shown in Figure 3. Figure 4 represents the CNR for the four 
largest spheres reconstructed using OSEM, BSREM, TOF-OSEM and TOF-BSREM methods 
for day 0. Scans on days 3, 5 and 7 were not used in this quantitative analysis because the 
spheres were difficult to detect visually.  Figure 4 shows that CNR for the all spheres, except 
the largest one, appears to be higher for images reconstructed with BSREM than those from 
OSEM. This result, for images with matched BV, suggests that the improvement of image 
contrast for objects of small sizes can be substantially improved when using penalized 
reconstruction algorithm with properly adjusted parameters.  

 

 

 

 

 

Figure 1: Comparison of 90Y PET images reconstructed from dataset acquired 
on day 0 using OSEM, BSREM, TOF-OSEM, TOF-BSREM methods. 

Isotope used Total Activity Sphere activity 
concentration

Background activity 
concentration SBR

18F 55 ± 1MBq 38 ± 1kBq/mL 5.3 ± 0.2 kBq/mL 7.2 ± 0.3
90Y 3180 ± 30 MBq 2.45 ± 0.02 MBq/mL 0.325 ± 0.003 MBq/mL 7.54 ± 0.09

OSEM BSREM TOF-OSEM TOF-BSREM 
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Figure 4: The CNR values for the four largest spheres of 90Y images 
reconstructed with OSEM. BSREM, TOF-OSEM, and TOF-BSREM. 

 

 

Figure 5 shows the RC curves for the four largest spheres for images obtained using the 
OSEM and BSREM reconstruction methods calculated using datasets from the day 0 scan. 
Reconstructions with TOF information show an average improvement by 10% compared to the 
non-TOF reconstructions, while BSREM improves quantification by 10% for S4 (diameter of 17 
mm) compared to OSEM reconstructions with and without TOF information. 
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Figure 5: The recovery coefficient curves for day 0 scan obtained using the physical 
volume of the spheres.  The dashed and dotted lines represent TOF and non-TOF 
reconstructions respectively.  The circles, crosses, and diamonds represent OSEM, 
BSEM, and adj-TOF-RSEM, respectively.  The solid line shows the ideal valus RC = 
1, whereas the solid curve represents the equivalent RC curve for the phantom, 
scanned for 10 minutes, reconstructed using TOF-BSREM (b = 350), to serve as a 
reference. 

 

 

§ Monte Carlo Simulations 
 

Additionally, Monte Carlo (MC) simulations using GATE v7.1 software were 
performed in order to investigate the relationship between quantification accuracy and system 
spatial resolution for objects with different characteristics (sizes, shapes, activity levels, 
SBR…). In this case, simulations are particularly useful, because experimentally study of 
numerous sizes, shapes and locations of objects would be very time consuming and 
inefficient.  
 

Hence, our GE Discovery 690 PET imaging system has been used in these MC 
experiments. The modeled system geometry and data acquisition process have been tested 
using simulations of two line sources filled with 18F activity positioned in air and in water 
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filled cylindrical phantom. Additionally, techniques for generating voxelized objects with 
different shapes have been developed.  

 
Finally, for experiments aiming to evaluate the quantification accuracy of different 

objects in clinical studies, we propose to create hybrid data sets which will combine simulated 
(known) lesions with clinical patient scans. To achieve this, we have already developed a 
technique to merge simulated data, from GATEv7.1, with patient datasets retrieved from our 
clinical system.  We successfully reconstructed such hybrid dataset with the OSEM algorithm 
obtained from STIR (Open Source software for use in tomographic imaging) [9].  

 
§ Tumor Lesion Segmentation from 3D PET using a Machine Learning driven Active 
Surface 
 

We developed a fully automatic method for lesion delineation, which does not require 
user-initialization or parameter-tweaking, to segment novel PET images. To achieve this, we 
trained a machine learning system on anatomically and physiologically meaningful imaging 
cues, to distinguish normal organ activity from tumorous lesion activity. The inferred lesion 
likelihoods are then used to guide a convex segmentation model, which guarantees 
reproducible results. We evaluated our approach on datasets from The Cancer Imaging 
Archive trained on data from the Quantitative Imaging Network challenge that were 
delineated by multiple users. Our method produces more accurate segmentation than state-of-
the art segmentation results, and does so without user interaction.  We published this work in 
the peer-reviewed Machine Learning for Medical Imaging workshop, a satellite event of the 
2016 International Medical Image Computing and Computer Assisted Intervention 
conference the premier conference in the area of medical image analysis [10].  

 
§ Multi-site 3D FDG PET Segmentations study 
 

Our team contributed to this study, which led to a publication in Medical Physics 
Journal titles “Multi-site Quality and Variability Analysis of 3D FDG PET Segmentations 
based on Phantom and Clinical Image Data”. To assess PET segmentation quality and 
consistency at the multi-institutional level, we were part of the study of seven institutional 
members of the National Cancer Institute Quantitative Imaging Network. For the study, 
members (including our team) were asked to segment a common set of phantom PET scans 
acquired over a range of imaging conditions as well as a second set of head and neck cancer 
(HNC) PET scans. Segmentations were 55 generated at each institution using their preferred 
approach. In addition, participants were asked to repeat segmentations with a time interval 
between initial and repeat segmentation. This procedure resulted in overall 806 phantom insert 
and 641 lesion segmentations. Subsequently, the volume was computed from the 
segmentations and compared to the corresponding reference volume by means of statistical 
analysis [11]. 
 
§ Tumor Volume and Metabolic Activity Estimation from PET Scans 
 

We developed a PET quantification to estimate the volume and activity of the lesions 
which are basic measures needed for other important quantification metrics such as 
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standardized uptake value (SUV) and total lesion glucose (TLG). For validation, we used a 
set of 55 PET scans of the Elliptical Lung-Spine Body Phantom™ with different levels of 
noise, four different reconstruction methods, and three different background activities, namely 
air, water, and hot background. Our preliminary results are very promising, showing a relative 
absolute error (RAE) of 5.11% ± 3.5% and 5.7% ± 5.25% for volume and activity estimation, 
respectively, which represented improvements of over 20% and 6% respectively, compared 
with the best competing methods.  We are currently finalizing the results and the write-up of 
this work to be submitted for publication within the next 2 months. 
 
§ OPTIMIZING circulating tumor DNA (ctDNA) measurements for quantitative 
tumour tracking 
 

Measuring ctDNA abundance using OnTarget 
 

OnTarget (Boreal Genomics) is a highly sensitive multiplexed mutation detection 
platform. This technology pre-enriches DNA for mutant alleles prior to sequencing to enhance 
sensitivity. A 96-plex assay that covers common hotspot mutations affecting numerous genes 
including KRAS, TP53, and PIK3CA was used to analyze ctDNA levels and explore the 
relationship between ctDNA and various clinical characteristics in multiple patient cohorts. 
Specifically, we applied OnTarget to tumours and plasma samples collected pre- and post-
operatively from a cohort of early-stage pancreatic ductal adenocarcinoma (PDAC). We 
detected mutations in KRAS or GNAS in 29 of 32 PDAC tumours. Using OnTarget, we then 
detected concordant ctDNA in 8 of 25 cases of pre-operative plasma and 5 of 22 post-
operative cases. The presence of ctDNA in post-operative samples was significantly 
associated with shorter recurrence free survival time (p < 0.001). We also applied OnTarget 
to a diverse cohort of melanoma, lung, and colorectal cancer cases and found that mutations 
concordant with those observed in matched archival tumours could be detected in a high 
proportion of cases. Discordant mutations were observed in 15% of cases but were not 
associated with greater time between tumour and archival blood draw nor difference in 
survival.  
 

Measuring ctDNA abundance using ddPCR 
 

Earlier this year, we published our new digital drople PCR (ddPCR) assay that assess 
mutations at two common hot spots in non-Hodgkin lymphoma (NHL) [12], namely those 
affecting EZH22 and STAT6. Each hot spot mutation has four common alleles and each allele 
requires a separate TaqMan assay. We showed that each performs well on dilutions of cell-
line and tumour DNA containing specific mutations. We also demonstrated the utility of these 
on plasma samples from lymphoma patients with compatible mutations and have detected 
ctDNA levels as low as one mutant copy in a background of 3000 wild type molecules. These 
assays were used to aid in detecting ctDNA in DLBCL cases with levels below the sensitivity 
of our other assays. Some of these results were used in a paper describing a clinical trial on 
DLBCL published earlier this year [13]. 
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Profiling ctDNA using hybridization capture with molecular barcoding 
 

A recent method to quantify ctDNA that may offer greater sensitivity as well as other 
benefits, termed CAPP-Seq, has recently been described and we have made enhancements to 
this style of approach in our lab [14]. In general, this style of approach uses biotinylated DNA 
baits spanning previously identified somatic mutations that are ordered from a commercial 
manufacturer (Integrated DNA technologies) or generated in-house through a custom method. 
DNA baits are, during targeted hybridization capture experiments, aimed at the enrichment of 
cfDNA libraries in our targets of interest. Specifically, we have implemented a novel 
molecular barcoding approach that incorporate a set of barcoding DNA adapters to tag every 
cfDNA molecule initially present in the blood sample at the ligation step. This allows error-
correction and “duplex” sequencing to combat errors deriving from DNA damage. Using this 
method, we have investigated ctDNA levels in 41 blood samples drawn from 40 personalized 
oncogenomics study (POG) patients, including 4 adult and 36 pediatric cases. We conducted 
non-invasive personalized assays targeting a priori known mutations, as determined by the 
sequencing of tumour and normal samples, in 34 patients diagnosed with a broad variety of 
disease conditions (see Table 2). Commercially available gene panels or in-house generated 
pools of molecular probes targeting recurrently mutated regions of the genome were used in 
6 patients in an effort to directly detect cancer-related genetic aberrations from blood. 
Personalized assays relying on digital PCR and targeted hybrid capture experiments coupled 
with next-generation sequencing (NGS) revealed the presence of ctDNA in 62.5% of the cases 
investigated. The abundance of ctDNA in blood was highly variable between samples, from 
allele frequency ratios of mutant DNA versus wild-type DNA below 0.1% in osteosarcoma 
and brain tumour cancers to more than 50% in neuroblastomas and rhabdomyosarcomas. We 
are obtaining additional samples from some of these patients and will compare ctDNA levels 
to existing PET-CT data where available. 
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Table 2: ctDNA analysis of 41 blood samples drawn from 40 personalized oncogenomics studies 
(POG). 
 

 

PO G ID DISEASE TARGETED LO CI VAF RANGE (ctDNA)

PO G-064 NEUROBLASTOMA 5-May 0.029 - 0.543

PO G-067 NEUROBLASTOMA 1-Jan 0.378

PO G-062 NEUROBLASTOMA 2/4 + Transl 0.107 - 0.212 (SNVs)

PO G-173 NEUROBLASTOMA 5-Apr 0.20-0.309

PO G-589 NEUROBLASTOMA TOP PANEL ALK AMPLIFICATION

PO G-156 NEUROBLASTOMA TOP PANEL 0

PO G-020 (V1)* OVARIAN GRANULOSA 6-Jan 0.0006

PO G-020 (V2)* OVARIAN GRANULOSA 6-Apr 0.255 - 0.298

PO G-106* OVARIAN CARCINOMA 5-May 0.09-0.025

PO G-184* CLEAR CELL CARCINOMA OF OVARY 1/1 (ddPCR) 0.009

PO G-608* ADENOCARCINOMA OF LUNG 6-May 0.001-0.002

PO G-047 INFANTILE FIBROSARCOMA 1/1 Transl 0.0058

PO G-524 EWING'S SARCOMA PAN-CANCER PANEL 0.608

PO G-194 OSTEOSARCOMA 4-Mar 0.0005 - 0.001

PO G-642 OSTEOSARCOMA 6-Feb 0.006-0.007

PO G-144 OSTEOSARCOMA 0/5 0

PO G-079 SARCOMA 1/1 Transl 0.0016

PO G-651 RHABDOMYOSARCOMA 6-Apr 0.01-0.61

PO G-540 NUT MIDLINE CARCINOMA 3/5 + Transl 0.0013-0.003

PO G-288 PINEOBLASTOMA 1-Jan 0.0007

PO G-533 GLIOBLASTOMA 6-Feb 0.001-0.015

PO G-145 FIBROVASCULLAR BRAIN TUMOUR 1/1 (ddPCR) 0.0008

PO G-159 CRANIOPHARYNGIOMA 0/1 0

PO G-172 PAPILLARY THIROID CARCINOMA 0/3 0

PO G-168 MALIGNANT GRANULLAR CELL TUMOUR 1-Jan 0.001

PO G-146 ANGIOSARCOMA OF LIVER 5-Apr 0.001-0.008

PO G-565 ANGIOSARCOMA 6-Mar 0.003-0.012

PO G-499 ACUTE LYMPHOBLASTIC LEUKEMIA PAN-CANCER PANEL 0.358-0.436

PO G-161 DIFFUSE LARGE B-CELL LYMPHOMA 5-Apr 0.223-0.290

PO G-564 HODKING LYMPHOMA AN-PAN-CANCER PANEL + LYMPHOMA PANEL 0

PO G-380 HODKING LYMPHOMA PAN-CANCER PANEL + LYMPHOMA PANEL 0.014-0.083

PO G-407 NEUROFIBROMATOSIS 0/4; PAN-CANCER PANEL 0

PO G-417 NEUROFIBROMATOSIS 0/4; PAN-CANCER PANEL 0

PO G-240 AGGRESSIVE FIBROMATOSIS PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-531 EPENDYMOMA PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-541 RHABDOID TUMOUR PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-659 NEUROBLASTOMA PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-355 GLIOBLASTOMA PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-454 GLIOMA PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-644 NEUROBLASTOMA PERSONALIZED ASSAYS - 6 PROBES In Progress

PO G-629 GLIOMA PERSONALIZED ASSAYS - 6 PROBES In Progress
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We have also demonstrated that the de-novo discovery of somatic mutations directly 
from blood is possible in those cases where tumor biopsies are hard to collect or when low 
tumor content deems these biopsies unsuitable for next-generation sequencing. We reported 
several mutations directly from plasma in a Hodgkin lymphoma patient (POG-380) after using 
a commercial gene panel targeting 128 cancer-related genes. We also uncovered compelling 
evidence of ALK amplification in the plasma of a neuroblastoma patient (POG-589). ALK 
status in this patient was unknown and our findings could have encouraged the treatment of 
this particular patient with crizotinib, a drug that specifically targets and inhibits ALK activity. 
The evolution of ctDNA levels could only be evaluated in a patient diagnosed with cancer of 
the ovary (POG-020). We observed a dramatic increase in ctDNA between two plasma 
samples drawn with a difference of 9 months, a finding that was interpreted as a clear indicator 
of disease progression in this patient. Through the expansion of our project into the adult POG 
population we expect to greatly increase the application of this approach over the coming 
year. 
 
