Investigator’s Brochure

for

$^{[18F]}$ fluoromisonidazole, $1H-1-(3-^{[18F]}-fluoro-2-hydroxy-propyl)-2$-nitro-imidazole, $^{[18F]}$FMISO

An Investigational Positron Emission Tomography (PET) radiopharmaceutical for injection and intended for use as an in vivo diagnostic for imaging hypoxia in tumors.

IND # put your IND# here

Put your Name and Address here

IB Edition Number: 6
IB Edition Date/Release Date: January 10, 2019
I. TABLE OF CONTENTS

II. [18F]FMISO PRODUCT AGENT DESCRIPTION
 1. AGENT DESCRIPTION ... 3
 2. CHEMICAL STRUCTURE .. 3
 3. FINAL PRODUCT SPECIFICATIONS ... 4

III. INTRODUCTION .. 5

IV. PHARMACOLOGY
 1. PHYSICAL CHARACTERISTICS .. 6
 2. MECHANISM OF ACTION ... 6

V. TOXICOLGY AND SAFETY
 1. MECHANISM OF ACTION FOR TOXICITY 7
 2. FMISO CELL TOXICITY STUDIES .. 11
 3. ANIMAL TOXICITY STUDIES: MISO AND FMISO 12
 4. HUMAN TOXICITY STUDIES: MISO .. 13
 5. [19F]FMISO HUMAN TOXICITY .. 14
 6. [18F]FMISO HUMAN TOXICITY .. 15
 7. MISO HUMAN SAFETY STUDIES ... 15
 8. [19F]FMISO HUMAN SAFETY STUDIES 16
 9. [18F]FMISO HUMAN SAFETY STUDIES 16
 10. FMISO GENOTOXICITY AND MUTAGENICITY 17
 11. ADVERSE EVENTS AND MONITORING FOR TOXICITY 17
 12. SAFETY AND TOXICITY OF THE OTHER COMPONENTS OF THE FINAL [18F]FMISO DRUG PRODUCT 18

VI. BIODISTRIBUTION AND RADIATION DOSIMETRY OF FMISO 19

VII. [18F]FMISO PREVIOUS HUMAN EXPERIENCE AND ASSESSMENT OF CLINICAL POTENTIAL 24

VIII. REFERENCES .. 37

TABLE OF TABLES
Table 1. Final Product Components per single injected dose .. 4
Table 2. Final Product Impurities per single injected dose ... 4
Table 3. Final Product Specifications ... 5
Table 4. Biodistribution of [3H]fluoromisonidazole in C3H mice ... 10
Table 5. Inhibition of [3H]FMISO Binding by Oxygen in vitro ... 12
Table 6. Clinical toxicity of misonidazole .. 14
Table 7. Radiation Absorbed Dose to Organs ... 23
Table 8. Published manuscripts reporting 18F-FMISO human imaging studies 28

TABLE OF FIGURES
Figure 1. The chemical structure of [18F]-fluoromisonidazole .. 3
Figure 2. Metabolism of 2-nitroimidazoles .. 8
Figure 3. FMISO blood and tissue clearance curves in a dog with osteosarcoma 11
Figure 4. Activity of FMISO in 4 source organs .. 20
Figure 5. Activity of FMISO in four other source organs ... 21
Figure 6. Bladder activity ... 22
Figure 7. Right-frontal glioma post surgery .. 36
II. [18F]FMISO PRODUCT AGENT DESCRIPTION

1. AGENT DESCRIPTION

Fluorine-18 labeled misonidazole, 1H-1-(3-[18F]-fluoro-2-hydroxy-propyl)-2-nitro-imidazole, or [18F]FMISO, is a radiolabeled imaging agent that has been used for investigating tumor hypoxia with positron emission tomography (PET). The University of Washington pioneered the development and biodistribution evaluation of [18F]FMISO. An ideal hypoxia-imaging agent should distribute independently of blood flow, which is best achieved when the partition coefficient of the tracer is close to unity. Under these circumstances, imaging can be done at a time when the intracellular tracer distribution has equilibrated with the tracer in plasma near the cells. [18F]FMISO is an azomycin-based hypoxic cell sensitizer that has a nearly ideal partition coefficient and, when reduced by hypoxia, binds covalently to cellular molecules at rates that are inversely proportional to intracellular oxygen concentration, rather than by any downstream biochemical interactions.\(^1\)

2. CHEMICAL STRUCTURE

[18F]FMISO has not been marketed in the United States and, to the best of our knowledge, there has been no marketing experience with this drug in other countries. The radiopharmaceutical product, [18F]FMISO is the only active ingredient and it is dissolved in a solution of \(\leq 10\) mL of 95% isotonic saline 5% ethanol (v:v). The drug solution is stored in at room temperature in a gray butyl septum sealed, sterile, pyrogen-free glass vial with an expiration time of 12 hours. The injectable dose of [18F]FMISO for most studies will be \(\leq 10\) mCi of radioactive \(^{18}\)F at a specific activity of greater than 125 Ci/mmol at the time of injection. In the dose of [18F]FMISO only a small fraction of the FMISO molecules are radioactive. The amount of injected drug is \(\leq 15\) µg (\(\leq 80\) nmol per dose) of FMISO. [18F]FMISO is administered to subjects by intravenous injection of \(\leq 10\) mL.

There is no evidence that nonradioactive and radioactive FMISO molecules display different biochemical behavior.

![Chemical Structure of [18F]-fluoromisonidazole](image)

Figure 1. The chemical structure of [18F]-fluoromisonidazole
1H-1-(3-[18F]-fluoro-2-hydroxy-propyl)-2-nitro-imidazole
3. FINAL PRODUCT SPECIFICATIONS

The product components are listed in Table 1, the impurities in Table 2, and the final product specifications in Table 3.

Table 1. Final Product Components per single injected dose

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>Characterization</th>
<th>Amount in Injectate</th>
</tr>
</thead>
<tbody>
<tr>
<td>([^{18}F])FMISO, 1H-1-(3-([^{18}F])-fluoro-2-hydroxy-propyl)-2-nitro-imidazole</td>
<td>Same as for ([^{19}F])FMISO</td>
<td>(\leq 10) mCi</td>
</tr>
<tr>
<td>([^{19}F])FMISO, 1H-1-(3-([^{19}F])-fluoro-2-hydroxy-propyl)-2-nitro-imidazole</td>
<td>NCS#292930</td>
<td>(\leq 15) µg</td>
</tr>
<tr>
<td>Ethanol, absolute</td>
<td>USP</td>
<td>5% by volume</td>
</tr>
<tr>
<td>Saline for injection</td>
<td>USP</td>
<td>0.15 M</td>
</tr>
</tbody>
</table>

Table 2. Final Product Impurities per single injected dose

<table>
<thead>
<tr>
<th>IMPURITIES</th>
<th>Acceptance Criteria</th>
<th>Highest Values in 9 Qualification Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryptofix® [2.2.2]</td>
<td>(< 50) µg/mL</td>
<td>None detected</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>(\leq 410) ppm</td>
<td>(< 50) ppm</td>
</tr>
<tr>
<td>Acetone</td>
<td>(\leq 5000) ppm</td>
<td>(< 313) ppm</td>
</tr>
<tr>
<td>Other UV absorbing impurities</td>
<td>(\leq 35) µg</td>
<td>4.9 µg (1 hr post synthesis)</td>
</tr>
</tbody>
</table>
Table 3. Final Product Specifications

<table>
<thead>
<tr>
<th>TEST</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Purity (particulates)</td>
<td>Clear and Colorless</td>
</tr>
<tr>
<td>pH</td>
<td>4.5-8</td>
</tr>
<tr>
<td>Residual Kryptofix® [2.2.2]</td>
<td>< 50 µg/ mL Kryptofix®</td>
</tr>
<tr>
<td>Radiochemical Purity (HPLC)</td>
<td>≥ 95%</td>
</tr>
<tr>
<td>Chemical Purity (HPLC)</td>
<td>FMISO ≤ 15 µg/dose Other compounds ≤35µg/dose</td>
</tr>
<tr>
<td>Radiochemical Purity (TLC)</td>
<td>Rf >0.5 Purity ≥ 95%</td>
</tr>
<tr>
<td>Residual Solvent Levels</td>
<td>Acetone ≤ 5000 ppm Acetonitrile ≤410 ppm</td>
</tr>
<tr>
<td>Radionuclidic Purity</td>
<td>Measured half-life 100-120 minutes</td>
</tr>
<tr>
<td>Bacterial Endotoxin Levels</td>
<td>< 175 EU per dose</td>
</tr>
<tr>
<td>Sterility</td>
<td>Negative/no growth, must also pass filter integrity test</td>
</tr>
</tbody>
</table>

The drug solution is stored at room temperature in a septum sealed, sterile, pyrogen-free glass vial with an expiration time of **12 hours**

The specifications that have been updated are for pH and acetonitrile. The purity specifications have been clarified to ≥ instead of > to avoid ambiguity. These changes are not considered major and will not increase risk to the patient. Justification for these changes is to align these specifications with similar FDA approved PET radiopharmaceuticals and the ICH guidelines. Many sites are now preparing FMISO with prefilled cassettes and automated synthesis instruments that were designed in compliance with these newer published limits.