§ EF5 tracer for diagnosing hypoxia in head and neck squamous cell carcinomas 
 

This is a pilot study to assess feasibility, safety and use of 18F-EF5 PET/CT at BCCA-
Vancouver in untreated patients with head and neck squamous cell carcinomas planned for 
radical radiation therapy. The objective was to quantify hypoxia and compare differential 
uptake of the EF5 tracer before and after treatment in 20 patients (13 patients had pre-therapy 
and post-therapy PET/CT so far), using as a positivity threshold a tumor-to-muscle ratio ≥1.50 
(SUVpeak of the tumor divided by average SUV of the contralateral muscle). There was no 
adverse reaction to EF5 administration. Preliminary results show that PET imaging with EF5 
is feasible, safe, and that images of adequate quality can be obtained. Our data indicate that 
the hypoxia present in most primary tumors and metastatic lymph nodes on the initial EF5 
PET/CT study regresses post radiation therapy. See Figures 6, 7, 8, and 9. Further analysis of 
data pending. 

 
 

 

 

 

 

 

 

 

 

 

Figure 6: Quantification of primary tumour to muscle uptake 
ratio of EF5 PET/CT before treatment (time point 1) and after 
treatment (time point 2). 
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Figure 7: Quantification of lymph node metastasis to muscle 
uptake ratio of EF5 PET/CT before treatment (time point 1) and 
after treatment (time point 2). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8: Comparison of pre-treatment SUVpeak/SUVmean to 
post-treatment values for the primary tumour. 
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Figure 9: Comparison of pre-treatment SUVpeak/SUVmean to post-
treatment values for the metastatic lymph nodes. 

 

COLLABORATIONS WITHIN THE NETWORK 
 

The images obtained in all these studies were shared with the Computer Science team 
of Dr. G. Hamarneh and were used in their segmentation and machine learning tests. 
 

PLANS FOR NEXT YEAR 
 

These studies will be expanded onto investigation of the relationship between image 
spatial resolution (using the MTF) and quantification accuracy for object with different sizes 
and shapes, as well as for different levels of signal-to-background ratio (SBR) and activity 
distributions. In particular, we plan to investigate the behavior of different algorithms for 
objects with different characteristics. Because non-linearity and non-shift invariance of the 
iterative algorithms, it is expected that their behavior will depend on the size and shape of 
object that is being imaged and on its position in the field of view of the camera. In parallel, 
MC simulations of lesions incorporated into the patient datasets will continue. Quantitative 
accuracy of these data will be tested for different reconstruction algorithms. 
 

We also will continue to collect matched sets of PET/CT data and blood samples in 
patients enrolled in several clinical trials. 
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To that end, we have the following clinical trials scheduled to start in 2017: 
 

i. “Evaluation of the relationship of levels of circulating ctDNA in plasma to the presence 
of detectable disease on 18F-FDG PET/CT for metastatic colorectal carcinoma with a 
comparison to classical biomarkers”. This trial aims to establish correlation of ctDNA 
marker levels with tumour burden quantification techniques such as metabolic tumour 
volume (MTV), total lesion glycolysis (TLG), as well as new segmentation algorithms being 
developed. Comparison will also be made to standard criteria such as RECIST1.1 and 
PERCIST. 

 

ii. “Phase II Trial: Evaluation of the safety and efficacy of 68Ga-DOTATOC PET/CT for 
imaging NET patients” is a trial aimed at the evaluation of a new tracer for NET patients 
and has optional sub-studies that have quantitative imaging and ctDNA endpoints: 

a. “Quantification of change in planned therapy as result of 68Ga-DOTATOC 
imaging and evaluation of prognostic value of early imaging”. This sub study 
evaluates quantitative imaging parameters at 12-week to predict 40-week 
progression free survival (PFS). Quantitative reduction of tumour burden at 12-
weeks, as evaluated by MTV, TLG and new segmentation algorithms (in 
development), will also be compared with 40-week PFS in patients initiating 
systemic therapy). 

b. “Development of novel quantitative NET ctDNA markers from archival DNA 
of biopsy specimens already collected by pathology and serial blood samples”; 
This project aims to collect blood samples at imaging time points of the main project 
and to develop ctDNA assays that target mutations specific for NET patients. 

 

iii. “A prospective two-arm study of the efficacy and safety or 177Lu-DOTATATE for 
treatment of patients with SSR positive NETs”; this trial has quantitative imaging 
endpoints: 
• Correlation of ctDNA levels to tumour burden on 68Ga-DOTATOC, as evaluated by 

MTV and TLG equivalents for that tracer. 
• Reduction in SUVmax between baseline 68Ga-DOTATOC PET/CT and scan done at 4-

month post treatment will be compared with proportion of each category of RECIST1.1 
response on CT at 6 months [1, 2, 12 PD]. 

 

iv. “A single-blind study to evaluate the efficacy and safety of 18F-Fluorodeoxygalactose 
(18F-FDGal) compared to 18F-Fluorodeoxyglucose (18F-FDG) to detect 
hepatocellular carcinoma via PET/CT in patients with cirrhosis or chronic liver 
disease.”; This is a new tracer that will allow, akin to FDG, quantification of tumour 
metabolism and calculation of MTV. 
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INTRODUCTION 

  

Hypoxia in solid tumours correlates strongly with the presence of metastases and leads to 
enhanced resistance to radiation and chemo therapies [1, 2]. There is a strong clinical need to 
reliably determine the location and extent of hypoxia in order to provide targeted therapies. We 
seek to develop quantitative, multi-parametric approaches to hypoxia imaging to increase the 
predictive capacity of the hypoxia markers and improve the stratification of patients for hypoxia-
targeted treatment strategies. 
 

This work includes several aims, including the development of standardized acquisition 
methodology, integrating perfusion imaging methods to create a more robust tracer kinetic model 
for hypoxia imaging, and developing a software application to solve these models and produce 
quantitative metrics of hypoxia. These developments will be validated in on-going clinical trials, 
some of which include oral pimonidazole to produce a histology gold standard against which to 
compare the imaging results. In future years, we will evaluate the predictive capacity of the 
imaging metrics. On Figures 7-9 the detailed timeline for these activities are presented. 

Our aim to standardize hypoxia imaging protocols will provide a guideline for the 
imaging community to design clinical studies in hypoxia imaging with PET tracers. The 
development of advanced hypoxia tracer models coupled with perfusion will provide an 
understanding of the interplay between hypoxia and perfusion in tumors. These models can be 
readily adapted by other researchers in the imaging community. In addition, analysis of clinical 
studies of different anatomical sites will provide baseline data which can also be used for the 
design of future clinical trials. 

DISCUSSION OF PROGRESS 
 
§ Specific aim 1. Establish a robust and reliable methodology for PET hypoxia imaging 

 
Sub-aim 1.1: Quantifying hypoxia using static PET imaging 
 
PET imaging with F-18-labelled hypoxia-sensitive tracers such as fluoroazomycin 

arabinoside (FAZA) has emerged as a promising non-invasive way of detecting hypoxia in 
tumours. A key challenge in using static PET data to quantify hypoxia is that the activity of 
tracer in a region of interest (ROI) is sensitive not only to the presence of hypoxia, but also to 
transport properties – perfusion, diffusion, permeability, and blood volume – which vary from 
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voxel-to-voxel and patient-to-patient. Compartmental modelling of dynamic PET data has the 
potential to correct for these properties, enhancing sensitivity of PET imaging to hypoxia. 

 
A compartmental model based on a reaction-diffusion equation was used to study FAZA 

pharmacokinetics (binding and transport). Assuming that local diffusive equilibrium is achieved 
rapidly within the ROI, a simple expression was derived for the tracer activity in terms of the 
arterial input function (AIF), the area under the curve (AUC) for the diffusive (unbound) 
compartment, and a quantity K3 which is argued to be proportional to the volume fraction of 
space in which the local oxygen tension is below ~ 10 mmHg; i.e., hypoxic. This expression was 
used to study PET data from twenty patients with pancreatic cancer who were injected with 
FAZA. Comparing activities in tumour ROIs with values taken from two choices of reference 
tissue, spinal muscle and blood, information about the sensitivity of PET imaging to transport 
inhomogeneities was quantified within the framework of our transport model. 

 
Dividing activity in the ROI by a reference value taken from the same patient leads to a 

reduction in the sensitivity to inter-patient transport inhomogeneities: differences in blood 
volumes, clearance rates, and time post-injection at which the PET scan is taken. Because it is 
poorly perfused, spinal muscle exhibits significant variability in the uptake of FAZA. In contrast, 
using blood as a reference leads to a substantial reduction in the sensitivity to transport 
inhomogeneities, as shown in the middle panel of Figure 1, where the AUC divided by the 
AIF—directly related to the hypoxic proportion – exhibits a reduced variance as compared to the 
AUC (left) and the AUC divided by the activity in the spinal muscle (right). 

 
By dividing the measured tracer activity in a region-of-interest contained inside a tumour 

by a reference value taken from the same patient, PET measurements are sensitive to the 
presence of hypoxia.  The choice of blood as a reference tissue optimizes this sensitivity 
although our work also delineates the circumstances under which muscle can also reliably be 
used. 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Normalized AUC for nineteen pancreas tumours. 
 

Sub-aim 1.2: Quantifying hypoxia using dynamic PET imaging 

In the past year, we have developed novel compartmental models to study FAZA-
hypoxia PET imaging in Princess Margaret Cancer Centre patients with pancreatic ductal 
adenocarcinoma (PDAC) [3]. The goal of this research program was to develop a reliable 
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analysis method to quantify hypoxia from dynamic PET imaging and to compare the results to 
values obtained from static PET imaging [3] and immuno-histochemical staining of resected 
pancreas tumours. Our major results so far are: 
 

1. Static PET imaging of FAZA at two hours after injection reliably quantifies hypoxia as 
long as the imaged tissue is devoid of substantial necroses, ductal lumen, or fat, and the 
metric used for hypoxia quantification is the tumour-to-blood FAZA uptake ratio and not 
the tumour-to-muscle value [3].   
 

2. For tumours exhibiting necroses, ductal lumen (as in the case of PDAC), or necroses, a 
novel compartmental model of dynamic PET data was developed to correct for the 
impaired uptake of tracer into these regions. For tumours exhibiting substantial ductal 
lumen, the hypoxic fractions calculated from this scheme differed appreciably from those 
calculated using static PET imaging. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Left: FAZA tumour-to-blood uptake ratio (T/B) versus the net 
trapping rate K3 for all voxels in a representative tumour. Right: Uptake ratio 
corrected for partitioning. 

 
 

The effect of having necroses, ductal lumen, or fat present in the imaged tissue can be 
understood from Figure 2. The left panel shows the FAZA tumour-to-blood uptake ratio at two 
hours (static PET image) versus the FAZA “trapping rate” K3 derived from a compartmental 
model analysis of voxel-scale dynamic PET data for a single tumour. The correlation between 
these two quantities is weak since the presence of either necroses, ductal lumen, or fat represent 
spatially inhomogeneous regions in which tracer is slow to reach diffusive equilibrium; i.e., it is 
“partitioned”. This leads to variability in the voxel-scale FAZA uptake that overwhelms the 
signal arising from tracer bound by hypoxia, which is sensitive to K3.  

 
The degree to which tracer is partitioned in a given voxel was quantified by a 

compartmental model that treats slow-equilibrating regions as a separate compartment. Using 
this model to correct for partitioning gives the tumour-to-blood uptake ratio that would have 
arisen in a voxel had there been no partitioning: this is shown in the right panel of Figure 2. The 
strong correlation between voxel-scale trapping rates and uptake values corrected for partitioning 
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as compared to the weak correlation between the uncorrected values shows the substantial effect 
that partitioning has on static PET imaging of hypoxia. 

 
Our model also distinguishes the FAZA binding rate—a direct measure of 

radiobiologically relevant levels of hypoxia—from the rate of equilibration in the trapping rate in 
K3, allowing us to quantify hypoxia using the former quantity. 

 
Sub-aim 1.3: Tracer kinetic models for dynamic PET imaging analysis 
 
In the past year we have extended the conventional closed three-compartment model 

(Figure 3 (A)) to include the perfusion through the vasculature of the tissue (Figure 3 (B)). 
Unlike the conventional closed three-compartment model, the modification with the Johnson-
Wilson-Lee model allows for determination of blood flow if the arterial (Ca(t)) and tissue time-
activity curves are measured with sufficient time resolution. 

 
 

 
 
 
 
 
 
 
 

 
Figure 3. Kinetic models to describe the transport of tracer from blood to uptake in tissue. 
(A) conventional closed three compartment model where the transport through the 
vasculature is not modeled.  (B) the modified closed three compartment model by using the 
Johnson-Wilson-Lee model to replace the blood compartment. K1 is the transfer rate of 
tracer from blood to tissue, k2 is the backflux rate constant from tissue to blood, k3 is 
binding rate constant of tracer to target in the tissue, and k4 is the dissociation rate constant 
from the target, F is blood perfusion and Vb is the tissue blood volume. 
 
 

 
To evaluate how the modified three compartment model (Figure 3(B)) can be used to 

differentiate the uptake kinetics of different tracers, as a prelude to testing it on hypoxia tracer, 
we analyzed the time-activity curves of prostate cancer (PCa) obtained with two different tracers: 
18F-FCH and 18F-DCFPyL- the first one is a marker for lipogenesis in PCa while the second one 
is a ligand for prostatic membrane specific antigen. The rationale to choose these two tracers is 
that PET imaging with 18F-DCFPyL has been used to localize and detect prostate cancer (PCa) 
nodules with high contrast to background normal prostatic tissue. In contrast many studies with 
18F-fluorocholine (18F-FCH), which previously were widely used for imaging PCa, showed that 
choline uptake is not always higher in tumor region. This PET imaging difference provided a 
good test case to investigate whether their kinetic behavior in PCa as modeled by Figure 3(B) is 
different. If the kinetic model passes this test, then our next step would be to image with hypoxia 
tracer. 
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Two groups of seven patients each underwent dynamic PET imaging with either 18F-FCH 

or 18F-DCFPyL. The dynamic data from each group was analyzed using the modified model. 
Figure 4 shows the 18F-DCFPyL time-activity curves of PCa and normal prostatic tissue from a 
patient and the corresponding model fits.  Table 1 gives the model parameter values for the time-
activity curves shown in Figure 4. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4. 18F-DCFPyL time-activity curves from a PCa patient.  (A) Tumor time-
activity curve and model fit. (B) Normal prostatic tissue time-activity curve and 
model fit.  Measured time-activity curve is shown as black dots while model fit curve 
as red line. 

 
 
 

 
 
 
 
Table 1. Model parameter values for PCa and normal prostatic tissue from a patient.  
Statistical significant difference (P<0.05) is indicated by *. 

 
 

Table 2 shows the model parameter values for 18F-FCH and 18F-DCFPyL in PCa and 
normal prostatic tissue from seven patients in each tracer group.  The normalized washout rate 
constant from the bound pool, as estimated by the inverse of binding potential (k4/k3), of 18F-
DCFPyL from normal tissue was greater than tumour while both normal tissue and tumour had 
similar normalized washout rate constant for 18F-FCH. The binding rate constant (k3) of 18F-
FCH was higher than 18F-DCFPyL for both normal tissue and tumour. 

  
These results suggest that the 18F-DCFPyL contrast between tumour and normal tissue is 

due to the differential normalized washout. In contrast, the lack of 18F-FCH contrast between 
tumour and normal tissue is due to similar normalized washout. The large binding rate constant 
of 18F-FCH vs 18F-DCFPyL suggested that the former has a faster uptake rate and at time interval 
when binding dominates, SUV could be used to differentiate sensitively tumour from normal 
tissue. 
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Table 2. Mean ± SD model parameter values for 18F-FCH and 18F-
DCFPyL in PCa and normal prostatic tissue. 

 
 
The above analyses demonstrate that the proposed model (Figure 3B) is able to 

differentiate tracers of disparate in-vivo behavior. This gives confidence that the model has 
properly modeled the essential processes of the uptake of tracers, including hypoxic tracers. We 
will start application of the model to hypoxic tracers as the next step. 

 
Sub-aim 1.4: Measurement of the AIF with kinetic analysis of dynamic PET 
imaging 

  
The resolution of PET imaging is limited, as beta-particles annihilate with electrons at a 

certain distance (up to 2 mm) from the original vertex. In addition, partial volume averaging and 
spill-over effects should be taken into account in order to recover the true radioactivity 
concentration in the blood flowing through the artery selected. For this purpose, a flow phantom 
has been built to calibrate and standardize the imaging protocols for a PET scanner. First 
measurements are planned to carry out in February 2017. 

 
Preliminary studies to investigate the accuracy and robustness of magnitude and phase-

derived arterial input function (AIF) in PET-MR were performed. The results were compared to 
the “gold standard” volumetric DCE-CT. The impact of individualized magnitude and phase 
signal AIF measurements on resulting perfusion parameter maps using a common 4D temporal 
dynamic analysis (TDA) method in metastatic brain cancer patients treated with stereotactic 
radiosurgery was performed. This data highlights the stability of DCE-CT calculations as well as 
susceptibility of DCE-MRI Ktrans measurements to various imaging factors, including AIF 
selection and T10 values used in the model. Using the same voxel-based analysis platform for 
both DCE-CT and MR significantly improved correlation values confirming the need to take into 
account tumor heterogeneity when assessing functional data. 

 
Sub-aim 1.5: Monte Carlo models of dynamic PET 
 

 Monte Carlo simulations are used to evaluate scatter correction for quantitative PET 
imaging of hypoxia. Photon scattering contributes significantly to the imaging degrading effects 
in 3D PET imaging. It results in a loss of contrast and overall image quality which makes 
accurate tracer quantification challenging. The effects of scatter are particularly important in 
regions where two adjacent tissues have vastly different tracer concentrations (see Figure 5). 
Scattered events from photons originating from the intense uptake region contaminate the low 
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uptake region. This “cross-talk” changes the linearity, noise level and reconstruction accuracy of 
PET.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Clinical observation in cervix cancer show a 
scatter contamination effect in the tumor, originating 
from the bladder which makes the quantification of 
hypoxia challenging. UHN REB#: 14-8648-C. 

 
 

 
 

 
 
 
 
 
 
 
 

Figure 6. Partition coefficient versus CT number (Hounsfield units) for 
ROIs in a pancreatic tumours. 

 
The first objective was to develop a physics-based model to simulate the scatter 

contamination in PET projection data using a Monte Carlo (MC) method. To set up the MC 
model for PET imaging a MC simulation package in GEANT4 Application for Tomographic 
Emission (GATE) v.7.2 is used [4]. The geometry of the MC model is a pre-defined GE 
Discovery 610 PET/CT model and the following technical details were implemented to match 
our clinical scanner - an energy resolution of 425-650 keV, a dead time of 650 ns and a 
coincidence window of 4.875 ns. To generate and implement individualized voxelized material 
phantoms and sources in GATE, regions of interest (ROIs) are defined based on CTAC images. 
Based on the range of image pixel values, CT numbers are converted into a voxelized material 
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density map by using pre-defined look up tables in GATE. A similar approach is used to assign 
individual activity values in the voxelized source. To set up the MC model standardized GE 
water cylinder quality assurance measurements were used. The MC model allows the scatter 
distribution component of the signal to be isolated and the image reconstruction process is 
integrated into the standardized dhPET method. STIR [5] is the current image reconstruction 
software used. In addition, we have established a research contract with GE Medical through 
which we will have access to the GE PET Toolbox for PET image reconstruction. The GE PET 
Toolbox offers the opportunity to be as close as possible to the clinical scanner reconstruction 
while evaluating the quantitative performance of an accurate concentration recovery.  

 
Sub-aim 1.6: Standardization of imaging technique and characterization of scanner 

performance 
 
The PET-CT QA procedure, developed based on work from the National Cancer Institute 

(NCI) and the American College of Radiology Imaging Network, was successfully utilized for 
the commissioning of PET-MR at Toronto General Hospital. All tests were processed and 
analyzed on the Siemens molecular MR console using the Siemens NEMA 2007 software. In 
addition to these NEMA tests, a cross-calibration of the scanner to the dose calibrator reading as 
well as a daily quality check were performed. 
 

Sub-aim 1.7: Advanced metrics of hypoxia 
 
We have found that the contrasting hypoxic fractions as calculated from the reference 

muscle of one individual with those calculated by grouping individuals’ muscles together, as 
performed by Mortensen et al. [6], can be susceptible to the noise characteristics of a scanner at 
specific muscle locations [7]. Hence, the method of grouping individuals is somewhat 
controversial, and we hope to gain more evidence to help settle the debate at the conclusion of 
our multi-site FAZA-Metformin trial for cervical cancer patients and FAZA-Prostate trial. For 
FAZA-Metformin trial in particular, a subsample of patients can volunteer for a blood draw to 
complement the FAZA-PET imaging results. Also, there will be biopsied tissue samples to 
complement hypoxic fraction calculations for all enrolled patients after the trial concludes. 

 
The progress chart and milestones for Specific aim 1 is presented on Figure 7.  
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Figure 7: Progress chart with the milestones for the Specific Aim 1. 
 
 

§ Specific aim 2. Validation of FAZA-PET imaging  
 

Sub-aim 2.1: Pimonidazole correlation in pancreatic cancer 
 
Accrual of pancreas cancer patients suitable for curative-intent surgery to our study of 

pre-operative FAZA-PET plus pimonidazole staining has continued. Current accrual is 8 patients 
out of 30. 

Sub-aim 2.2: FAZA PET/MR imaging as a biomarker of hypoxia in rectal cancer 
 
The study of stereotactic lung radiation therapy plus surgery hasn’t recruited patients for 

FAZA imaging. As an alternative the images from a FAZA rectum pilot study will be used to 
achieve the goal of the sub-aim.  

 
The data from a pilot FAZA-rectum trial will be used to measure FAZA uptake against a 

standard reference and study the correlation of FAZA-PET and blood oxygen level-dependent 
MRI to pimonidazole staining in locally advanced rectal cancer. The ability to preoperatively 
predict the patient subpopulation that will respond best to chemoradiotherapy will help to 
identify the “complete pathological” responders and avoid unnecessary surgery. The primary 
goal of this pilot trial is to validate FAZA-PET as a biomarker of hypoxia by correlating its 
uptake in rectal tumors to pimonidazole staining in histopathology specimens. PET imaging also 
enables quantification of radiotracer uptake which may in future help identify the clinically 
relevant threshold for hypoxia and identify patients at risk for resistance to CRT. The pilot study 
is planned for 10 patients. Current accrual is 1 patient out of 10.  

The progress chart and milestones for this Specific aim 2 is presented on Figure 8. 
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Figure 8: Progress chart with the milestones for the Specific Aim 2. 

 
 
§ Specific aim 3. Quantitative methods on image-based biomarkers to predict and assess 
response 
 

Sub-aim 3.1: Data handling and informatics team 
 

Over the past year the Quantitative Imaging for Personalized Cancer Medicine (QIPCM) 
infrastructure has doubled in size from three to six servers providing computational power for as 
many as 120 simultaneous virtual desktops. An additional 80 TB storage capacity was allocated 
to offset the increasing size and complexity of modern imaging intensive clinical trials. VMWare 
horizon view and Unidesk were installed in an effort to speed up the infrastructure and simplify 
user creation and desktop management. The platform currently serves 9 internal and 8 multi-
center active clinical trials spanning 14 hospitals and imaging centers across the world. 
 

Sub-aim 3.2: Conventional hypoxia imaging analysis 
 

Assess the impact of progressively more quantitative hypoxia imaging methods on the 
predictive capacity of hypoxia biomarkers in a 4 clinical trials:  
1. A Feasibility Study of Hypoxia Imaging in Patients With Cervix Cancer Using Positron 

Emission Tomography (PET) With 18F-Fluoroazomycin Arabinoside (18F-FAZA) – 
current accrual 8 out of 48;  

2. The Potential for Metformin to Improve Tumor Oxygenation in Locally Advanced Cervix 
Cancer : A Phase II Randomized Trial – current accrual 27 patients out of 30;  

3. 18F-Fluoroazomycin Arabinoside (FAZA) Positron Emission Tomography/Magnetic Imaging 
Resonance (PET/MRI) as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study – current 
accrual 1 patient out of 10;  

4. A Feasibility Study of Hypoxia Imaging in Patients With Prostate Cancer Using Positron 
Emission Tomography (PET) With 18F-Fluoroazomycin Arabinoside (18F-FAZA) – 
current accrual 12 patients out of 20.  
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Head& Neck trial (H&N: RT/Sx) and SBRT in NSCLC didn’t start recruiting patients. 
Due to this the expected number of total patients accrued for this aim is now 108 patients. All 
hypoxia analysis for these trials is in progress and performed by QIPCM. 

 
The progress chart and milestones for Specific aim 3 is presented on Figure 9. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Progress chart with the milestones for the Specific Aim 3. 
 
 

COLLABORATIONS WITHIN THE NETWORK 
 

In the past year, we participated in two QIN challenges in the PET-CT subgroup and one 
challenge in the MR subgroup.  The two challenges in the PET-CT subgroup are the CT nodule 
radiomic feature challenge and the Dynamic PET Analysis challenge. The CT nodule radiomic 
feature challenge concluded with a publication in Tomography [8], whereas the Dynamic PET 
Analysis challenge also led to a publication in JNM currently under review. Our DCE-MRI work 
also was published in the special issue of Tomography [9]. 

 
New challenge participation is to look at DCE-MRI brain immunology trials. 

Collaborative with MD Anderson and MGH [Dr Clifford Fuller, Caroline Chung and Jaysharee 
K-P]. 

PLANS FOR THE NEXT YEAR 
 
§ Specific aim 1 
 

Our results from dynamic PET imaging of hypoxia in pancreatic tumours emphasized 
that tracer uptake must be corrected for transport—notably partitioning—in order to reliably 
quantify hypoxia. Dynamic PET imaging is resource-intensive, however, and it would be 
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extremely useful if transport could be quantified using static, non-contrast CT or MRI imaging. 
Figure 6 shows our aim to extend this work by combining CT-based radiomics analyses with 
static PET data sets to improve hypoxia quantification. 
 

In the next steps of our research the calculated scatter distribution will be validated 
against the measured scatter estimates with the help of the NEMA NU 2- 2012 standard [10]. To 
evaluate the influence of imaging parameters on the shape and magnitude of the scatter 
distribution, different activity concentration ratios (1:5 to 1:10), varying distances between 
localized tracer concentrations and changes in object size will be investigated and validated with 
the help of the NEMA IEC Body Phantom. 
 
§ Specific aim 2 
 

Future work will focus on validating this approach against PIMO uptake in resected 
pancreatic tumours. We also aim to extend our methods to other tumour sites by developing new 
imaging biomarkers for hypoxia that combine CT-based radiomics metrics with static PET 
images, validating with outcome data. 
 
§ Specific aim 3 
 

We will continue analyzing the images from 4 clinical trials for validation studies. New 
QIN challenge participation is to look at DCE-MRI brain immunology trials. 
 

The milestones for the coming year for specific aims are presented on Figures 7-9.  
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local image noise variation in PET images for standardization of noise-dependent 
analysis metrics. Biomedical Physics & Engineering Express, Accepted: 2016, November 
25. 
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8. Kalpathy-Cramer J, Mamomov A, Zhao B, et al. Radiomics of Lung Nodules: A Multi-
Institutional Study of Robustness and Agreement of Quantitative Imaging Features. 
Tomography (2016), Vol. 2, # 4:430-437. 

9. Coolens C, Driscoll B, Foltz W, Pellow C, Menard C, Chung C Comparison of Voxel-
Wise Tumor Perfusion Changes Measured With Dynamic Contrast- Enhanced (DCE) 
MRI and Volumetric DCE CT in Patients With Metastatic Brain Cancer Treated with 
Radiosurgery, Tomography (2016), Vol. 2, # 4:325-333. 

10. National Electric Manufactures Association, NEMA NU 2-2012: Performance 
Measurements of Positron Emission Tomographs. 

 
LIST OF QIN PUBLICATIONS AND PRESENTATIONS 

 
§ Posters 
 

1. Lin A, Vines D, Driscoll B, Le WL, Breen S, Sun A Positron Emission Tomography 
(PET) With 18F-Fluoroazomycin Arabinoside (FAZA) to Assess Tumor Hypoxia in 
Non-Small Cell Lung Cancer (NSCLC). Canadian Association of Radiation Oncology 
Annual Scientific Meeting (2016). 

2. Vines CD, Driscoll B, Yeung I, Publicover J, Sun A and Jaffray DA Effects of 
respiratory gated 18F-FAZA PET-CT on hypoxic fraction in patients and phantom. 
Imaging Network Ontario Annual Symposium (2016). 

3. Yeung I, Metran-Nascente C, Vines D, Metser U, Dhani D, Green D, Milosevic M, 
Jaffray DA, Hedley DW Measurement of tumor hypoxia in patients with advanced 
pancreatic cancer based on 18F-fluoroazomyin arabinoside (18F-FAZA) uptake. Princess 
Margaret Cancer Centre's Annual Personalizing Cancer Medicine Conference (2016). 