1. Acetonitrile is listed in the Guidance for Industry, QC3 – Tables and List, Revision 2, February 2012 as a class 2 solvent with a concentration limit of 410 ppm. Acetone is a class 3 solvents and limited to 5000 ppm so no specification change is needed for them.

2. FDA approved labeling for two very similar radiopharmaceuticals, F-18 FDG and NaF F18, has both drugs specified at pH 4.5-8. To be consistent with these drugs, we have changed the F-18 FMISO specification to 4.5-8.1

III. INTRODUCTION

[18F]-fluoromisonidazole ([18F]FMISO) is a radiolabeled imaging agent that has been used for investigating tumor hypoxia with positron emission tomography (PET). [18F] decays by positron emission. FMISO binds covalently to cellular molecules at rates that are inversely proportional to intracellular oxygen concentration. In hypoxic cells, FMISO is trapped, which is the basis for the use of this tracer to measure hypoxia. Because tissue oxygenation may serve as a marker of perfusion, response to radiotherapy and
Investigator’s Brochure: [18F]FMISO

chemotherapy, tumor grade, and prognosis, development of a PET imaging agent for tumor hypoxia is a potentially valuable avenue of investigation.

Positron emission tomography (PET) is a quantitative tomographic imaging technique, which produces cross-sectional images that are composites of volume elements (voxels). In PET images, the signal intensity in each voxel is dependent upon the concentration of the radionuclide within the target tissue (e.g., organ, tumor) volume. To obtain PET imaging data, the patient is placed in a circumferential detector array.

Patients undergo two separate imaging studies in a typical PET imaging procedure. One is a transmission scan via a germanium rod source or, in the case of PET-CT, by CT imaging of the body region(s) of interest. The second component of the study is the emission scan which can be a dynamic imaging acquisition over a specific area of interest, or multiple acquisitions over the whole body. The typical PET study takes 20 minutes to 2 hours to perform depending upon the nature of the acquisitions and the areas of the body that are imaged.

The [18F]FMISO radiotracer (≤ 10 mCi) is administered by intravenous injection. Imaging can commence immediately upon injection for a fully quantitative study over one area of the body. More often only a static image is acquired for a 20-minute interval beginning between 100 and 150 minutes post injection.

IV. PHARMACOLOGY

1. PHYSICAL CHARACTERISTICS

Fluoromisonidazole is a small, water-soluble molecule with a molecular weight of 189.14 Daltons. It has an octanol:water partition coefficient of 0.41, so that it would be expected to reflect plasma flow as an inert, freely-diffusible tracer immediately after injection, but later images should reflect its tissue partition coefficient in normoxic tissues.

2. MECHANISM OF ACTION

[18F]FMISO is an azomycin-based hypoxic cell sensitizer that has a nearly ideal partition coefficient and, when reduced by hypoxia, binds covalently to cellular molecules at rates that are inversely proportional to intracellular oxygen concentration, rather than by any downstream biochemical interactions\(^1\). The covalent binding of nitroimidazoles is due to bioreductive alkylation based on reduction of the molecule through a series of 1-electron steps in the absence of oxygen\(^2\). Products of the hydroxylamine, the 2-electron reduction product, bind stably in cells to macromolecules such as DNA, RNA, and proteins. In the presence of oxygen, a futile cycle results in which the first 1-electron reduction product, the nitro radical anion, is re-oxidized to the parent nitroimidazole, with simultaneous production of an oxygen radical anion. FMISO is not trapped in necrotic tissue because
mitochondrial electron transport is absent. The normal route of elimination for FMISO is renal. A small fraction of $[^{18}F]$FMISO is glucuronidated and excreted through the kidneys as the conjugate.

V. TOXICOLOGY AND SAFETY

1. MECHANISM OF ACTION FOR TOXICITY

Therapeutic Implications of Hypoxia. Tumor physiology differs from that of normal tissue in several significant ways. Circumstances within tumor tissue can result in hypoxia when growth outpaces angiogenesis or when the oxygen demands of accelerated cellular proliferation exceed local oxygen concentrations. Because hypoxia increases tumor radioresistance, it is important to identify patients whose disease poses this risk for therapeutic failure, lest hypoxic cells survive radiotherapy while retaining their potential to proliferate3,4. The selectivity of nitroimidazoles for hypoxic conditions has been demonstrated in rat myocytes5,6, the gerbil stroke model7,8, pig livers9,10, rat livers11,12 and dog myocardium13,14, as well as numerous cancer studies in cell cultures, animals and human trials15,16.

The mechanism of action of FMISO is common to all nitroimidazoles and is based on the chemical reduction that takes place in hypoxic tissue, covalently binding the chemical to macromolecules in that tissue. The specificity of the reaction is enhanced by the fact that both the reduction and the binding occur within the same cell17,18. The reduction reaction, depicted in Figure 2, is reversible at the first step, depending upon the oxygenation status of the tissue, so that some FMISO eventually returns to the circulation and is excreted19. The reduction of the nitro group on the imidazole ring is accomplished by tissue nitroreductases that appear to be plentiful and therefore do not represent a rate-limiting factor1. The 1-electron reduction product (labeled as “II” in Figure 2) may be further reduced to “III” or it may competitively transfer its extra electron to O$_2$ and thus reform “I.” This binding takes place at a rate that is inversely related to cellular oxygen concentration6.
Nitroimidazoles bind to hypoxic tissue, serving as hypoxia markers. They potentiate the cytotoxic effects of some chemotherapeutic agents such as the nitrosoureas, melphelan and cyclophosphamide20,21. Identifying hypoxic tissue has therapeutic implications for multiple disease states including stroke, myocardial ischemia, and is of particular value in cancer radiotherapy, as hypoxic cancer tissue is relatively radioresistant22. These chemical properties suggested the possibility of clinically imaging hypoxic tissue in vivo. Misonidazole, or a related compound, could be labeled with a radioisotope, and could bind to oxygen-deprived cells covalently, providing a positive image of hypoxia via PET. Fluoromisonidazole (Figure 1) has several properties that make it a potentially useful imaging agent. In contrast to the prototype molecule, misonidazole, FMISO can be labeled at the end of the alkyl side chain with 18F, a positron emitter with a 110 minute half-life23,24. Fluorine-carbon bonds are highly stable and so the radioactive 18F would be expected to remain on the molecule of interest.

MISO and fluoromisonidazole (FMISO) are 2-nitroimidazoles with nearly identical octanol:water partition coefficients, making them sufficiently lipophilic that they readily diffuse across cell membranes and into tissues25, yet maintain a volume of distribution essentially equal to total body water26. They are less than 5% protein bound, allowing efficient transport from blood into tissues17. The distribution kinetics of 2-nitroimidazoles fit a linear two-compartment open model, except that high plasma
Investigator’s Brochure: [18F]FMISO

concentrations after therapeutic level (gram) injections appear to saturate elimination processes in both mice and humans and proceed to non-linear kinetics.

Metabolism and Elimination. *In vitro*, MISO can be reduced using zinc, iron in HCl, xanthine oxidase and NADH. In HeLa and CHO (hamster ovary) cells, reduction appears only under hypoxic conditions. Comparison with MISO indicates that the reduction reaction is similar, but slightly slower for FMISO. FMISO achieves higher tumor:blood and tumor:muscle concentration ratios than MISO in murine tumors.