4. Taylor E, Yeung I, Keller H, Milosevic M, Hedley DW, Jaffray DA Measurement of 
tumor hypoxia in patients with advanced pancreatic cancer based on 18F-fluoroazomyin 
arabinoside (18F-FAZA) uptake. Princess Margaret Cancer Centre's Annual 
Personalizing Cancer Medicine Conference (2016). 

5. Taylor E, Metran-Nascente C, Yeung I, Vines CD, Metser U, Dhani CN, Green D, 
Milosevic M, Hedley DW, Jaffray DA Optimal strategy for quantifying hypoxia from 
static PET imaging. Imaging Network Ontario Annual Symposium (2016). 

6. Driscoll B, Yeung I, Coolens C, Keller H, Disney G, Svistoun I, Shek T, Publicover J and 
Jaffray DA An Update from the Quantitative Imaging for Personalized Cancer Medicine 
(QIPCM) Initiative. Imaging Network Ontario Annual Symposium (2016). 

7. Taylor E, Gottwald J, Yeung I, Keller I, Milosevic M, Dhani NC, Hedley DW, 
Jaffray DA Overcoming The Complexity Of Molecular Transport In Neoplastic Tissue: 
Using A Dynamic Analysis Of Faza-Pet Imaging To Quantify Hypoxia In Human 
Tumours. Terry Fox Research Institute Ontario Node Research Symposium (2016). 
 

§ Oral Presentations 
 

1. Coolens C, Foltz W, Driscoll B, Pellow C, Chung C Comparison of Arterial Input 
Functions by Magnitude and Phase Signal Measurement in DCE MRI of brain cancer 
patients. Princess Margaret Cancer Centre's Annual Personalizing Cancer Medicine 
Conference (2016). 
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2. Vines DC, Driscoll B, Keller H, Lin A, Sun A, Jaffray DA Respiratory gated hypoxia 
imaging using 18F-FAZA PET-CT. Society of Nuclear Medicine and Molecular Imaging 
Annual Meeting (2016). 

3. Driscoll B, Yeung I, Coolens C, Keller H, Disney G, Svistoun I, Shek T, Publicover J and 
Jaffray DA An Update from the Quantitative Imaging for Personalized Cancer Medicine 
(QIPCM) Initiative. International Conference on the use of Computers in Radiation 
Therapy (2016). 

4. Welch M, Jaffray DA Automated Spatial Dose Prediction Using Contextual Atlas 
Regression Forests. International Conference on the use of Computers in Radiation 
Therapy (2016).. 

5. Yang DM, Li F, Bauman G, Valliant J, He W, Lee TY Comparison of Dynamic 18F-
DCFPyL and 18F-FCH PET Imaging in Patients with Prostate Cancer. Ontario Institute 
of Cancer Research Imaging Applications in Prostate Cancer Workshop (2016). 
 

§ Publications 
 

1. Coolens C, Driscoll B, Foltz W, Pellow C, Menard C, Chung C Comparison of Voxel-
Wise Tumor Perfusion Changes Measured With Dynamic Contrast-Enhanced (DCE) 
MRI and Volumetric DCE CT in Patients With Metastatic Brain Cancer Treated with 
Radiosurgery. Tomography (2016). Vol.2, #4:325-333. 

2. Coolens C, Driscoll B, Moseley J, Brock KK, Dawson AL Feasibility of 4D perfusion CT 
imaging for the assessment of liver treatment response following SBRT and sorafenib. 
Advances in Radiation Oncology (2016). Vol. 1, # 3:194-203. 

3. Han K, Croke J, Foltz W, Metser U, Xie J, Shek T, Driscoll B, Menard C, Vines D, 
Coolens C, Simeonov A, Beiki-Ardakani A, Leung E, Levin W, Fyles A, Milosevic M A 
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brachytherapy for cervical cancer. Radiotherapy and Oncology (2016). Vol. 120, #3:519-
525. 

4. Taylor E, Yeung I, Keller H, Wouters GB, Milosevic M, Hedley WD, Jaffray DA 
Quantifying hypoxia in human cancers using static PET imaging. Physics in Medicine 
and Biology (2016). Volume 61, Number 22. 

5. Kueng R, Driscoll B, Manser P, Fix M, Stampanoni M, Keller H Quantification of local 
image noise variation in PET images for standardization of noise-dependent analysis 
metrics. Biomedical Physics & Engineering Express, Accepted: 2016, November 25. 

6. Metran-Nascente C, Yeung I, Vines CV, Metser U, Dhani CN, Green D, Milosevic M, 
Jaffray DA, Hedley WD Measurement of Tumor Hypoxia in Patients with Advanced 
Pancreatic Cancer Based on 18F-Fluoroazomyin Arabinoside Uptake. Journal of Nuclear 
Medicine (2016). Vol. 57:361-366. 

7. Kalpathy-Cramer J, Mamomov A, Zhao B, et al. Radiomics of Lung Nodules: A Multi-
Institutional Study of Robustness and Agreement of Quantitative Imaging Features. 
Tomography (2016), Vol. 2, # 4:430-437. 
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Clinical Trials Design and Development Working Group  
 

Hui-Kuo Shu, MD, PhD 
Ella Jones, PhD 

 
 

MISSION 
 

Develop, validate and harmonize methods and tools of quantitative imaging for use 
in cancer clinical trials to predict outcome and tumor response to therapy.   
 

GOALS 
 
1. Identify challenges and opportunities in clinical trial design and development particularly 

in trials using quantitative imaging (QI).   
2. Identify best practices for clinical trial design, analysis and reporting.   
3. Facilitate and introduce QIN-developed methods into cancer imaging trials through 

collaboration with other QIN working groups.  
4. Disseminate the best clinical trial design and development method through 

publications and guidelines.   
5. Outreach to cooperative groups and organizations to apply QIN methods in multicenter 

trials through cross-membership and presentations.   
6. Translate relevant and mature QIN methods into clinical practice settings as appropriate.   
 

ACCOMPLISHMENTS/ACTIVITIES FOR THE YEAR (2016-2017) 
 
§ Manuscripts 

 
QIN Accrual Survey   
 
Led by Brenda Kurland, the past Chair of the CTDD WG, this effort was performed to 

gain a better understanding of factors that affect enrollment for QI clinical trials and to 
identify potential barriers to accrual of such studies.  This work was recently published in a 
special QIN issue of Tomography with abstract and reference listed below. 
 

Patient accrual is essential for the success of oncology clinical trials. Recruitment for 
trials involving the development of quantitative imaging biomarkers may face different 
challenges than treatment trials. This study surveyed investigators and study personnel for 
evaluating accrual performance and perceived barriers to accrual and for soliciting solutions to 
these accrual challenges that are specific to quantitative imaging-based trials. Responses for 
25 prospective studies were received from 12 sites. The median percent annual accrual 
attained was 94.5% (range, 3%-350%). The most commonly selected barrier to recruitment (n 
= 11/25, 44%) was that "patients decline participation," followed by "too few eligible 
patients" (n = 10/25, 40%). In a forced choice for the single greatest recruitment challenge, 
"too few eligible patients" was the most common response (n = 8/25, 32%). Quantitative 
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analysis and qualitative responses suggested that interactions among institutional, physician, 
and patient factors contributed to accrual success and challenges. Multidisciplinary 
collaboration in trial design and execution is essential to accrual success, with attention paid to 
ensuring and communicating potential trial benefits to enrolled and future patients. 
 

• Kurland, B.F., Aggarwal, S., Yankeelov, T.E., Gerstner, E.R., Mountz, J.M., Linden, 
H.M., Jones, E.F., Bodeker, K.L. and Buatti, J.M., 2016, Accrual Patterns for Clinical 
Studies Involving Quantitative Imaging: Results of an NCI Quantitative Imaging 
Network (QIN) Survey, Tomography, 2:276-82. 

 
STandard In Reporting Quantitative Imaging (STIRQI)   

 
Increasingly, imaging methods are used in clinical trials both as primary as well as 

secondary or correlative endpoints.  Interpretation of imaging has also been moving from 
qualitative and subjective to quantitative and objective.  As these methods become more 
sophisticated, basic information regarding the acquisition of QI data must be provided to the 
reader so that the validity and reliability of these results can be determined and generalized.  
This initiative seeks to define a set of criteria that should be presented in QI-related 
publications to ensure that quantitative data extracted from images are reported in a 
meaningful, consistent, and repeatable manner.   
 

Rich Wahl has taken input from members of the CTDD WG and leads the effort of this 
project.  A draft of the manuscript with preliminary checklist of standards for reporting has 
been circulated.  This checklist is based on the STAndards for Reporting of Diagnostic 
Accuracy (STARD) criteria first reported in 2003 (Bossuyt, et al., Ann Int Med 138:W1-12, 
2003).  There has since been an update of the STARD criteria in 2015 (Bossuyt, et al., BMJ 
351:h5527, 2015). The manuscript will be revised accordingly and will be circulated more 
widely within the QIN for comments. 
 

Quantitative Imaging in Radiation Oncology   
 

Radiation oncology is increasingly reliant on both high-resolution anatomic-based 
imaging (CT and MRI) as well as functional imaging (PET, DWI, MRSI etc.).  This evolution 
in the field has arisen because of the improved ability to localize the radiation treatment 
delivery accurately through stereotactic guidance as well as image-guided radiation therapy 
(IGRT) with daily image-based alignment.  As this becomes possible on a routine basis, the 
margins of error in delivery have decreased to sub-millimeter accuracy in intracranial 
applications and on the order of 1-2 millimeters in body treatments.  A review of QI, in 
particular, focusing on its utility for the radiation oncologist would be an important addition to 
the literature and help highlight the increasing range of advanced imaging modalities for this 
clinical field.   
 

John Buatti and Hui-Kuo Shu will be leading the effort to produce a manuscript reviewing 
imaging modalities used by radiation oncologists in routine patient management and 
highlighting potential utility of QI techniques in treatment planning and patient follow-up.  
The current plan is to complete a draft in the next 4-6 months and circulate to the CTDD WG 
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for comments before the final revision and submission to a radiation oncology journal.    
 
§ Outreach activities 

 
Panel Session at the 2016 Annual Meeting of the American Society for 

Therapeutic Radiology and Oncology (ASTRO) 
 

A panel session co-chaired by John Buatti and Hui-Kuo Shu entitled “Advanced 
Quantitative Imaging for the Radiation Oncologist: Response Assessment and Targeting for 
Clinical Trials and Practice, A View from the NCI’s Quantitative Imaging Network” was 
presented at ASTRO on September 25, 2016.  This session awarded CME credit.  Overall, the 
session was well-received with an attendance of above 100.  The overall course rating was 4.2 
(on a scale of 1-5 w/higher being better) and nearly 83% of respondents desired to have this 
session repeated in the future.  The summary, learning objectives and presentations of this 
panel session were as follows: 
 

Summary:  The Quantitative Imaging Network (QIN) is an effort by the National 
Cancer Institute (NCI) to develop novel approaches, including tool development, for QI and 
clinical decision support in oncology.  It consists of a number of multi-disciplinary research 
teams from top institutions across the country that are developing quantitative cancer imaging 
methods and tools that can be applied in unique ways in the context of clinic trials.  This 
session introduced the structure and aims of NCI’s QIN program and described some of the 
work being done by specific groups to develop and validate QI tools for common cancers that 
are of interest to the membership of ASTRO.  The panel described how advanced imaging 
modalities can complement more conventional ones for oncologic evaluations and some of the 
tools that are in various stages of development for this assessment.  It is our hope that this 
panel will raise awareness of the potential utility of advanced QI for both research and general 
clinical practice.  Several barriers have limited wider adoption of advanced QI techniques in 
the clinic.  This panel may address some of these barriers by educating oncologists about the 
value of QI.  Other barriers are being addressed as central goals of the QIN to help develop 
and validate new tools and methods that benefit the utility of QI in the clinical setting.   
 

Learning Objectives: 
 

1. Demonstrate knowledge of the structure and goals of the NCI’s QIN program for 
developing and applying advanced QI in oncology.   

2. Demonstrate knowledge of and apply various areas of advanced QI research including 
validation of methodologies and development of tools that will eventually be 
translated to the clinic.   

3. Demonstrate an understanding of how the developing QI tools can be used in general 
oncology practice. 
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PRESENTATIONS 
 

1. QI-based tools for radiation therapy targeting and response assessment in head and 
neck cancer (John Buatti). 

2. The potential of radiomic-based phenotyping for precision medicine (Hugo Aerts).   
3. DCE-perfusion and diffusion-weighted MR imaging for clinical decision support 

in head and neck cancer (Yue Cao).   
4. Feasibility of whole brain, high-resolution spectroscopic MRI for glioblastoma 

brain tumor imaging (Hui-Kuo Shu).   
 

CROSS-INSTITUTIONAL QIN TOOLS VALIDATION 
 

§Auto-PERCIST variance test   
 

PET Response Criteria in Solid Tumors (PERCIST) was initially proposed by Wahl et 
al. (J Nucl Med, 50 (suppl 1):122S-150S, 2009) as an approach to standardize interpretation 
of FDG-PET results using a consistent PET protocol.  Richard Wahl’s group has subsequently 
developed a software (AutoPERCIST™) to semi-automatically identify and measure 
reference tissue (liver), set disease threshold values and calculate SUVs (peak, max, mean, 
volume and total lesion glycolysis) based on PERCIST criteria.  AutoPERCIST™ has been 
used to evaluate 30 test cases and demonstrated its robust performance.  Results from this 
work has recently been accepted for publication in the Journal of Nuclear Medicine.  A 
subsequent variance test was proposed to determine whether lesions quantified by 
AutoPERCIST™ is consistent across institutions.   
 

Joo Hyun O, Clinical Assistant Professor (Department of Nuclear Medicine, Seoul St. 
Mary’s Hospital, Seoul, Korea) and Richard Wahl are leading this effort to determine the 
variance of lesion quantification by AutoPERCIST™.  The latest version of this software was 
installed by 15 participating institutions (from United States, Asia and Europe) through a 
materials transfer agreement (MTA) and 30 paired sets of anonymized FDG PET-CT images 
were downloaded for evaluation.  Instructions for this study were recently sent to 
participating institutions, up to 5 tumor lesions from each PET image will be selected.  All 
selections will be recorded and sent to the central database at Johns Hopkins Image Response 
Assessment Team for quality control. Initial results are expected in the second quarter of 
2017. 
 
§ Pathways to Clinical Trials (PathCT) initiative  
 

A major focus of the CTDD WG in 2016-2017 is to help facilitate the translation of QIN-
developed tools to clinical trials, particularly those in the NCI’s National Clinical Trials 
Network (NCTN).  These goals have been advanced in several ways over the past year as 
listed below.  

 
 
 
 



337 
 

2016 QIN Face-to-Face Annual meeting (April 11-12, 2016) 
 

A framework for clinical engagement based on the perspectives of clinical trialists 
who actively participate in the design and conduct of imaging clinical trials was introduced in 
multiple presentations by Larry Schwartz, Hannah Linden and Dave Mankoff on the 1st day of 
this meeting.  Further discussions on the role of the CTDD Working Group in this 
engagement were the topics of subsequent breakout sessions at this meeting.  
 
QIN-NCTN Planning Meeting (December 13, 2016) 
 

This one-day meeting was held in Philadelphia to discuss ideas and opportunities 
where QI could play a key role in the NCTN trials and to consider which tools from the QIN 
portfolio may have merit.  The meeting minutes will be made available on Sharepoint. 
 
Updated list of QIN tools and their level of readiness for deployment (January, 2017) 
 

Lori Henderson compiled this updated list after communications with each QIN group 
to obtain the latest status on their respective tools.  This step was critical to gain an 
understanding of where current tools stand so that further customized recommendations can 
be formulated.   
 
PathCT Summary Report  
 

Lori Henderson led the effort to prepare this document summarizing the activities 
(listed above) in 2016 and the goals of the PathCT initiative.  In addition, this report discussed 
future directions to further the goal of advancing the development and maturation of the novel 
QI technologies from the network through a targeted and appropriately balanced approach for 
clinical validation in trials.  This report will be made available on Sharepoint. 
 
PathCT Focus Group 
 

This group, comprised of members of the CTDD WG, is being tasked to review the 
readiness of QIN-developed tools and facilitate in-depth discussions with the corresponding 
PIs to bring these tools to clinical translations.  The core members of this focus group 
currently consist of John Buatti, Lori Henderson, Ella Jones, Hui-Kuo Shu and Richard Wahl 
with the inaugural meeting on Monday, 2/13/2017.  Membership may be modified later 
including the addition of those that can serve in specific ad hoc or advisory roles.  The current 
plan is to meet at least once monthly and to report progress at each CTDD WG teleconference.  
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PLANS FOR THE COMING YEAR (2017-2018) 
 
§ Goals for the coming year include the following: 
 
1. Completion of two manuscripts (STIRQI criteria and Quantitative Imaging in Radiation 

Oncology) that are currently under preparation.  
 

2.  Continued outreach efforts at national oncology and cooperative group meetings to 
educate about the utility and promise of QI and the role of the QIN in developing these 
techniques.  Specific efforts will include the following: 
 
a. NRG Oncology will be targeted for a presentation at the Imaging subcommittee at 

their July 2017 meeting.  The goal is to make a presentation introducing the QIN and 
some mature QIN tools, in particular, that are poised for potential inclusion in 
developing clinical trials.  Plan to have handouts available and contact information so 
that communications between clinical trialists and imaging scientists can be 
facilitated.     

 
b. 2018 ASTRO will be targeted for another panel session similar to the one presented in 

2016.  This proposal will be prepared for submission to the ASTRO organizing 
committee by late 2017 (Nov to Dec).   

 
3. Completion of the AutoPERCIST™variance test.  
 
4. Continue to advance the goals of the PathCT initiative primarily through the activity of 

the PathCT Focus Group and additional potential ad hoc activities such as with meetings 
similar to the QIN-NCTN planning meeting held on 12/13/2017.   
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Bioinformatics and Data Sharing Working Group 
 

Bradley Erickson, M.D., Ph.D. 
Ashish Sharma, Ph.D. 

 
INTRODUCTION 

 
There are 2 main purposes of the Bioinformatics and Data Sharing (BIDS) 

working group: to promote and facilitate data sharing within the QIN and for other 
cancer researchers; and to promote and facilitate the sharing of computational tools 
within the QIN and for other cancer researchers. In the past, much of the work was on 
enabling data sharing and TCIA. In the past year, we have continued that work, in the 
form of advancing the discussion of common data elements for the non-image data that 
is associated with images. However, the greater focus of the past year was to improve the 
ability to share tools. 

 
DISCUSSION OF PROGRESS 

 
§ Improved Tool Sharing and Pipeline Creation 
 

Every form of quantitative imaging requires some computational approach to the 
data. It may be as simple as computing the mean of a region of interest (ROI). However, 
it is rare that this is sufficient, and even computation of ROIs has been found to have its 
subtleties—for instance, are the pixels under the line defining the ROI included or not? 
Furthermore, one must usually match the ROI with some structure of interest, and that 
requires accurate and reproducible segmentation, and may also require registration onto 
an anatomic image. In many cases, the mean does not contain all (or even most) of the 
useful information. Recent studies have shown textures can reveal information about the 
genomic makeup of tumors even when visual inspection reveals no such information. 

 
The BIDS group does not develop those measurement tools, nor does it evaluate 

them. However, in nearly all cases, research groups create ‘pipelines’ for image analysis. 
A pipeline is a series of well-defined steps, and each step is a certain class of algorithm. 
Some example pipeline steps include image registration, image segmentation, image 
classification, and perhaps some ROC or other measurement of performance. When 
properly constructed, one may ‘swap in’ some new algorithm that performs one of those 
steps and evaluate the impact on accuracy or computational efficiency.  

 
A challenge is that there has not been any standard or convention for creating 

pipelines, let alone sharing the modules that make up each step. This results in 
duplication of effort as each group creates their own pipeline methodology and their own 
algorithms that go into the pipeline. The BIDS Pipeline project is focused on identifying 
best practices for creating and sharing the modules used to make pipelines as well as the 
best way to create and maintain the pipelines themselves. 

 
The Stanford Group has been developing the Quantitative Imaging Feature 

Pipeline. At present, they have largely focused on development of the computational 
modules (e.g. computation of image features or a classifier that consumes to computed 
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features) and have not focused much effort on the actual pipeline technology. They have 
selected CWL—the common workflow language as the method for describing a pipeline. 

 
The Mayo and Emory groups have been working for about 2 years on pipeline 

technology, mostly focusing on how best to connect them. A rudimentary demonstration 
was given at last year’s face to face meeting. The basic construct of this effort is that all 
computational modules should exist as a docker. Some examples have been published on 
Dockerhub by the Mayo group. Docker is an open source technology that allows one to 
capture a complete execution environment as a file that can then be executed on any 
Docker host, much like virtual machine technology. To leverage Dockers in a versatile 
and flexible way we extended an open source software tool called Grunt 
(https://github.com/Mayo-QIN/grunt) to simplify the creation and deployment of 
modules in a pipeline. 

 
REST may provide advantages in its ability to natively support cloud execution 

(including mixed and local models), is commonly used outside of research and thus may 
allow us to access tools for pipeline creation, and also provides a way to be somewhat 
more secure than what docker file access may allow. 

 
We plan to demonstrate a pipeline that uses Grunt for connections, and how one 

can insert/replace docker modules when one wishes to use alternative algorithms for 
certain steps. There are a variety of properties of pipeline technology that are important, 
including: Ease of Use (including creating and maintaining a pipeline, and ease of 
making a docker compatible with the pipeline), Computational Efficiency, Security, and 
Scalability (ability to add ‘cloud’ resources). Most of these properties are subjective, and 
not amenable to traditional ‘challenge’ evaluations, but the BIDS group is committed to 
developing challenges to identify and promote the better pipeline options, and most 
importantly, to promote compatibility of the modules that compose a pipeline. It is those 
modules that are the greatest value produced by the QIN. 

 
§ Improved Data Sharing and Common Data Elements 
 

An important activity of QIN is data sharing. The TCIA is a tremendous resource 
that enables data sharing. However, it is not always easy to contribute data, as there is 
much greater value if there is metadata associated with the images. Furthermore, that 
metadata needs to be represented in a standard way, if data collections are to be 
aggregated. Therefore, it is important to establish Common Data Elements for TCIA data 
sets. When TCGA constituted the source of metadata for the images, this problem was 
well-handled.  

 
PLANS FOR NEXT YEAR 

 
The BIDS group will continue to work on better pipeline technology to make it 

easier for QIN community to leverage the tools that others develop. This includes 
making it easy to get the tools, to connect them together in a reliable and efficient way, 
to update/maintain the pipeline, and to have efficient computation. We plan will be 
demonstrating this at the face-to-face meeting, and hope that will both educate the QIN 
community and give us actionable feedback about the relative importance of the above 
pipeline properties. 

 

https://github.com/Mayo-QIN/grunt
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As more data sets come into TCIA that are not associated with TCGA, the 
challenge of determining which CDEs are required to accept an image, as well as 
representations of CDEs is needed. This will be another activity for BIDS in the next 
year. 

 
LIST OF QIN PUBLICATIONS AND PRESENTATIONS 

 
1. Fedorov A, Clunie D, Ulrich E, Bauer C, Wahle, Brown B, Onken M, Riesmeier J, 

Pieper S, Kikinis R, Buatti J, Beichel RR. 2016. DICOM for quantitative imaging 
biomarker development: a standards based approach to sharing clinical data and 
structured PET/CT analysis results in head and neck cancer research. PeerJ 4:e2057. 
DOI: 10.7717/peerj.2057. 

2. Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO, Goldgof 
DB. Deep Feature Transfer Learning in Combination with Traditional Features 
Predicts Survival Among Patients with Lung Adenocarcinoma. Tomography : a 
journal for imaging research. 2016;2(4):388-95. doi: 10.18383/j.tom.2016.00211. 
PubMed PMID: 28066809; PubMed Central PMCID: PMC5218828 

3. Kelm ZS, Korfiatis P, Lingineni RK, Daniels JR, Buckner JC, Lachance DH, Parney 
IF, Carter RE, Erickson BJ. Variability and accuracy of different software packages 
for dynamic susceptibility contrast magnetic resonance imaging for distinguishing 
glioblastoma progression from pseudoprogression. J Med Imaging. 2015 Apr; 2(2): 
026001 doi: 10.1117/1.JMI.2.2.026001. PMID 26158114, PMCID:PMC4478857 

4. Akkus Z, Sedlar J, Coufalova L, Korfiatis P, Kline TL, Warner JD, Agrawal J, 
Erickson BJ. Semi-automated segmentation of pre-operative low grade gliomas in 
magnetic resonance imaging. Cancer Imaging. 2015 Aug 14;15(1):12. doi: 
10.1186/s40644-015-0047-z. PMID: 26268363, PMCID:PMC4535671 

5. Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Buckner 
JC, Erickson BJ. MRI texture features as biomarkers to predict MGMT methylation 
status in glioblastomas. Med Phys. 2016 Jun;43(6):2835. doi: 10.1118/1.4948668. 
PMID: 27277032, PMCID:PMC4866963 

6. Korfiatis P, Kline TL, Blezek DJ, Langer SG, Ryan WJ, Erickson BJ. PESSCARA: 
A Content Management System for medical image analysis research. Radiographics. 
2015 Sep-Oct; 35 (5): 1461-8. PMCID:PMC26284301 

7. Korfiatis P, Kline TL, Erickson BJ. Automated Segmentation of Hyperintense 
Regions in FLAIR MRI Using Deep Learning Tomography.2016;2(4)334. DOI: 
10.18383/j.tom.2016.00166 

8. Korfiatis P, Kline TL, Kelm ZS, Hu LS, Erickson BJ. Dynamic Susceptibility 
Contrast MRI Quantification Software Tool: Development and Evaluation. 
Tomography. PMC Journal - 2016;2(4)448. DOI: 10.18383/j.tom.2016.00172 

9. Erickson BJ, Korfiatis P, Akkus Z, Kline T. Machine Learning For Medical Imaging. 
Radiographics, March 2017. PMC Journal - In Press. 

10. Korfiatis P, Erickson BJ. PESSCARA: An Example Infrastructure for Big Data 
Research In: Big Data on Real-World Applications. (Book  chapter ) DOI: 
10.5772/63815 

11. Clunie D.A., Fedorov A. Knowledge Representation of Prostatic Sector Anatomy 
from PI-RADS in Standard Lexicons. SSG07-08 Informatics (Results and 
Reporting). The Radiological Society of North America 102nd Scientific Assembly 
and Annual Meeting, 2016 November, Chicago, IL, USA. 

12. Fedorov A., Rubin D., Kalpathy-Cramer J., Kirby J., Clunie D., Onken M., Flade D., 
Mongkolwat P., Venkateraman R., Bertling J., Pieper S., Kikinis R. The Radiological 
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Society of North America 101nd Scientific Assembly and Annual Meeting, 2015. 
November, Chicago, IL, USA. Interoperable communication of quantitative image 
analysis results using DICOM standard. DOI: 10.6084/m9.figshare.1619877.v1. 

13. Pujol,S, Pieper,S, Fedorov,A, Kikinis,R, The 3D Slicer Open-source Platform for 
Segmentation, Registration, Quantitative Imaging and 3D Visualization of Multi-
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Data Acquisition Working Group 
 

Stefanie Hectors, Ph.D. and Octavia Bane, Ph.D. 
 

INTRODUCTION 
 
The role of the Data Acquisition Working Group is to identify, characterize, and 

ameliorate sources of variance and bias in image data acquisition, thereby enhancing the 
value of advanced oncologic quantitative imaging methods used in clinical trials. Toward 
this end, we work with the QIN and system manufacturers to develop standardized system 
test procedures to enable objective assessment of quantitative image performance across 
sites and platforms. As of September 1st 2016, the Data Acquisition Working Group has 
been merged with the PET/CT and MRI working groups. Ongoing projects will continue 
within those groups. This report therefore gives an overview of the accomplishments of the 
previous year, while future plans will be given in the reports of the PET/CT and MRI 
working groups.  

 
ACCOMPLISHMENTS OF THE PREVIOUS YEAR 

 
§ PET-CT 

 
Cross-Calibration (X-Cal) demonstration project 
 
PET/CT scanner sensitivity is frequently determined empirically by filling and 

imaging aqueous phantoms. This calibration procedure is believed to lead to approximately 
5% variability over time, for a single scanner, when no mistakes are made. However, overall 
stability of scanner bias due to calibration has not been well characterized for networks of 
hospitals, in which sites may differ in their hardware, software and calibration procedures. 
The X-Cal demonstration project used long-lived sources that were implicitly traceable by 
the standard of the National Institute of Standards and Technology (NIST) to characterize 
scanner calibration variability. The project has now been concluded with nearly 250 
calibration scans on 19 scanners.  An analysis of the PET scanner and dose calibrator bias 
data has been completed at the University of Washington, and the manuscript is being 
finalized. Results have been presented to the QIN (1) and RSNA (2). Key results include the 
larger-than-expected instability of PET scanner calibration bias (Figure 1) and the lack of 
significant correlation between scanner and dose calibrator bias.  