In vivo, under normal oxygen tension, MISO is metabolized primarily in the liver to its demethylated form but FMISO is not a substrate for this reaction. Additionally, ~7% (in humans) to ~14% (in mice) is conjugated to glucuronide, and small amounts (<5%) are converted to aminooimidazole. Substantial amounts of MISO are recoverable in feces. Fecal bacteria are able to reduce misonidazole only in the absence of oxygen. At treatment level dosing, the plasma half-lives of both FMISO and MISO range from 8 – 17.5 hours. Parent molecule and glucuronide metabolites are primarily excreted in the urine.

FMISO Mouse Studies. Biodistribution studies in mice have used different transplanted tumors and compared [3H]FMISO with the [18F]FMISO. The only normal organs with significant uptake were those associated with nitroimidazole metabolism and excretion, i.e. liver and kidney. Mice bearing a variety of tumors of different sizes received a single injection of [3H]FMISO and were sacrificed at 4 hr. The results are shown in Table 4. For small KHT tumors, the tumor to blood ratios (T:B) of 2.3-2.9 were sufficiently high to allow tumor detection with imaging. Larger KHT tumors, with a reported hypoxic fraction >30%, had higher T:B ratios. RIF1 tumors in C3H mice have a hypoxic fraction of ~1.5% and had the lowest tumor:blood ratios: 1.7-1.9. This correlation between T:B ratios and hypoxic fraction was encouraging, but did not hold true across all tumor types. C3HBA mammary adenocarcinomas of the same size as the RIF1 and small KHT tumors, had hypoxic fractions of 3-12%, but had the highest T:B ratios, 4.0-4.7. Within tumor type, increasing hypoxia was associated with increased uptake of labeled FMISO, but comparisons across tumor types were more difficult, perhaps because of heterogeneity within the tumors.
Table 4. Biodistribution of $[^3H]$fluoromisonidazole in C3H mice32

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Drug dose</th>
<th>Tumor: Blood ratios</th>
<th>Tumor volumes, mm3</th>
<th>Estimated hypoxic fraction$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHT</td>
<td>5 mmol/kg</td>
<td>2.41</td>
<td>175 ± 16</td>
<td>7-12%</td>
</tr>
<tr>
<td>KHT</td>
<td>5 mmol/kg</td>
<td>2.29</td>
<td>110 ± 25</td>
<td></td>
</tr>
<tr>
<td>KHT</td>
<td>20 mmol/kg</td>
<td>2.76</td>
<td>159 ± 39</td>
<td></td>
</tr>
<tr>
<td>KHT</td>
<td>20 mmol/kg</td>
<td>2.86</td>
<td>123 ± 37</td>
<td></td>
</tr>
<tr>
<td>KHT</td>
<td>5 mmol/kg</td>
<td>5.58</td>
<td>580 ± 26</td>
<td>>30%</td>
</tr>
<tr>
<td>KHT</td>
<td>5 mmol/kg</td>
<td>8.34</td>
<td>574 ± 66</td>
<td></td>
</tr>
<tr>
<td>RIF1</td>
<td>5 mmol/kg</td>
<td>1.69</td>
<td>158 ± 23</td>
<td>~1.5%</td>
</tr>
<tr>
<td>RIF1</td>
<td>20 mmol/kg</td>
<td>1.76</td>
<td>159 ± 15</td>
<td></td>
</tr>
<tr>
<td>RIF1</td>
<td>20 mmol/kg</td>
<td>1.86</td>
<td>136 ± 37</td>
<td></td>
</tr>
<tr>
<td>C3HBA</td>
<td>5 mmol/kg</td>
<td>4.66</td>
<td>101 ± 13</td>
<td>3-12%</td>
</tr>
<tr>
<td>C3HBA</td>
<td>5 mmol/kg</td>
<td>3.96</td>
<td>137 ± 37</td>
<td></td>
</tr>
</tbody>
</table>

* Tumor volumes are mean ± standard deviation for 5 tumors/group. Animals sacrificed at 4 hr.
+ Hypoxic fractions are taken from Moulder 1984 Vol10 P695-71233 for tumors of comparable size.

In individual KHT tumors or RIF1 tumors, there was no correlation between regional flow and regional FMISO retention at 4 hr after tracer injection. The r^2-values for KHT and RIF1 tumors were 0.0 and 0.05, respectively. Regional blood flow did not correlate with FMISO retention in normal tissues that retained high levels of FMISO, specifically in liver (a principal site of nitroimidazole metabolism) and kidney (the main route of excretion) nor in tissues such as muscle and brain.

The mouse biodistribution studies described above provided useful information about relative tumor FMISO distribution at a single time post-injection and demonstrated T:B ratios adequate for PET imaging. Tumor bearing rats have also been imaged dynamically to provide biodistribution data for all tissues after sacrifice. The well-characterized 36B10 transplantable rat glioma was grown subcutaneously in Fischer rats34 to obtain time-activity data for tumors and blood up to 2 hr after FMISO injection. These studies showed that tumors steadily accumulated $[^3H]$FMISO activity that exceeded levels in blood after ~20 min.

Dogs with spontaneous osteosarcomas, a tumor that is frequently radio-resistant, have also been imaged after injection of $[^18F]$FMISO. These images allowed the investigator to draw regions of interest around tumor and normal tissue in each imaging plane. Timed blood samples were also drawn and plasma was counted in a gamma well so that, after decay correction, imaging and blood data could be converted to units of μCi/g. Blood time-activity curves for dogs were similar when presented in comparable units32. Time-
activity curves for blood, muscle and for a region from a forelimb osteosarcoma in one dog are shown in Figure 3.

![Graph](image1.png)

Figure 3. FMISO blood and tissue clearance curves in a dog with osteosarcoma

Muscle equilibrated with blood after 60 min, while the selected tumor region continued to accumulate FMISO above blood levels. The mean plasma half-time, calculated from five dogs, was 284±20 min for the slow component. The dog studies showed marked regional variation in FMISO uptake. These imaging studies with dogs confirmed the feasibility of imaging and suggested that multi-plane images in individual tumors would be necessary to assess regional variation in tumor hypoxia.

2. **FMISO CELL TOXICITY STUDIES**

Early studies evaluating the biological behavior of FMISO used several model systems with varying levels of complexity. The studies performed in vitro employed cells in monolayer cultures and multi-cellular spheroids. Multicellular spheroids are aggregates of cells that grow in culture and mimic small nodular tumors. Cell uptake and distribution studies in spheroids were done using [3H]FMISO.

The in vitro studies of tumor cells and rodent fibroblasts measured the O2-dependency of FMISO uptake and the time course of uptake at O2 levels approaching anoxia. Uptake of FMISO by cells growing in monolayer cultures depended strongly on oxygen concentration, with maximum uptake under anoxic conditions and a decrease to 50% of maximum binding at levels between 700 to 2300 ppm in several different cell lines (Table 4a). The O2-dependency of binding was a mirror image of the curve for sensitization to radiation by O2, an advantageous characteristic for a hypoxia tracer intended to assess radiobiologically significant levels of hypoxia.
Table 5. Inhibition of $[^3$H]FMISO Binding by Oxygen in vitro36

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>O$_2$ concentration to inhibit binding by 50% (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF1</td>
<td>720</td>
</tr>
<tr>
<td>V79</td>
<td>1400</td>
</tr>
<tr>
<td>EMT6</td>
<td>1500</td>
</tr>
<tr>
<td>CaOs1</td>
<td>2300</td>
</tr>
</tbody>
</table>

Uptake of FMISO by multi-cellular spheroids provided visual and quantitative measures of hypoxia. Autoradiographs of 0.8 mm V79 spheroids after 4 hr incubation with $[^3$H]FMISO revealed heavily labeled cells in an intermediate zone between the well oxygenated periphery and the necrotic center. Uptake in anoxic spheroids matched that in anoxic monolayer cultures; oxygenated spheroids did not accumulate tracer, and hypoxic spheroids had intermediate uptake.

Whitmore et al. performed preliminary toxicity studies on MISO using Chinese hamster ovary cells37. Uncharacterized toxic products suspected of being either nitroso or hydroxylamine derivatives formed only under hypoxic conditions and were capable of sensitizing both hypoxic and aerobic cells to the damaging effects of radiation. These products have been further characterized by Flockhart and are differently distributed depending upon the species. In humans the demethylated molecule never exceeds 10% of the total MISO, and the amine never exceeds 2% in extracellular fluid31. The demethylation reaction is not possible with FMISO, which lacks a methoxy substituent.