 
PET Protocol Acquisition Survey project 
 
Bias and variability of PET SUV values are known to be influenced by many factors 

including patient handling, data acquisition and image reconstruction techniques. In 
particular, user-selected parameters such as acquisition duration, injected dose, uptake time, 
iterative reconstruction updates, and post-reconstruction smoothing lead to a spectrum of 
possible noise and resolution properties, which directly influence bias and variability. The 
Protocol Acquisition Survey Project distributed questionnaires to and compiled data from 44 
PET scanners at 36 separate sites, focusing on the patient requirements and clinical scanner 
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settings that are most likely to affect SUVs. The survey project has now been concluded. 
Key results were the large reported ranges for factors affecting SUV bias, including 
reconstruction settings (Figure 2), uptake time, and other factors. The manuscript for this 
project is being finalized.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: For 19 scanners, signal recovery (the ratio of known 
activity to mean ROI signal) versus time, as determined by 
scanning of long-lived solid phantoms distributed in 2013. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2: Reconstruction parameters reported by survey sites. 
Because iterative updates are commonly computed with subsets, 
we report the total updates as the product of iterations and subsets 
on the x-axis. The y-axis shows the reported post-filter, specified 
by the full-width-at-half-maximum. Some sites used non-iterative 
reconstruction and were excluded from this plot. 
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MRI 
 
DWI gradient nonlinearity project (phase 2):  The objective of this collaborative 

project was to demonstrate feasibility of centralized retrospective system-specific correction 
of gradient nonlinearity (GNL) bias for quantitative diffusion weighted imaging (DWI) 
across diverse scanners independent of scanned object, and therefore, applicable in multi-
site clinical trials. Six representative MR scanner models were selected (two from each 
vendor: GE, Philips and Siemens). Using corrector maps generated from gradient system 
characterization by ice-water phantom in the previous project phase (3), GNL bias 
correction was performed for test ADC measurements from an independent DWI phantom 
(room-temperature agar).  The pre-computed three-dimensional GNL correctors (4) were 
retrospectively applied to test DWI scans by the central analysis site. The correction was 
blinded to reference DWI of the agar phantom acquired by sites at magnet isocenter where 
GNL bias is negligible. The performance was evaluated from changes in ADC ROI 
histogram statistics before and after correction with respect to the unbiased reference ADC 
values provided by sites (Figure 3).  Both absolute error and non-uniformity of ADC map 
induced by GNL (median: 12%, range: -35% to +10%) were substantially reduced by 
correction (seven-fold in median and three-fold in range). Correction of systematic GNL 
bias resulted in two-fold decrease of technical variability across scanners (down to site 
temperature range). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Percent-bias box-plot summary for ADC 
ROI histograms measured in respect to reference 
ADC for six studied systems (PH1, PH2, GE1, GE2, 
SM1, SM2) before (magenta) and after (green) 
“scaled” GNL bias correction illustrates substantial 
improvement of ADC precision and uniformity, as 
well as reduction of cross-scanner variability post 
correction. Median ADC bias is marked with the 
central line inside the box. The edges of the box 
correspond to 25th and 75th percentiles, while whiskes 
encompass the 5th to 95th percentile data points. The 
dashed horizontal lines delineate +5% error ranges. 
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This work has demonstrated that centralized retrospective correction of GNL bias in 
diffusion weighting, obtained from one-time empiric characterization of system GNL, is 
warranted by the stability of gradient channel characteristics, is desired for substantial 
reduction of ADC map bias, and is clearly feasible for multi-center clinical trial setting. In 
the absence of the preferred, prospective GNL correction using system design coefficients or 
independent 3D gradient field mapping, available (approximate) empiric correctors provide 
a practical solution for substantial improvement by removing systematic non-uniformity bias 
at off-center locations and reducing technical variability across multiple scanner systems.  
When not corrected, this technical bias both shifts and artificially broadens the 
corresponding ADC ROI histograms, and increases cross-system variability of the 
quantitative DWI metrics. The reduction of systematic ADC map errors using the proposed 
technology will have a positive impact on clinical trials that utilize quantitative parametric 
ADC maps in diagnostic and treatment response metrics. This collaborative project was 
successfully concluded and results published in QIN special issue of Tomography (5). 
 

T1 mapping data acquisition project:  The objectives of this project were to 1) to 
determine the accuracy and test-retest precision of several T1 mapping protocols used in 
DCE-MRI studies and 2) to measure interplatform variability in T1 quantification by 
multicenter testing of common protocols on a dedicated phantom. Between April 2015 and 
June 2016, the phantom was circulated among 8 sites for data collection with three types of 
T1 mapping protocols: IR-SE and VFA with protocol standardized among sites, and site-
specific protocols. We used a model selection procedure to identify the independent 
predictors of accuracy and precision (repeatability) errors (Figure 4). The general linear 
models showed that the accuracy of the common VFA protocol with respect to reference 
NMR T1 is dependent on field strength, with measurements at 3T, less accurate. The test-
retest repeatability of the common VFA protocol depends on the scanner used. For site-
specific protocols, accuracy of T1 measurements depended on site, while test-retest 
repeatability depended on the type of protocol used. Look-Locker inversion recovery 
protocols (4a, 9a) at both field strengths provided the most repeatable measurements. 
Among VFA protocols, protocols 2 and 3 for the brain, which use multiple flip angles, were 
more repeatable that VFA protocols for the liver (4b, 9b) and prostate (4c, 9c, 9d), which 
use 2-3 flip angles. The results of this project have been presented at QIN (6) and RSNA (7). 
The manuscript is being finalized.  
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Figure 4: Significant predictors of accuracy and test-retest precision 
errors of T1 measurements with the common VFA protocol and site-
specific protocols. The results of general linear mixed models are 
presented as least square means ± standard error. Smaller numbers 
represent better accuracy/repeatability. Site-specific protocols, by 
scanner number: 1= Prostate VTR, 2= Brain VFA I, 3= Brain VFA II, 
4a= Liver Look-Locker 3T, 4b= Liver VFA 3T, 4c=Prostate VFA 3T, 
5=Sarcoma PD, 6= Brain VTR, 8=Breast VFA 3T, 9a= Liver Look-
Locker 1.5T, 9b= Liver VFA 1.5T, 9c= Prostate VFA I 1.5T, 9d= 
Prostate VFA II 1.5T, 10= Breast VFA 1.5T. Site/scanner 7 did not 
provide site-specific data. 
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QIN MRI Subgroup 
 

C. Chad Quarles, Ph.D. and Melissa Prah, Ph.D. 
 

INTRODUCTION 
 

The mission for the MRI subgroup of the Image Analysis & Performance Metrics 
Working Group (IAPM) of the Quantitative Imaging Network (QIN) is to provide guidance, 
coordination, consensus building, and awareness regarding the development of acquisition 
and post-processing methods for quantitative analysis of tumors, related tissues and organs, 
and changes in response to disease progression and treatment, as well as to influence the 
development of sharable objective methods and metrics for assessment of image analysis 
accuracy, reproducibility, and robustness.  The working group will coordinate the 
collaboration between members in this area. 

  
Newly restructured in 2016, members with an MRI focus have now merged from the 

Data Acquisition Working Group (DAWG) into the MRI subgroup as one cohesive group.  
MRI subgroup activities now comprise participation from 28 cancer imaging centers, which 
include Barrow Neurological Institute (BNI), Brigham and Women’s Hospital (BWH), 
Columbia University (CU), Icahn School of Medicine at Mount Sinai (MS), Johns Hopkins 
University (JHU), Maastricht University Medical Centre (MUMC), Mayo Clinic in Phoenix 
(MCP), Mayo Clinic in Rochester (MCR), Massachusetts General Hospital (MGH), Medical 
College of Wisconsin (MCW), Memorial Sloan Kettering Cancer Center (MSKCC), Moffitt 
Cancer Center (MCC), Ohio State University (OSU), Oregon Health and Science University 
(OHSU), Princess Margaret Cancer Centre (PMCC), Stanford University (SU), University 
of California San Francisco (UCSF), University of Iowa (UI), University of Michigan 
Center #1 (UM1), University of Michigan Center #3 (UM3), University of Pennsylvania 
(PENN), University of Pittsburgh Medical Center (UPMC), University of South Florida 
(USF), University of Texas at Austin (UTAUS), University of Washington (UWA), 
Vanderbilt University (VU), and Washington University in St. Louis (WUSTL). 

 
DISCUSSION OF PROGRESS 

 
There are currently five active projects, not including those that arose from the 

former DAWG, as they are included in the IAPM WG annual report.  Four projects are 
nearing completion or in the final stages of analysis, while one project has newly 
commenced.  The status and time-lines for these projects are presented in Figure 1.  
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Figure 1:  CCP milestones of MRI subgroup. 
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§ DCE Arterial Input Function Project 1 (lead institution: OHSU) 
  
 This 3-phase project developed out of previous challenge results published in 2014 
[1], in which a static arterial input function (AIF) was used to compare pharmacokinetic 
(PK) parameters produced from various software (SW) algorithms.  A manuscript [2] was 
published in 2016 detailing the results of the first phase of this project, where AIF was 
varied for the calculation of PK parameters utilizing a Tofts model [3] with centralized 
analysis performed using only one SW platform.  The second phase of this project expanded 
on the first phase by comparing the results of AIF variation using the Shutter-Speed model 
[4].  In parallel with the second phase, the third phase examines the PK parameters using 
clinical therapy response endpoints to evaluate AIF selection method in the context of 
clinical efficacy.  
 

Purpose 
 
A large source of error in DCE PK parameter modeling is due to the uncertainty or 

error in the determination of an arterial input function.  Therefore, the goal of this project is 
to evaluate variation in PK parameters based on AIF selection method, within the context of 
assessing cancer response to therapy.  

 
Methods 

 
There were 9 sites that participated in all phases of this challenge using dynamic 

imaging data that was hosted through The Cancer Imaging Archive (TCIA) [5].  For both 
phase 2 and 3, sites generated AIFs through use of their local SW tools and a centralized site 
(OHSU) performed PK analysis with the submitted AIFs, including reference tissue 
amplitude-adjusted AIFs [6].  The tumor ROI and pre-contrast T1 were kept constant to 
measure PK parameter variations due solely to AIF estimation.  In phase 2, PK parameters 
were evaluated in 11 DCE prostate datasets using a shutter-speed model at a single time-
point.  In phase 3, PK parameters were evaluated using a Tofts model in 7 DCE datasets of 
soft tissue sarcoma in the thigh, where the AIF was measured from the femoral artery by the 
QIN centers.  Time-points included a baseline, visit 1 (V1) and visit 2 (V2, after one cycle 
of chemotherapy).  In both phase 2 and 3, PK parameters were evaluated using Lin’s 
Concordance Correlation Coefficient (LCCC).  For phase 3 alone, V1, V2, and V21% PK 
parameter values were calculated and correlated with clinical response end points, where 
optimal response was set at greater than or equal to 95% necrosis in the surgical specimen 
(suboptimal <95%).  
 

Results and Progress 
 

Phase 2 results using a shutter-speed model were largely consistent with those 
achieved in the phase 1 evaluation, which utilized a Tofts model.  There were considerable, 
and largely systematic, PK parameter variations observed due to AIF uncertainties, where 
Ktrans had the largest and ve the smallest AIF-caused variations.  These variations were 
reduced when the AIF was adjusted to reference tissue.  The initial AIF curve strongly 
influenced Ktrans with extensive contrast agent extravasation. Kep was less sensitive to AIF 
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uncertainty than Ktrans, suggesting that it is a more robust biomarker.  These results stress the 
importance of minimizing PK parameter variations in multicenter studies, which can be 
mitigated through central analysis using a fixed AIF, for single-time point studies, or using 
parameter percent changes, for longitudinal studies. 

 
Phase 3 results of preoperative therapy time-points confirmed findings from both 

phase 1 and phase 2, in that ve had the smallest AIF-induced variations and kep had less 
variation than Ktrans  (Figure 2).  Interestingly, there were no decreases in variations for 
V21% of PK parameters.  This suggests that random errors in AIF quantification may occur 
in a longitudinal study, such as occurs with ROI or voxel placement in the artery, partial 
volume averaging, and inflow effects, among others.  It was encouraging that the uniform 
sign of correlations between visit 2 and visit 1 (V21%) metrics, especially V21% kep, and 
surgical specimen necrosis percentage across all AIF measurements exist, as this 
demonstrates the robustness of DCE-MRI for prediction of soft tissue sarcoma therapy 
response despite uncertainties in AIF determination.  These results are promising but need to 
be evaluated in a larger cohort.  Next steps include comparing individually measured AIFs 
using a population-averaged AIF within the context of DCE-MRI evaluation of therapy 
response.    

 

 
Figure 2:  Column graph of wCV for the tumor mean Ktrans, ve, kep, and τi 
parameters obtained with the unadjusted (grey) and adjusted (white) AIFs 
and calculated using the shutter-speed model.  The 95% confidence interval 
(CI) for each value is shown as error bars. 

 
 
§ DSC Challenge Project 2 (lead institution: MCW) 
  
 The overall goal of this project is to reach a data-driven consensus for acquisition 
and post-processing of dynamic susceptibility contrast (DSC) MRI data in the evaluation of 
brain tumors.  This project contains several phases, each using a different dataset, to not 
only compare post-processing algorithms, but to also address differences in the context of 
clinical relevance.  Results were published from the first phase and focused on the 
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repeatability of post-processing and scaling methods [7].  This second phase focuses on data 
processing with respect to ground truth outcomes.   
 

Purpose 
 
The purpose of this phase of the project was to compare the software (SW) platforms 

used at several sites to achieve a consensus regarding post-processing of DSC-MRI data 
obtained in brain tumor patients.  Each site was given the same dataset to process so that 
differences in acquisition would not contribute to any variations in the output parameter 
maps or ability to predict outcomes. 

 
Methods  

 
Co-registered DSC, anatomical images, and ROIs, including tumor, normal 

appearing cerebral cortex (NACC), reference normal appearing white matter, whole brain, 
and AIFs were uploaded to TCIA [5] in DICOM format for 49 pathologically confirmed low 
(13) and high-grade (36) brain gliomas, with outcomes blinded to all sites during processing.  
All datasets were acquired with a preload dose of contrast agent to diminish leakage effects 
[8].  Individual sites generated DSC-derived parameter maps, including relative cerebral 
blood volume (RCBV) and flow (CBF), using various SW platforms, including those that 
incorporated or excluded leakage correction algorithms [9].  There was some overlap of SW 
platforms among sites, where overall the sites produced 19 RCBV and 12 CBF parameter 
maps for each glioma case.  Linn’s Concordance Correlation Coefficient (LCCC) was used 
to assess agreement (good: 0.8<LCCC<0.89; excellent: LCCC>0.9) between pairs of SW, 
and a ROC analysis was performed to identify the threshold that gave the best sensitivity 
and specificity for each method.  Lastly, it was determined if one threshold existed that 
could provide a minimum sensitivity and specificity of 0.8 across all SW platforms and 
sites.  
 