3. ANIMAL TOXICITY STUDIES: MISO and FMISO

The literature provides a few animal studies of the toxicity of nitroimidazoles. The octanol/water partition coefficients for MISO and FMISO are 0.43 and 0.41, respectively; the LD50’s in adult male Balb/C mice for MISO and FMISO are 1.8 mg/g (1.3-2.6) and 0.9 mg/g, respectively38. The serum half-lives of orally administered MISO and FMISO in mice were 2.3 hrs (range 1.87-2.92) and 2.0 hrs (range 1.79-2.24), respectively. A subsequent study of LD50’s in 21 to 32 g, nine-month old, female C3H/HeJ mice gave toxicities of 0.62 to 0.64 mg/g for FMISO39. The long component of the plasma half-life of FMISO in humans is similar to MISO (8-17 hrs). FMISO is cleared primarily through the kidneys. Its volume of distribution is large, approximating that of total body water. Favorable tumor-to-normal tissue ratios for imaging are obtained at low doses of administered drug. These ratios were obtained in 15 kg dogs with a dose of 1 mg/kg.

After oral dosing that exceeds a schedule-dependent cumulative threshold, misonidazole induces a peripheral neuropathy in humans, although such dosing far exceeds the PET imaging dose requirements. Because FMISO will be administered intravenously, the neurotoxicity of intravenous administration was evaluated in rats using a battery of routine clinical, neurofunctional, biochemical, and histopathologic screening methods40. Male Sprague-Dawley rats were administered intravenous doses
Investigator’s Brochure: [18F]FMISO

of misonidazole at 0 (vehicle control), 100, 200, 300, or 400 mg/kg daily for 5 days per week for 2 weeks. Animals were evaluated for functional and pathological changes following termination of treatment and at the end of 4 weeks. During the dosing phase, hypoactivity, salivation, rhinorrhea, chromodacryorrhea, rough pelage and ataxia were observed at 400 mg/kg and body weight gain of the 300 and 400 mg/kg groups was significantly decreased relative to the vehicle controls (24% and 49% respectively) and related to reductions in food consumption of 8% and 23%. Although most 400 mg/kg animals appeared normal immediately after the dosing regimen, rotorod testing precipitated a number of clinical signs including: ataxia, impaired righting reflex, excessive rearing, tremors, vocalization, circling, head jerking, excessive sniffing and hyperactivity. All animals recovered and appeared normal through study termination. There were no treatment-related effects on motor activity, acoustic startle response, rotorod performance, forelimb group strength, toe and tail pinch reflexes, tibial nerve beta-glucuronidase activity or tail nerve conduction velocity. No microscopic changes were detected in peripheral nerves. Necrosis and gliosis were seen in the cerebellum and medulla of the 400 mg/kg animals after treatment and gliosis in these same brain regions was observed in the 300 and 400 mg/kg groups at a month after dosing. These results show that intravenous administration of misonidazole to rats causes dose-limiting central nervous system toxicity without effects on peripheral nervous tissue.

4. HUMAN TOXICITY STUDIES: MISO

Human studies of nitroimidazoles date back to the 1970’s when several nitroimidazole derivatives were tested as oxygen mimetics in clinical research trials involving tumors that were presumed to be hypoxic. The goal was to sensitize them to cytotoxic levels of photon radiation so that they retained the beneficial 3-fold enhancement ratio characteristic of normoxic tissues. Our knowledge of the toxic effects of 2-nitroimidazoles in humans is based principally on misonidazole, a close analog of fluoromisonidazole (Figure 1), and studies that used doses that were considered effective to enhance the cytotoxicity of radiotherapy. These human studies, no longer in progress, have been reviewed. There have been no reported harmful effects until cumulative doses exceeded a few grams, which is approximately 5 to 6 orders of magnitude greater than the dosing required for PET imaging.

Gray reported preliminary human pharmacokinetic measurements using six healthy volunteers. Subjects received single oral doses ranging from 1 g to 4 g. The peak serum level at 2 hours was 65 µg/mL and the drug serum half-life was 13.1 ± 4.0 hrs. A linear relationship was demonstrated between administered dose and serum level. Based on animal studies, a serum level of 100 µg/mL was considered necessary for effective radiosensitization and the oral dose calculated to achieve that serum level was 6.5 g. Single oral doses of 4-10 g were administered to 8 patients with advanced cancer and a life expectancy limited to 12 months. All patients experienced some degree of nausea, vomiting and anorexia for 24 hours. One of the eight had insomnia. At 10 g the nausea and vomiting were extreme, and the anorexia lasted for a week. Peak serum levels were
obtained between 1 and 3 hrs. The serum half-life ranged from 9-17 hrs with the median at 14 hrs.

Clinical studies employing multiple dosing of MISO have also been reported and peripheral neuropathy (PN) was the manifestation of toxicity that became dose limiting with daily doses of 3-5 g/m2. The results of a sequential dose reduction study are shown in Table 6:

Table 6. Clinical toxicity of misonidazole

<table>
<thead>
<tr>
<th>Dose (g/m²)</th>
<th>Doses/wk.</th>
<th>Weeks</th>
<th>Affected Patients</th>
<th>Total Patients</th>
<th>% Pts. with peripheral neuropathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>16</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>0.4-0.8</td>
<td>3-5</td>
<td>3-6</td>
<td>1</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

This data demonstrates the dose proportionality of the drug’s primary toxicity during chronic administration at doses that far exceed those used in PET imaging. Limiting the total dose and giving no more than two doses in one week minimized toxicity.

Significantly lower peripheral neuropathic (PN) toxicity for therapeutic doses has been observed with weekly dosing schedules: 1 of 12 with PN at 1-2g/m² for 6 weeks and 0 of 10 at 3g/m² for 4 weeks. This is presumably due to the fact that the drug, which has a long serum half-life, is allowed to clear completely from the body. Dische had a similar experience, noting that calculations by surface area produce the most consistent correlation of oral dose to plasma level and that the maximum recommended safe dose was 12 g/m² over no less than 18 days. Neuropathies were generally, but not always, reversible when the drug was discontinued.

There have been two fatalities attributed to the drug. Both patients had advanced malignant disease and died in convulsions: One patient received 51g in 6 fractions over 17 days, and the other patient received 16g in 2 doses over 3 days.

The above data supports the conclusion that FMISO’s primary toxicity is likely to be peripheral neuropathy, which is dependent upon frequency and dose level. There is no evidence to suggest that FMISO poses a risk for PN when administered as an imaging agent for PET as described herein. The risk for PN in fact appears to be minimized or absent even at therapeutic doses that far exceed those necessary for PET imaging.

5. [18F]FMISO HUMAN TOXICITY

A search for recent articles dealing with the human toxicity of fluoromisonidazole (FMISO) yields no results. Therefore, this assessment relies on animal studies and similarities among related chemical entities. The octanol/water partition coefficients for
MISO and FMISO are 0.43 and 0.41, respectively; the LD50’s in adult male Balb/C mice for MISO and FMISO are 1.8 mg/g (1.3-2.6) and 0.9 mg/g, respectively\(^{38}\) and in CH3 mice the LD50 is 0.6 mg/g for FMISO\(^{39}\). Using the relative toxicity factors from Paget (1962)\(^{51}\) of 1.0 for mice and 9.8 for humans, the projected LD50 values are:

<table>
<thead>
<tr>
<th>LD50 values</th>
<th>Misonidazole</th>
<th>Fluoromisonidazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration for human</td>
<td>0.184 g/kg</td>
<td>0.06-0.09 g/kg</td>
</tr>
<tr>
<td>Dose for 70 kg subject</td>
<td>12.86 g</td>
<td>6.43 g</td>
</tr>
</tbody>
</table>

The MISO values by this calculation are conservative when compared with the findings in early human trials (see Section 7, MISO Human Safety Studies). The serum half-lives of orally administered MISO and FMISO in mice were 2.3 hrs (range 1.87-2.92) and 2.0 hrs (range 1.79-2.24), respectively. The long component of the plasma half-life of FMISO in humans is similar to MISO (8-17 hrs). FMISO is cleared primarily through the kidneys.