Results and Progress 
 

Good or excellent agreement was observed for normalized RCBV (nRCBV) in 
tumor, in 19% or 75% of SW platforms, respectively. For normalized CBF (nCBF), good or 
excellent agreement in tumor was observed for 35% or 59% of SW platforms, respectively.  
Agreement was worse for NACC, where good or excellent agreement was 19% or 35% for 
RCBV, and 24% or 18% for nCBF, respectively.  All SW platforms were able to distinguish 
low and high-grade glioma (P<0.0001), yet the thresholds resulting from a ROC analysis 
varied between 1.24-1.75 for nRCBV, and between 1.26-2.26 for nCBF.  However, it was 
determined that all SW platforms could distinguish low and high-grade glioma with a 
sensitivity of at least 0.8 if a threshold of 1.45 is used, while a nCBF threshold of 1.84 could 
at best provide a sensitivity and specificity of only 0.64 (Figure 3).  Overall, these results 
show that there is substantial consistency of DSC post-processing among SW platforms and 
sites for both nCBF and nRCBV, which was even greater when those SW platforms also 
incorporated a leakage correction algorithm, ultimately increasing clinical confidence in 
evaluation of perfusion MRI, with the condition that data are acquired as described.  A 
manuscript is being written describing these results.  
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Figure 3:  ROC curves for all SW entries for both nRCBV and nCBF.  The best 
sensitivity and specificity for each individual method is indicated by the black 
diamonds shown on each ROC curve.  A threshold of 1.45 for which all nRCBV entries 
maintained a SN/SP of at least 0.8 was identified.  At best, all nCBF entries maintained 
a SN and SP greater than 0.639 for a threshold of 1.84. 

 
 
§ ADC Mapping Project 3 (lead institution: UCSF) 
  

Purpose 
 
Reproducibility of diffusion metrics is essential given the increasing role quantitative 

diffusion weighted imaging plays in diagnosis and treatment monitoring.  In addition, for 
validation and reproduction of results and meta-analyses in multi-center studies, it is 
essential that different implementations produce consistent results.  The ADC Mapping CCP 
was undertaken to examine the variability in apparent diffusion coefficient (ADC) measures 
resulting from different post-processing software implementations utilized by researchers 
across the NCI Quantitative Imaging Network.  A secondary aim was to evaluate the 
feasibility and practical challenges involved in centralized analysis of multi-center ADC 
data. 

 
Methods 

 
TCIA [5] was utilized to host 13 human [10] and NCIP-Hub [11] to host 4 phantom 

datasets, which included 2 and 4 b-value breast, 16 b-value liver, and multi-manufacturer 4 
b-value polyvinylpyrrolidone (PVP) phantom [12] (provided by the sites from Quantitative 
Imaging Biomarker Alliance (QIBA) RSNA) DWI.  There were 11 QIN sites that utilized 12 
SW platforms to generate DWI-derived parameters that included mono-exponential ADC 
with 2, 4, or 16 b-values, perfusion minimized (excluding b=0) mono-exponential ADC and 
extrapolated perfusion fraction using 3 b-values, and IVIM models of perfusion fraction, 
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fast, and slow ADC using 16 b-values.  Centralized analysis (UCSF) was performed using 
standardized regions of interest and included: 1) cataloguing capabilities of SW tools for 
processing multi-vendor quantitative DWI data, 2) evaluating linearity of ADC fit SW over 
order of magnitude ADC range provided by PVP phantom, and 3) evaluating concordance 
of parametric diffusion maps from different SW tools, including vendor-provided tools, for 
standardized ROIs.  Concordance was evaluated from the percent difference of each 
measurement from the median value for all QIN sites.  Pairwise within-subject coefficient of 
variation (wCV) was calculated for all site pairs and metrics to establish groupings of 
similar (wCV<0.1%) results. 
 

Results and Progress 
 

Preliminary analysis was completed in Fall 2016, and submitted as an abstract for the 
2017 ISMRM meeting.  Sample results for the 4 b-value breast ADC (all b-values) are 
shown in Figure 4.  Inter-site wCV tables revealed eight of the sites were grouped into 2 
separate groups: sites (1, 4, 13) with wCV<0.01% and sites (3, 5, 6, 8, 9) wCV<0.1%, while 
the other 4 sites and the scanner-generated maps showed more individualistic behavior.  
ADC values differed 2.8±0.2% between the two groups and up to 5% for non-grouped sites.  
The Philips scanner map had a 28% error due to inaccurate scaling information in the 
DICOM.  Phantom results showed similar groupings amongst analysis implementations, 
though with smaller differences between the groups: RMS percent difference in ADC values 
for all phantom ROI of 0.29%, 0.30%, 0.62% for GEMS, Siemens, and Philips scans 
respectively.  Full results are expected to be prepared for publication in 2017. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Sample results:  Percent difference from median values for all sites 
for the mono-exponential ADC from the 4 b-value breast scans.  Horizontal 
bars indicate the 2 groups of sites with close to identical results as measured 
by the wCV.  Scanner-generated results are shown at the far right – note that 
the Phillips map had a large bias (28%) traced to problems with DICOM 
metadata. 
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§ DICOM ADC Parametric Map Project 4 (lead institutions: UM1, BWH, and UCSF) 
  
 Parametric map DICOM standards are being enforced to achieve uniformity and 
portability of QI metrics across vendors, sites and software tools in multi-site clinical trials.  
This project was launched as a supplemental effort, related to parent ADC Mapping 
challenge, to assess current capability of QIN participants and provide future guidelines to 
generate DICOM-compliant parametric diffusion maps.  This project is a collaboration of 
the Bioinformatics/IT and Data Sharing (BIDS) WG in collaboration with the QIBA-RSNA 
DWI task force and major MRI equipment manufacturers.    
 

Purpose 
 
The purpose of this project is to demonstrate the ability to generate consistent 

quantitative parametric ADC maps and relevant DICOM metadata across vendors, sites, and 
SW tools.  

 
Methods  

 
Participating sites used a single multi-vendor DWI DICOM data set from a 

polyvinylpyrrolidone (PVP) phantom [12], imaged by three QIBA RSNA DWI task force 
members, to generate parametric ADC maps.  The required attributes of parametric map 
DICOM were defined in collaboration with BIDS WG according to ITCR QIICR 
recommendations.  Eight participating QIN sites (and two vendors) generated DICOM 
format ADC maps using a mono-exponential fit between zero and highest b-value, as well as 
all b-values.  The resulting ADC map DICOM header metadata were evaluated by central 
site analysis and compared to general QIICR recommendations [13] and DWI DICOM 
macro [14]. 

 
Results & Progress 

 
The CCP analysis has confirmed that (a) current vendor DWI DICOMs deviate from 

standard (Table 1), and (b) scanner-console (vendor-specific) ADC analysis software is not 
capable of parsing cross-vendor DWI DICOM.  A majority of the participating QIN sites 
have resorted to using home-built DWI DICOM converter/parsers to derive ADC (Table 2).  
Only half of QIN sites that participated in the parent ADC mapping challenge have 
demonstrated an ability to generate parametric map DICOM files “off-line”.  The CCP 
results (Table 2) show that no standard parametric ADC DICOM has been implemented by 
the community, and the standard source-image reference and ADC units/scale tags are 
mostly missing from the QIN site implementations.  Furthermore, ADC fit parameters (e.g., 
b-values) and models (e.g., linear versus non-linear), deemed important for multi-site 
analysis in parent CCP, are missing both from the parametric map standard [13] and 
implementations, or are stored in private DICOM attributes.  DICOM bit-depth of 12-16 has 
provided sufficient ADC precision across implementations.  GE (vendor) ADC DICOM has 
been the closest to the standard and would provide a good starting template for on-site 
implementation. 
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Guided by current CCP findings and identified limitations, the final stage of the CCP 
will focus on inclusion of ADC fit parameters and models in parametric map standard and 
site DICOM dictionaries, and evaluation of recently implemented ITCR solution (DCMQI 
tools [15]) for uniform ADC DICOM generation across the QIN sites.  
 

Table 1:  Vendor-specific DICOMs lack uniformity & compliance with standard required 
DWI attributes. 

 

 
 

 
 

Table 2:  ADC map DICOM header comparison for participating sites shows inconsistent 
implementations. 

 
 
§ DSC Digital Reference Object Challenge Project 5 (lead institution: BNI) 
  

As cerebral blood volume (CBV) values calculated from DSC-MRI are dependent on 
acquisition and post-processing methods, a validated DSC digital reference object (DRO) of 
the brain, containing both normal regions and tumor, was developed to serve as the first of 
it’s kind test-bed for DSC-MRI data.  In phase 2, optimal methods for post-processing and 
acquisition will be examined using both site-specific and standardized image parameter 
DROs.  

 
Purpose 
 
The primary goals of this work are two-fold:  1) to determine optimal post-

processing methods and to identify post-processing steps that introduce variability to CBV 
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analysis and 2) to determine the variability in imaging scan parameters across sites and their 
influence on CBV analysis. 

 
Methods  

 
There are currently 7 sites participating in this challenge.  To test the influence of 

imaging parameters on CBV, site-specific DROs are being generated based on survey 
responses, which identified site-specific acquisition protocols.  Another DRO, containing 
standardized imaging parameters, will also be distributed to all sites to test the influence of 
post-processing using site-established methods.  Therefore, all individual sites will perform 
post-processing on two DROs, which are being hosted by TCIA [5].  Central analysis (BNI) 
will be performed to determine accuracy and consistency.  To evaluate accuracy between 
ground truth CBV and site-specific CBV (due to both imaging parameters and post-
processing methods) Lin's Concordance Correlation Coefficient (CCC) will be calculated. 
To evaluate reproducibility across sites for CBV measurements a repeated ANOVA 
statistical test will be accomplished.   

 
Results & Progress 
 
A preliminary analysis of two acquisition methods demonstrates the influence of 

preload dosing schemes on CBV accuracy and precision.  Figure 5 illustrates a comparison 
of the accuracy (as determined by the CCC between the estimated and input CBV) and 
precision (as determined by the coefficient of variation (CV) between the estimated and 
input CBV) for a dosing scheme that delivers a standard full dose (0.1 mmol / kg) over two 
injections (½, ½) and one that uses two full dose injections.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  CBV accuracy for a dosing scheme that delivers a 
standard full dose (0.1 mmol / kg) over two injections (½, ½) 
and one that uses two full dose injections. 
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PLANS FOR NEXT YEAR 
 

A priority in the current year is to finalize and submit manuscripts for the challenges that 
are currently completed or will be finished in Q1-2 of 2017.  Specifically, there are six 
manuscripts that should be submitted for publication by Q2.  Going forward, the MRI 
subgroup has discussed developing the following studies into CCPs to be initiated in 2017:  
 

1. Undertake a new DSC-MRI challenge that focuses on the acquisition of the DSC-
MRI data, rather than post-processing, which was the focus of the first challenge.  
Using the same approach described for the first DSC-MRI challenge we will make 
available to participating sites DSC-MRI datasets obtained using a variety of 
acquisition protocols with regard to contrast agent dosing and image settings such as 
flip-angle, TR and/or TE.   

2. Assess influence of site- and/or vendor specific under-sampling pulse sequences on 
the fidelity of DCE-MRI.  

3. Evaluate the influence of manually defined regions of interest on multi-site 
consistency of ADC measures. 

4. Examine the repeatability and multi-site consistency of ADC measures in prostate 
cancer. 

5. Challenge QIN sites to use their site-specific MRI post-processing methodologies to 
distinguish tumor from treatment effect or progression, using perfusion and diffusion 
datasets from patients with known outcomes.  Any and all parameter types can be 
used in an attempt to determine which one(s) prove most predictive. 

 
Beyond these specific action items, the MRI-subgroup commits to prioritizing initiatives 

and CCPs that focus on establishing and characterizing imaging acquisition and analysis 
methods that inform clinical decision-making (e.g. establishing a threshold for imaging 
biomarker changes that enable reliable treatment response detection).  Validating the multi-
site consistency of such tools is critical for increasing confidence in their utility and 
fostering their adoption into clinical use.  
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INTRODUCTION 
  
Mission Statement 

The PET-CT subgroup is a subgroup of the Image Analysis and Performance Metrics 
Working Group, whose mission statement is: 
 

The mission of the Image Analysis & Performance Metrics Working Group 
(IAPMWG) is to provide guidance, coordination, consensus building, and 
awareness regarding the development of algorithms and methods for 
quantitative analysis of tumors, related tissues and organs, and changes in 
response to disease progression and treatment, as well as to influence the 
development of sharable objective methods and metrics for assessment of 
image analysis accuracy, reproducibility, and robustness. The IAPMWG will 
coordinate the collaboration between QIN members in this area. 

 
Subgroup activities focus on quantitative image analysis applications to CT, PET-

CT, and dynamic PET data in several clinical domains, including lung cancer and head & 
neck cancer. Our major efforts to stimulate the collection and sharing of tools, and analysis 
and evaluation methods, has been through the development of “challenges” , of which there 
are four active at this time (described below). In addition, we have participated in cross-WG 
activities with the Bioinformatics and Data Sharing (BIDS) WG which are also described 
below.  

 
Accomplishments of the Previous Year 

 
 
§ CT Feature Comparison Challenge using Moist Run Data (Hosted by USF/Moffitt 
CC) 

The goal of the CT Feature Comparison Challenge is to investigate the sensitivity of 
quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons 
across different feature types and features computed by different implementations of feature 
extraction algorithms. 

Radiomics is to provide quantitative descriptors of normal and abnormal tissues during 
classification and prediction tasks in radiology and oncology. Quantitative Imaging Network 
members are developing radiomic “feature” sets to characterize tumors, in general, the size, 
shape, texture, intensity, margin, and other aspects of the imaging features of nodules and 
lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung 
nodules, with the main classes consisting of size, local and global shape descriptors, margin, 
intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, 
Law’s features, gray-level co-occurrence matrices, and run-length features.  
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Methods: The features generated from different computer segmentations will be 

evaluated for repeatability between repeated runs of each algorithm, and reproducibility across 
segmentation algorithms [5]. This is being done by using the 5 collections of DICOM CT 
images that were used for the Moist Run Challenge [1] and the segmentations (3 algorithms 
with 3 repeat trials) created there. 

This work expands on that of the Moist Run segmentation challenge [1] as well as the 
work on feature reproducibility on test-retest data [2] [3] and numerous papers on various 
measures [4], [5] for feature stability measures, including repeatability and reproducibility.  It 
should be noted that this challenge is being run on C-BIBOP (a U24 project funded by the 
ITCR associated with the QIN) and that R-scripts will be run to compute commonly used 
metrics of repeatability and reproducibility. We will coordinate these submissions with 
separate QIN effort to compare and harmonize features across sites (Daniel Rubin). 

Seven QIN teams (Columbia, Moffitt, Stanford, UCLA, Iowa, Princess Margaret, and 
Michigan) obtained the data set, including all images and segmentations, from TCIA, and 
each computed their own set of features for each of 468 segmentations ((4*10+12)*3*3) and 
uploaded them to a NCIP HUB using a standard format. 

 
Results: We calculated the concordance correlation coefficients of the features as a 

measure of their stability with the underlying segmentation; 68% of the 830 features in this 
study had a concordance CC of ≥0.75. Pairwise correlation coefficients between pairs of 
features were used to uncover associations between features, particularly as measured by 
different participants. A graphical model approach was used to enumerate the number of 
uncorrelated feature groups at given thresholds of correlation (Fig. 1). At a threshold of 0.75 
and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features’ 
redundancy. 

 
Conclusion: Having a common set of reference images, well-specified objects and 

existing object masks allowed to focus on the very specific task of feature computation, its 
sensitivity to segmentation results, and the associations among specific features. High 
correlations between certain groups of features calculated across participants were observed. 
There is substantial value in comparing feature values among different groups, even when the 
feature values are expected to be the same or very similar, allowing to uncover subtle 
differences and even errors in approach and calculations that may not have been discovered 
otherwise. This study also showed the value of using phantom images or synthetic images 
where there are objects with known values such as known density or known volume. These 
provide users the ability to gain confidence that their methods and calculations are performing 
in a manner similar to some reference methods.  

This challenge is successfully completed and a manuscript is published in the QIN 
special issue of Tomography, December 2016, [10]. 

 
 
§ Lung Nodule Interval Segmentation Challenge using NLST data (Hosted by 
USF/Moffitt CC) 
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The goal of this project is to study the variability of segmentation methods in 
estimating the size of the pulmonary nodules on scans of the same patient at two different time 
instances.  

Lung cancer has been one of the leading cancer deaths in the US. It has been shown 
that early detection of the lung cancer improves survival and patient prognosis. Estimation of 
size of these lung nodules during screening is an important clinical factor in the determination 
of patient follow-up procedures.  In an effort to quantify variability among different users in 
segmentation of these nodules over time, we conducted a friendly challenge among the QIN 
members to segment and estimate size of lung nodules using their preferred methods.   
 

Methods: We have downloaded the National Lung Screening Trial (NLST) data table 
(6) and assembled patients with reported abnormalities (incident cancer cohort or just cancer 
cohort: CC) at one of the three time point scans and epidemiologically matched against 
diagnosed as normal (7,8). The CT images for the identified cohorts have been downloaded 
from NLST trial. Scans were collected across the NLST (some 50+ institutions around the 
US) and patients enrolled in the trial were known to be at elevated risk of lung cancer (as 
required by NLST inclusion criteria) due to smoking history and age (9). 

In this challenge CT image data was assembled from 100 subjects imaged at two time 
points (baseline and follow up) approximately one year apart (200 total CT datasets). Fifty 
subjects were confirmed to have cancer and 50 subjects were with nodules which were 
determined to be non-cancer. Nodules in both cancer and non-cancer cases were identified 
and approximate locations were supplied to the sites along with image data (Figure 2). The 
final diagnosis and exact coordinates or nodule slice centers were not shared to avoid any 
potential bias between participants.  In patients with multiple nodules, we selected one that 
was largest (by univariate diameter) at baseline.  Participants were asked to segment the 
nodules in each of the 100 cases using their preferred segmentation approach (automated, 
semi-automated, etc.). Each participating site agreed to submit at least one set of segmentation 
results where no editing of the resulting segmentations was performed. Sites were provided 
an option to submit additional results where editing of the nodule boundaries was allowed and 
these will be analyzed separately. 

We have five participating sites (Moffitt, Columbia, Michigan, Harvard, UCLA) with 
two additional sites participating with their analytics expertise (Stanford, MGH). All teams 
have segmented the challenge data sets and reported the segmentation masks. The details of 
the challenge have been made available for public view via the NCIPHUB, while the results 
and data are restricted to the participants who comply and signed the NCI’s DTA to access 
the NLST data. URL for the Interval Challenge:  

https://nciphub.org/publications/20/versions?v=1. 
 

Results: In our preliminary analysis we find similarity in segmentation (DICE 
coefficients) between all five participants has wide ranges, with a mean of 0.48 [Range: 0 (no 
overlap) to 0.97].  The concordance in volume estimates between any two sites range from 
[0.71 to 0.95] while the volume change range from [0.15 to 0.89]. Using a logistic regression, 
we found that the ideal volume increase threshold for predicting cancer status ranged from 
15% to 35% in well-performing sites. While the prediction accuracy (AUC) of the sites based 
on volume change estimates ranges from [0.64 to 0.82]. Further, we find categorizing these 
nodules by baseline size (≥ 8mm) improve participants’ prediction with an AUC range of 

https://nciphub.org/publications/20/versions?v=1
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[0.75 to 0.9]. While for smaller nodules (baseline ≤ 8mm) the prediction accuracy shows 
slightly lower performance, with AUC range of [0.57 to 0.8]. While overall prediction 
accuracy was comparable between both manual and automatic segmentations, agreement of 
cancer status classification on specific nodules varied from algorithm to algorithm. Highest 
classification agreement as measured by Cohen’s kappa statistic was found between the two 
manual segmentation submissions (0.68), while lower agreement was found between 
automatic segmentations (0.17 to 0.54).   

 
Conclusion: We are at the advanced inference phase and we expect to submit a peer-

reviewed publication on this challenge by middle of 2017. We have also developed a 
visualization platform for data derived from this competition using RStudio’s Shiny package, 
which can currently be publicly viewed at 
 http://cbibop.cloudapp.net:3838/Interval_Lung_Challenge_ShinyApp/. Note that the 
contents of this visualization may change in the coming weeks. An illustration of the 
visualization platform is shown in Figures 3, 4, and 5. 

 
 
§ PET Segmentation Challenge (Hosted by Iowa) 

 
The goal of this project is to perform segmentations on PET scans of several objects, 

starting from Digital Reference Objects (DROs) progressing to phantoms and ultimately to 
patient scans of head and neck tumors, to assess the bias and variability and to determine the 
impact on derived Quantitative Imaging measures. 

Radiomics utilizes a large number of image-derived features for quantifying tumor 
characteristics that can in turn be correlated with response and prognosis. Unfortunately, 
extraction and analysis of such image-based features is subject to measurement variability and 
bias. The challenge for radiomics is particularly acute in Positron Emission Tomography 
(PET) where limited resolution, a high noise component related to the limited stochastic nature 
of the raw data, and the wide variety of reconstruction options confound quantitative feature 
metrics. Extracted feature quality is also affected by tumor segmentation methods used to 
define regions over which to calculate features, making it challenging to produce consistent 
radiomics analysis results across multiple institutions that use different segmentation 
algorithms in their PET image analysis. Understanding each element contributing to these 
inconsistencies in quantitative image feature and metric generation is paramount for ultimate 
utilization of these methods in multi-institutional trials and clinical oncology decision making. 
 

Methods: To assess segmentation quality and consistency at the multi-institutional 
level, we conducted a study of 7 institutional members of the National Cancer Institute 
Quantitative Imaging Network (Columbia, Moffitt, MSKCC, Simon Fraser University, 
Pittsburgh, Iowa, and Washington). For the study, members were asked to segment a common 
set of phantom PET scans (Figure 6) acquired over a range of imaging conditions as well as a 
second set of head and neck cancer (HNC) PET scans (Figure 7). Segmentations were 
generated at each institution using their preferred approach. In addition, participants were 
asked to repeat segmentations with a time interval between initial and repeat segmentation. 
This procedure resulted in overall 806 phantom insert and 641 lesion segmentations. 

http://cbibop.cloudapp.net:3838/Interval_Lung_Challenge_ShinyApp/
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Subsequently, the volume was computed from the segmentations and compared to the 
corresponding reference volume by means of statistical analysis. 
 

Results: On the two test sets (phantom and HNC PET scans), the performance of the 
seven segmentation approaches was as follows. On the phantom test set, the mean relative 
volume errors ranged from 29.9 to 87.8% of the ground truth reference volumes, and the repeat 
difference for each institution ranged between -36.4 to 39.9%. On the HNC test set, the mean 
relative volume error ranged between -50.5 to 701.5%, and the repeat difference for each 
institution ranged between -37.7 to 31.5%. In addition, performance measures per phantom 
insert/lesion size categories are given in the paper. On phantom data, regression analysis 
resulted in coefficient of variation (CV) components of 42.5% for scanners, 26.8% for 
institutional approaches, 21.1% for repeated segmentations, 14.3% for relative contrasts, 5.3% 
for count statistics (acquisition times), and 0.0% for repeated scans. Analysis showed that the 
CV components for approaches and repeated segmentations were significantly larger on the 
HNC test set with increases by 112.7% and 102.4%, respectively. 
 

Conclusion: Analysis results underline the importance of PET scanner reconstruction 
harmonization and imaging protocol standardization for quantification of lesion volumes. In 
addition, to enable a distributed multi-site analysis of FDG PET images, harmonization of 
analysis approaches and operator training in combination with highly automated segmentation 
methods seems to be advisable. Future work will focus on quantifying the impact of 
segmentation variation on radiomics system performance. 

This challenge is successfully completed and a manuscript is published in Medical 
Physics, February 2017, [11]. 

 
 

§ Dynamic PET FMISO Challenge (Hosted by Sadek Nehmeh/MSKCC) 
 

The goal of this project is to assess the inter-observer variability in the compartmental 
kinetic analysis (CKA) of 18F-Fluoromisonidazole (FMISO) dynamic positron emission 
tomography (PET) images. Specifically, MSKCC will share static FDG PET/CT and dynamic 
FMISO PET data from five NSCLC patients with the institutions that participate in this 
challenge. Each institution will use its own approaches to conduct kinetic analysis. The 
variability in target volume definition, input function, output function, and kinetic rate 
constants computed by the participating institutions will be compared. 

 
Methods: The inter-operator variability in CKA due to; (1) differences in 

mathematical modeling; and, (2) difference in full CKA process was assessed. In (1), twenty-
three tumor Time-Activity-Curves (TACs) with the corresponding input functions were 
deduced from dynamic FMISO PET studies in patients diagnosed with non-small cell lung 
cancer (NSCLC), and shared with five experts in CKA from four institutions members of QIN 
(MSKCC, Johns Hopkins, Pittsburgh, Princess Margaret). Each of the operators carried out, 
independently, CKA for each of the datasets. In (2), CKA of FMISO dynamic PET images 
from four NSCLC patients was carried out by each of four of the operators. Target volumes, 
input functions, output functions, and the deduced KRCs deduced by the four operators were 
compared. In all cases, an irreversible one-plasma two-tissue compartment model was used. 
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Results: For study-I, strong Interclass correlation (ICC>0.9) was measured for all 

KRCs. Similarly, strong Pearson correlation (R>0.75, P<0.001) was observed among the 
operators for all KRCs (Vb, K1, K1/k2, and k3). No systematic or proportional biases could be 
identified for any of the four KRCs. The average changes in K1 and k3 were 0.0114 and 
0.00021 respectively, and the corresponding 95% Limits of Agreement (LoA) were (-0.163 
to 0.118) and (-0.00575 to 0.00617) respectively.  

For study-II, a weak ICC = 0.36 for the segmented tumor volumes was observed; the 
coefficients of variability in the segmented tumor volumes among the four operators were 
30.2%, 92.8%, 52.2%, and 103.3% respectively. The ICC’s for the KRCs were: ICC-VB= 
0.53; ICC-K1= 0.91; ICC-K1/k2=0.25; ICC-k3= 0.32. However, Passing-Bablok analysis 
showed those results to be interchangeable, but for k3, among the four operators with no 
systematic or proportional biases. The average changes in K1 and k3 were ~0.016 and 
~0.00075 respectively, and the corresponding 95% LoA were (-0.582 to 0.357) and (-0.00485 
to 0.00634) respectively. 
  

Conclusions: KRCs were mostly reproducible when CKA was carried out by multiple 
operators. A major source of error is the target volume definition which yields modifying the 
corresponding Time Activity Curve. 

This challenge is successfully completed and a manuscript will be submitted to 
Journal of Nuclear Medicine by middle of 2017. 

 
 
Plans for the Next Year 

 
Expected contributions to the literature, to shared data, and to shared tools include: 

• Dynamic PET w/FMISO paper (submitted by 2nd Q 2017). 
• Lung Nodule Interval Segmentation Challenge (submitted by 2nd Q 2017). 

 
Expected new projects include: 

• Extend the interval change challenge – extract features, test their efficiency for 
prediction of two classes (normal, abnormal), study the stability of the features across 
different institutions. 

• PET Image feature challenge – study the stability of the PET features across different 
institutions. 

• Community-based terminology standards – definition of feature dictionaries, 
ontologies, lexicons. 
 
 

 
Activities Across Working Groups 
 We worked closely with Daniel Rubin (and the BIDS group) on the feature 
nomenclature project. For the Feature Comparison Challenge, we have developed a two level 
description of features (a feature class and a feature subclass).  This project will give us an 
opportunity to determine how robust these descriptions are and to assess how this can be 
improved. This project is important as image-based features described in the literature are 
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often described imprecisely and this makes repeating published results difficult, so that 
successes can be hard to replicate. With a more consistent naming and description approach, 
some of these issues will be addressed.  
 
 Other expected contributions to the QIN will be derived from the studies being 
performed, which are expected to provide robust guidance with respect to approaches to 
minimize bias and variance in image segmentation and feature calculations.   
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Figure 1. Graphical model of connected components at a CC of 0.75. 
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Figure 2. Illustration of the Interval challenge with an example patient scan at two 
time points. 
 
 

 

 
 
Figure 3. Chart of the correlation between volume estimates in Columbia’s 
automatic and manual nodule segmentations. CC indicates lung cancer, while NC 
indicates no cancer. 
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Figure 4. ROC Curves for all manual and automatic segmentation methods. 
 
 
 
 

 
Figure 5. A histogram of DICE coefficients aggregated from all combinations of 
segmentations from all nodules. 
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Figure 6. QIN PET-CT Phantom Challenge 
 
 
 
 

 
Figure 7 – QIN PET-CT Head and Neck Lesion Challenge 
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