The maximum dose to humans reported in imaging protocols was 1 mg/kg or 70 mg for a 70 kg subject; no adverse events have been reported. These studies are reported in Part VII. This is about 0.1% of the projected LD50. Total patient imaging doses of the current radiopharmaceutical formulation contain \(\leq 15\) µg of fluoromisonidazole and less than 35 µg of other nitroimidazole derivatives. This is <0.001% of the projected LD50. The drug has had no toxic effects at these doses based upon a review of 5400 patients included in MISO studies\(^{44}\) and over 269 patients studied with tracer doses of \(^{18}\)F-FMISO, as summarized in this document (Section 9).

6. \(^{18}\)F-FMISO HUMAN TOXICITY

Since the half-life of fluorine-18 is only 110 minutes, toxicity studies are not possible with the radiolabeled agent. The misonidazole data presented and the \(^{19}\)F-FMISO calculations presented above in sections 4 and 5 should be the basis for both animal and human toxicity characterization and conclusions. The radiation dose associated with \(^{18}\)F-FMISO is discussed separated in Part VI.

7. MISO HUMAN SAFETY STUDIES

Misonidazole for Therapy. In addition to their role as imaging agents, nitroimidazoles have been studied as therapeutic radiosensitizers (oxygen mimetics). These studies of over 7000 patients in 50 randomized trials have been reviewed\(^{44}\). Oral MISO was the agent in 40 of the trials involving about 5400 patients. The maximum doses used were 4 g/m² in a single dose and 12 g/m² as a total dose. The most common serious/dose limiting side effect was peripheral neuropathy with a latency period of several weeks. The neuropathy was prolonged and, in some cases, irreversible. Nausea, vomiting, skin
rashes, ototoxicity, flushing and malaise have also been reported at therapeutic dosing levels that vastly exceed imaging dose requirements. While these molecules are no longer used as clinical radiosensitizers, the results show the range of human experience with nitroimidazoles, and, in particular, support a reliable trend towards safety at imaging range dosing.

A 1978 study of oral misonidazole (MISO) as a radiosensitizing agent in human astrocytoma found good absorption, peak plasma levels between 1 and 4 hours and a half-life between 4.3 and 12.5 hours. Doses limited to 12 g/m² produced some nausea and vomiting but no serious side effects. In an earlier study, Gray found a wide variation in tumor/plasma distribution ratios in six cases of advanced human metastatic breast cancers and soft tissue sarcomas. The maximum dose in this study was 10 g, which caused a week of anorexia. Patients receiving up to 140 mg/kg tolerated the drug well.

8. [19F]FMISO HUMAN SAFETY STUDIES

We are unaware of, nor did a literature search show, any human studies of [19F]FMISO safety in humans beyond the carrier [19F]-FMISO associated with the [18F]FMISO human studies described below.

9. [18F]FMISO HUMAN SAFETY STUDIES

[18F]FMISO is a radiolabeled imaging agent that has been used for investigating tumor hypoxia with PET. It is composed of ≤ 15 µg of fluoromisonidazole labeled with ≤ 10 mCi of radioactive 18F at a specific activity >1 Ci/mg at the time of injection. The drug is the only active ingredient and it is formulated in ≤ 10 mL of 5% ethanol in saline for intravenous injection. The radiochemical purity of the [18F]FMISO is >95%. Hypoxia imaging in cancer was reviewed in several recent publications. [18F]FMISO is a robust radiopharmaceutical useful in obtaining images to quantify hypoxia using PET imaging. It is the most commonly used agent for PET imaging of tissue/tumor hypoxia.

Positron emission scanning with 18F-FMISO has been studied over the past ten years in Australia, Switzerland, Denmark, Germany, China, and the United States under RDRC approval or its equivalent. Several published studies from the United States are from the University of Washington in Seattle and were conducted under an IND. Since 1994 up to 4 injections of FMISO, each followed by a PET scan, have been performed in Seattle alone on approximately 300 patients; data have been published on over 133 of these. [18F]FMISO has been used to image ischemic stroke, myocardial ischemia and a wide variety of malignancies. Although, if totaled, the papers in Table 8 would list approximately 700 patients, we have taken a more conservative approach to reduce possible duplication from multiple papers using the same patient data. Nonetheless as many as four [18F]-FMISO injections and PET scans have been performed in over 600
10. FMISO GENOTOXICITY AND MUTAGENICITY

Multiple studies have found genetic transformations due to misonidazole and related nitroimidazoles using in vitro assays. The murine C3H/10T½ cell line (mouse embryo fibroblast) has a normal spontaneous transformation frequency of <10⁻⁵ but these cells undergo oncogenic transformation in vitro when exposed to chemical and physical agents. The frequency of transformants with 3 days exposure to 1 mM drug was 2.27±0.38 x 10⁻⁴ for FMISO and 4.55±0.95 x 10⁻⁴ for misonidazole. Although these values are about three to five times the background rate, this level of drug exposure would require about 10 grams of drug in a human. Imaging studies will inject ≤15 µg, or about 0.00015%.

FMISO and MISO were mutagenic when assayed by the AMES protocol using specific Salmonella typhimurium strains. MISO showed an increasing growth of revertants from 0 at 1 µg drug per plate to ~1500 at 100 µg per plate and ~6,000 at 1,000 µg per plate containing 0.1 mL of tester strain bacteria; FMISO showed fewer revertants, ~1000 at 100 µg drug per plate and only ~600 revertants at 10 µg per plate. In other cell lines, the frequency of unscheduled DNA synthesis was used as an index of genotoxicity. In this assay, [³H]-thymidine incorporation in units of dpm/µg of DNA is used to quantify DNA synthesis. For a 1 mM dose of FMISO, the rate was 54±6 for hepatocytes, 187±14 for BL8 (nontransformed) cells and 217±11 for JB1 (transformed) cells, with very similar values for MISO. For comparison, the control rate of DNA synthesis was 54±4, 179±15 and 158±14, respectively for the three cell lines. This work concluded that in hypoxic cells nitroimidazoles react much more with thiols than with DNA. While each of these three tests detected low level alterations to DNA, exposure was both several orders of magnitude greater than, and of longer duration than that required in PET imaging with [¹⁸F]FMISO. Drug exposure for imaging studies is below the levels where any genotoxicity was observed.

11. ADVERSE EVENTS AND MONITORING FOR TOXICITY

No adverse events have been attributed to PET imaging/diagnostic administration of [¹⁸F] FMISO at the levels described herein in well over 1,000 injections, based upon up to 4 injections administered to each of over 600 patients. Thus no adverse effects are expected as a result of the IV administration of [¹⁸F]FMISO for typical PET imaging applications such as tumor hypoxia. The proposed [¹⁸F]FMISO imaging dose is less than 0.001% of the recommended safe intravenous dose.
For purposes of informed consent regarding reasonably foreseeable risks to subjects in trials utilizing \([18F]\)FMISO, the following potential adverse effects are considered extremely rare:

- **Risks related to allergic reaction that may be life threatening**
- **Injection related risks that may include infection, or extravasation of the dose that may lead to discomfort, localized pain, temporary loss of local function, and self limited tissue damage.**

These risks are minimized by the requirement that appropriately trained and licensed/certified personnel prepare, deliver and administer the agent. The subject should be monitored per institutional standards for PET imaging studies. Emergency equipment, procedures, and personnel should be in place per institutional standards for imaging performed with intravenous contrast.

Radiation from \(^{18}\text{F}\) carries an associated risk to the patient. The organ and total body doses associated with FMISO PET imaging are comparable to or lower than those associated with other widely used clinical nuclear medicine procedures and are well below the maximum individual dose suggested for investigational radiopharmaceuticals by the FDA.

12. **SAFETY AND TOXICITY OF THE OTHER COMPONENTS OF THE FINAL \([18F]\)FMISO DRUG PRODUCT**

The \([18F]\)FMISO is purified by HPLC using an eluent of 5% ethanol, USP. The injected dose is in up to 10 mL of 5% ethanol, or a maximum of 0.5 mL of ethanol. This is less than 5% of the amount of ethanol in one beer. In the Registry of Toxic Effects of Chemical Substances (RTECS) the \(LD_{50}\) for ethanol is given as 1.4 g/kg orally for producing sleep, headache, nausea and vomiting. Based upon widespread and routine use of ethanol in injectates, in concentrations and quantities similar to that specified herein, there is no reason to suspect that residual ethanol from \([18F]\)FMISO purification would pose any danger of toxicity when used in imaging studies.

The other components of the final product solution are USP grade sterile water for injection and sterile saline. These are all nontoxic for USP grade injectables at the concentrations used. The final product is at pH 7 and the final injection volume is \(\leq 10\) mL.

The potential contaminants in the final \([18F]\)FMISO drug product are: acetone, acetonitrile, Kryptofix® [2.2.2], other reaction products and if they are not required for the system in use, they are not measured. Residual solvents in the final product are limited to 5,000 ppm (µg/mL) of acetone and 410 ppm of acetonitrile. Acetone is used to clean the TRACERLab FXf-N and other related systems but not all new cassette based
systems do. Acetonitrile is used to dissolve the Kryptofix® [2.2.2] and is the solvent for the reaction. The permissible level of acetonitrile in the final product is <400 ppm, the USP permissible level of acetonitrile in 2-[18F]FDG. The allowable level for acetone is <5,000 ppm. Acetone is a Class three solvent. This class of solvents includes no solvent known as a human health hazard at levels normally accepted in pharmaceuticals. Therefore, this limit is based upon the FDA’s Guidance for Industry ICH Q3C-Tables and List (November 2003 Revision 1), page 7, where it considers 5,000 ppm in 10 mL, 50 mg or less per day, of Class 3 residual solvents as an acceptable limit without additional justification.

The toxicity for Kryptofix® [2.2.2] has not been reported (RTECS Number Kryptofix® [2.2.2] MP4750000) although this reagent has been investigated as a therapeutic in mice for chelation therapy after strontium exposure. The FDA has proposed a maximum permissible level of 50µg/mL of Kryptofix® [2.2.2] in 2-[18F]FDG, therefore this maximum permissible level will also apply to the [18F]FMISO final product.

There are trace amounts of other reaction products in the final product. The principal trace impurity is 1-(2,3-dihydroxy)propyl-2-nitroimidazole but other impurities are possible. For this reason the upper limit is set at 35 µg for the total of other materials in the final injectate that are retained more than 3 minutes on C18 HPLC (Aquasil 2X150 mm at 0.3 mL/min) and have UV absorbance at 254, 280 or 327 nm. The 35 µg is determined by assuming that the UV absorbing compounds have the same molar extinction coefficient as FMISO.

VI. BIODISTRIBUTION AND RADIATION DOSIMETRY OF FMISO

[18F] is a positron emitter with a half-life of 110 minutes. Intravenously injected [18F]-FMISO distributes throughout the total body water space, crossing cell membranes, including the blood-brain-barrier, by passive diffusion. [18F]FMISO is bound and retained within viable hypoxic cells in an inverse relationship to the O2 concentration. The uptake of [18F]FMISO in normal human tissues has been measured and used to estimate the radiation absorbed dose associated with the imaging procedure. Dosimetry studies were performed at the University of Washington and have been published in the peer-reviewed Journal of Nuclear Medicine55.

Sixty men and women were subjects in the study. Of these, 54 had cancer, three had a history of myocardial ischemia, two were paraplegic and one had rheumatoid arthritis. After injecting 3.7 MBq/kg (0.1 mCi/kg), urine and normal tissues distant from each subject’s primary pathology were imaged repeatedly to develop time-activity curves for target tissues. All tissues demonstrated a rapid uptake phase and first-order near-logarithmic clearance curves. All tissues receive a similar radiation dose, reflecting the similarity of biodistribution to that of water. Total tissue uptake data were normalized for a 1.0 MBq injection into a 70 kg man. The organ curves are shown in Figure 4 and Figure 555.
Figure 4. Activity of FMISO in 4 source organs with best fit used to determine AUC. The data are normalized to 1 MBq/70 kg bw.
Figure 5. Activity of FMISO in four other source organs with best fit used to determine AUC. The data are normalized to 1 MBq/70 kg bw.

Radiation dose to the bladder wall varied with voiding interval from 0.021-0.029 mGy/MBq. Figure 6 is a composite of the integrated ¹⁸F urine activity of 42 samples from 20 studies. The line is the best fit to the data and was used to determine AUC for individual patients. Note that the mean total excretion is about 30 kBq, or 3% of the injected dose.
Figure 6. Bladder activity from injection of 1 MBq of $^{[18F]}$FMISO/70 kg bw.

From these human data, radiation absorbed doses to organs was calculated using the MIRD schema and the results are shown in Table 755.
Table 7. Radiation Absorbed Dose to Organs

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Mean (mGy/MBq)</th>
<th>Mean (mrad/mCi)</th>
<th>Total / 7 mCi (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adrenals</td>
<td>0.0166</td>
<td>61.4</td>
<td>430</td>
</tr>
<tr>
<td>Brain</td>
<td>0.0086</td>
<td>31.8</td>
<td>223</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.0123</td>
<td>45.5</td>
<td>319</td>
</tr>
<tr>
<td>gall bladder wall</td>
<td>0.0148</td>
<td>54.8</td>
<td>383</td>
</tr>
<tr>
<td>lower large intestine</td>
<td>0.0143</td>
<td>52.9</td>
<td>370</td>
</tr>
<tr>
<td>small intestine</td>
<td>0.0132</td>
<td>48.8</td>
<td>342</td>
</tr>
<tr>
<td>stomach</td>
<td>0.0126</td>
<td>46.6</td>
<td>326</td>
</tr>
<tr>
<td>upper large intestine</td>
<td>0.0140</td>
<td>51.8</td>
<td>363</td>
</tr>
<tr>
<td>heart wall</td>
<td>0.0185</td>
<td>68.5</td>
<td>479</td>
</tr>
<tr>
<td>kidneys</td>
<td>0.0157</td>
<td>58.1</td>
<td>407</td>
</tr>
<tr>
<td>Liver</td>
<td>0.0183</td>
<td>67.7</td>
<td>474</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.0099</td>
<td>36.6</td>
<td>256</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.0142</td>
<td>52.5</td>
<td>368</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.0176</td>
<td>65.1</td>
<td>456</td>
</tr>
<tr>
<td>pancreas</td>
<td>0.0179</td>
<td>66.2</td>
<td>464</td>
</tr>
<tr>
<td>red marrow</td>
<td>0.0109</td>
<td>40.3</td>
<td>282</td>
</tr>
<tr>
<td>bone surface</td>
<td>0.0077</td>
<td>28.5</td>
<td>199</td>
</tr>
<tr>
<td>Skin</td>
<td>0.0048</td>
<td>17.8</td>
<td>124</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.0163</td>
<td>60.3</td>
<td>422</td>
</tr>
<tr>
<td>Testes</td>
<td>0.0146</td>
<td>54.0</td>
<td>378</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.0155</td>
<td>57.4</td>
<td>401</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.0151</td>
<td>55.9</td>
<td>391</td>
</tr>
<tr>
<td>urinary bladder wall</td>
<td>0.0210</td>
<td>77.7</td>
<td>544</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.0183</td>
<td>67.7</td>
<td>474</td>
</tr>
<tr>
<td>eye lens</td>
<td>0.0154</td>
<td>57.0</td>
<td>399</td>
</tr>
<tr>
<td>Total body</td>
<td>0.0126</td>
<td>46.6</td>
<td>325</td>
</tr>
</tbody>
</table>

Calculated total body dose for a 70 kg man injected with 3.7 MBq/kg was 0.013 mGy/MBq; for a 57 Kg woman it was 0.016 mGy/MBq. Effective dose equivalents were 0.013 mSv/MBq for men and 0.014 mSv/MBq for women. Ninety-seven percent of the injected radiation was homogenously distributed in the body, leaving only 3% for urinary excretion. Doses to smaller organs not directly determined by visualization, such as the lens, were calculated assuming average total-body concentrations. The absence of tracer visualized in images of those organs indicated that accumulation there was not increased.

The radiation exposure from [18F]FMISO is equal to or lower than that of other widely used nuclear medicine studies. Increasing the frequency of voiding can reduce radiation dose to the normal organ receiving the highest radiation absorbed dose, the bladder.
Potential radiation risks associated with a typical PET study utilizing this agent are within generally accepted limits.

Additional radiation exposure will occur with any PET study, but is site and procedure specific. Attenuation correction is required, from either a germanium rod transmission or a low dose CT scan. The radiation dose is larger with CT attenuation correction and larger for body compared to head, but will depend on the exact equipment and scanning protocol used. Each trial site will need to address this with their local information.

VII. \[^{18}\text{F}]\text{FMISO PREVIOUS HUMAN EXPERIENCE AND ASSESSMENT OF CLINICAL POTENTIAL}\]

\[^{18}\text{F}]\text{FMISO is a radiolabeled imaging agent that has been used for investigating tumor hypoxia with PET. A hypoxia-imaging agent should be independent of blood flow, which is achieved when the partition coefficient of the tracer is close to unity and imaging is done at a time when the tracer distribution has equilibrated with its entry into the cells. \[^{18}\text{F}]\text{FMISO is an azomycin-based hypoxic cell sensitizer that has a nearly ideal partition coefficient and binds covalently to molecules at rates that are inversely proportional to intracellular } \text{O}_2 \text{ concentration, rather than by some downstream biochemistry. It is composed of } \leq 15 \text{ mg of fluoromisonidazole labeled with } \leq 10 \text{ mCi of radioactive } ^{18}\text{F} \text{ at a specific activity } \geq 1 \text{ Ci/mg at the time of injection. The drug is the only active ingredient and it is formulated in } \leq 10 \text{ mL of 5% ethanol in saline for intravenous injection. The radiochemical purity of the } \[^{18}\text{F}]\text{FMISO is } \geq 95\% .\]

Hypoxia imaging in cancer was reviewed in several publications22,52,53,54,65. \[^{18}\text{F}]\text{FMISO is a robust radiopharmaceutical useful in obtaining images to quantify hypoxia using PET imaging55,56,57. It is the most commonly used agent for PET imaging of hypoxia58,52,53,54,59,60,61. While its biodistribution properties do not result in high contrast images, they result in images at approximately 2 hours after injection that unambiguously reflect regional partial pressure of oxygen, } \text{Po}_2 \text{, and hypoxia in the time interval after the radiopharmaceutical was administered.}\]

Positron emission scanning with \[^{18}\text{F}]\text{FMISO has been studied over the past ten years in Australia, Switzerland, Denmark, Germany and in the United States under RDRC approval or its equivalent. Several published studies from the United States are from the University of Washington in Seattle and were conducted under IND 32,353. Since 1994, approximately 300 patients have undergone FMISO PET scans in Seattle, at least 133 of whom are included in Table 8 of published studies. \[^{18}\text{F}]\text{FMISO has been used to image ischemic stroke, myocardial ischemia, and a wide variety of malignancies.}\]

Based upon published papers we know, over 2,300 unique patients have undergone up to 4 injections of the agent as described herein. Administered doses ranged from approximately 3 to 30 mCi (100 - 1100 MBq). No adverse events were noted in any of
these papers, which are summarized in Table 8. Representative recent papers from key groups in [F-18]FMISO PET imaging are summarized below.

In a paper published by Mortensen in 201065 18 F-FMISO PET was compared to polarographic oxygen-sensitive electrodes. The aim of this study was to examine the association between measures of hypoxia defined by functional imaging and Eppendorf pO 2 electrodes. Nine patients with squamous cell carcinoma of the head and neck and nine with soft tissue tumors were included. The tumor volume was defined by CT, MRI, 18 FDG-PET or by clinical examination. The oxygenation status of the tumors was assessed using 18 F-FMISO PET imaging followed by Eppendorf pO2 electrode measurements. Data were compared in a ‘virtual voxel’, resulting in individual histograms from each tumor. For 18 F-FMISO PET the T/M ratio ranged from 0.70 to 2.38 (median 1.13). Analyzing the virtual voxel histograms, tumors could be categorized in three groups: Well oxygenated tumors with no hypoxia and concordance between the 18 F-FMISO data and the Eppendorf measurements, hypoxic tumors likewise with concordance between the two assays, and inconclusive tumors with no concordance between the assays. The conclusion was that there was a spectrum of hypoxia among tumors that can be detected by both assays. However no correlation was observed, and in general, tumors were more hypoxic based on Eppendorf pO 2 measurements as compared to 18 F-FMISO PET.

In a paper published in 2009, Swanson147 reported on 24 patients with glioblastoma who underwent T1Gd, T2, and 18F-FMISO studies either prior to surgical resection or biopsy, after surgery but prior to radiation therapy, or after radiation therapy. Abnormal regions seen on the MRI scan were segmented, including the necrotic center (T0), the region of abnormal blood-brain barrier associated with disrupted vasculature (T1Gd), and infiltrating tumor cells and edema (T2). The 18F-FMISO images were scaled to the blood 18F-FMISO activity to create tumor-to-blood ratio (T/B) images. The hypoxic volume (HV) was defined as the region with T/Bs greater than 1.2, and the maximum T/B (T/Bmax) was determined by the voxel with the greatest T/B value. They found that the HV generally occupied a region straddling the outer edge of the T1Gd abnormality and into the T2. A significant correlation between HV and the volume of the T1Gd abnormality that relied on the existence of a large outlier was observed. There was consistent correlation between surface areas of all MRI-defined regions and the surface area of the HV. The T/Bmax, typically located within the T1Gd region, was independent of the MRI-defined tumor size. Univariate survival analysis found the most significant predictors of survival to be HV, surface area of HV, surface area of T1Gd, and T/Bmax. They concluded that hypoxia may drive the peripheral growth of glioblastomas147.

In a 2008 paper by Lin, seven patients with head and neck cancers were imaged twice with FMISO PET, separated by 3 days, before radiotherapy. Intensity-modulated radiotherapy plans were designed, on the basis of the first FMISO scan, to deliver a boost dose of 14 Gy to the hypoxic volume, in addition to the 70-Gy prescription dose. The same plans were then applied to hypoxic volumes from the second FMISO scan, and
the efficacy of dose painting evaluated by assessing coverage of the hypoxic volumes using Dmax, Dmin, Dmean, D95, and equivalent uniform dose (EUD). The authors found similar hypoxic volumes in the serial scans for 3 patients but dissimilar ones for the other 4. There was reduced coverage of hypoxic volumes of the second FMISO scan relative to that of the first scan. The decrease was dependent on the similarity of the hypoxic volumes of the two scans. They concluded that the changes in spatial distribution of tumor hypoxia, as detected in serial FMISO PET imaging, compromised the coverage of hypoxic tumor volumes achievable by dose-painting IMRT. However, dose painting always increased the EUD of the hypoxic volumes.

In a study published in 2008, Roels et al. investigated the use of PET/CT with fluorodeoxyglucose (FDG), fluorothymidine (FLT) and fluoromisonidazole (FMISO) for radiotherapy (RT) target definition and evolution in rectal cancer. PET/CT was performed before and during preoperative chemoradiotherapy (CRT) in 15 patients with resectable rectal cancer. They concluded that FDG, FLT and FMISO-PET reflect different functional characteristics that change during CRT in rectal cancer. FLT and FDG show good spatial correspondence, while FMISO seems less reliable due to the non-specific FMISO uptake in normoxic tissue and tracer diffusion through the bowel wall. FDG and FLT-PET/CT imaging seem most appropriate to integrate in preoperative RT for rectal cancer.

Nehmeh et al. reported a study on 20 head and neck cancer patients in a 2008 paper. Of these, 6 were excluded from the analysis for technical reasons. All patients underwent an FDG study, followed by two (18)F-FMISO studies 3 days apart. The authors found that variability in spatial uptake can occur between repeat (18)F-FMISO PET scans in patients with head and neck cancer. Of 13 patients analyzed, 6 had well-correlated intratumor distributions of (18)F-FMISO-suggestive of chronic hypoxia. They concluded that more work is required to identify the underlying causes of changes in intratumor distribution before single-time-point (18)F-FMISO PET images can be used as the basis of hypoxia-targeting intensity-modulated radiotherapy.

In a 2008 paper Lee reported on a study that examined the feasibility of ((18)F-FMISO PET/CT)-guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. (18)F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and (18)F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated (18)F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate (18)F-FMISO PET/CT-guided IMRT plans. The authors found that the heterogeneous distribution of (18)F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing (18)F-FMISO PET/CT-guided IMRT for 10 HNC patients achieved 84 Gy to the GTV(h) and 70 Gy to the
GTV, without exceeding the normal tissue tolerance. An attempt to deliver 105 Gy to the GTV(h) for 2 patients was successful in 1, with normal tissue sparing. The conclusion was that it was feasible to dose escalate the GTV(h) to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC patients.152

Thorwarth et al. published a 2008 paper on a dose painting strategy to overcome hypoxia-induced radiation resistance. 15 HNC patients were examined with 18F-FDG and dynamic 18F-FMISO PET before the start of a 70Gy radiotherapy. After approx. 20 Gy, a second dynamic 18F-FMISO scan was performed. The voxel based 18F-FMISO PET data were analyzed with a kinetic model, which allows for the determination of local tumor parameters for hypoxia and tissue perfusion. Their statistical analysis showed that only a combination of these two parameters predicted treatment outcome. They concluded that a translation of the imaging data into a reliable dose prescription can only be reached via a TCP model that includes these functional parameters. A model was calibrated using the outcome data of the 15 HNC patients. This model mapping of locally varying dose escalation factors to be used for radiotherapy planning. A planning study showed that hypoxia dose painting is feasible without a higher burden for the organs at risk.153
Table 8. Published manuscripts reporting 18F-FMISO human imaging studies

<table>
<thead>
<tr>
<th>Year</th>
<th>Clinical Condition</th>
<th>N</th>
<th>mCi injected</th>
<th>MBq injected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>10</td>
<td>6.6–9.0</td>
<td>243–332</td>
<td>Wiedenmann66 (Germany 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Radiotherapy</td>
<td>22</td>
<td>0.2 mCi/kg</td>
<td>7.4 MBq/kg</td>
<td>Tachibana67 (Japan 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Prostate</td>
<td>27</td>
<td>0.08 mCi/kg</td>
<td>3 MBq/kg</td>
<td>Supiot68 (France 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Oral Squamous Cell Carcinoma</td>
<td>23</td>
<td>10.8</td>
<td>400</td>
<td>Sato69 (Japan 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Glioblastoma</td>
<td>17</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>Ratai70 (USA 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Non–Small Cell Lung Cancer</td>
<td>9</td>
<td>10</td>
<td>370</td>
<td>McGowan72 (UK 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Non–Small Cell Lung Cancer</td>
<td>29</td>
<td>0.13 mCi/kg</td>
<td>4.81 MBq/kg</td>
<td>Li73 (China 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Non–Small Cell Lung Cancer</td>
<td>5</td>
<td></td>
<td></td>
<td>Li74 (China 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>75</td>
<td></td>
<td></td>
<td>Crispin-Ortuzar75 (USA 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>18</td>
<td>0.095 mCi/kg</td>
<td>3.5 MBq/kg</td>
<td>Chatterjee76 (India 2018)</td>
</tr>
<tr>
<td>2018</td>
<td>Breast</td>
<td>44</td>
<td>0.2 mCi/kg</td>
<td>7.4 MBq/kg</td>
<td>Asano77 (Japan 2018)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>16</td>
<td>6.5–10.3</td>
<td>242–382</td>
<td>Schwartz78 (USA 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Locally Advanced Squamous Cell Carcinomas of the Head and Neck</td>
<td>25</td>
<td></td>
<td></td>
<td>Welz79 (Germany 2017)</td>
</tr>
<tr>
<td>Year</td>
<td>Tumor Type</td>
<td>Subjects</td>
<td>Min-max Dose</td>
<td>Min-max Activity</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2017</td>
<td>Breast</td>
<td>28</td>
<td>0.2 mCi/kg</td>
<td>7.4 MBq/kg</td>
<td>Ueda (Japan 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Glioblastoma</td>
<td>32</td>
<td>11.1±0.76</td>
<td>413.9±28.2</td>
<td>Toyonaga (Japan 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>6</td>
<td>8.6-10.2</td>
<td>320-377</td>
<td>Simoncic (Germany 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Oral Squamous Cell Carcinoma</td>
<td>23</td>
<td>10.8</td>
<td>400</td>
<td>Sato (Japan 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Nasopharyngeal Cancer</td>
<td>8</td>
<td>10</td>
<td>370</td>
<td>Qiu (China 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Rectal</td>
<td>11</td>
<td>9-10.7</td>
<td>333-397</td>
<td>Puri (UK 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Glioblastoma</td>
<td>12</td>
<td>5.2±0.95</td>
<td>194.6 ± 35.0</td>
<td>Preibisch (Germany 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Nasopharyngeal Cancer</td>
<td>31</td>
<td>10.8</td>
<td>400</td>
<td>Nishikawa (Japan 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>25</td>
<td>8.5-12</td>
<td>315-444</td>
<td>Monnich (Germany 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>25</td>
<td>6.8-8.1</td>
<td>250-300</td>
<td>Lock (Germany 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Non–Small Cell Lung Cancer</td>
<td>6</td>
<td>5</td>
<td>185</td>
<td>Kelada (USA 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Glioblastoma</td>
<td>41</td>
<td>11.9±2.7</td>
<td>439.6±99.9</td>
<td>Kanoto (Japan 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>120</td>
<td>10.5 ±0.4</td>
<td>389 ± 15</td>
<td>Grkovski (USA 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>72</td>
<td>10.5 ± 0.4</td>
<td>390 ± 14</td>
<td>Grkovski (USA 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Cervical</td>
<td>13</td>
<td>5.4-9.5</td>
<td>200–350</td>
<td>Georg (USA 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Cervical</td>
<td>10</td>
<td>0.08 mCi/kg</td>
<td>3.0 MBq/kg</td>
<td>Daniel (2017 Austria)</td>
</tr>
<tr>
<td>Year</td>
<td>Type</td>
<td>Count</td>
<td>Activity (mCi/kg)</td>
<td>Dose (MBq/kg)</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2017</td>
<td>Glioblastoma</td>
<td>23</td>
<td>0.14</td>
<td>5.0</td>
<td>da Ponte(^{97}) (France 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Glioma</td>
<td>13</td>
<td>0.14</td>
<td>5.0</td>
<td>Chakhoyan(^{98}) (France 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>9</td>
<td></td>
<td></td>
<td>Boeke(^{99}) (Germany 2017)</td>
</tr>
<tr>
<td>2017</td>
<td>Glioma</td>
<td>33</td>
<td>0.14</td>
<td>5.0</td>
<td>Bekaert(^{100}) (France 2017)</td>
</tr>
<tr>
<td>2016</td>
<td>Lung</td>
<td>42</td>
<td>0.13</td>
<td>4.81</td>
<td>Wei(^{101}) (China 2016)</td>
</tr>
<tr>
<td>2016</td>
<td>Breast</td>
<td>107</td>
<td>7.2±0.4</td>
<td>267±15.3</td>
<td>Quintela-Fandino(^{102}) (Spain 2016)</td>
</tr>
<tr>
<td>2016</td>
<td>Advanced Human Papillomavirus</td>
<td>33</td>
<td>8-10</td>
<td>296-370</td>
<td>Lee(^{103}) (USA 2016)</td>
</tr>
<tr>
<td>2016</td>
<td>Non–Small Cell Lung Cancer</td>
<td>10</td>
<td>9.6-11</td>
<td>356–407</td>
<td>Grkovski(^{104}) (USA 2016)</td>
</tr>
<tr>
<td>2016</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>16</td>
<td>0.1</td>
<td>3.7</td>
<td>Bittner(^{105}) (Germany 2016)</td>
</tr>
<tr>
<td>2016</td>
<td>Glioma</td>
<td>4</td>
<td>7</td>
<td>259</td>
<td>Barajas(^{106}) (USA 2016)</td>
</tr>
<tr>
<td>2015</td>
<td>Non–Small Cell Lung Cancer</td>
<td>1</td>
<td>4.9</td>
<td>181</td>
<td>Zheng(^{107}) (USA 2015)</td>
</tr>
<tr>
<td>2015</td>
<td>Non–Small Cell Lung Cancer</td>
<td>13</td>
<td>6.8</td>
<td>250</td>
<td>Sachpekidis(^{108}) (Germany 2015)</td>
</tr>
<tr>
<td>2015</td>
<td>Glioma</td>
<td>1</td>
<td>7</td>
<td>259</td>
<td>Barajas(^{109}) (USA 2015)</td>
</tr>
<tr>
<td>2015</td>
<td>Non–Small Cell Lung Cancer</td>
<td>2</td>
<td>9.5-10.5</td>
<td>352-389</td>
<td>Arvold(^{110}) (USA 2015)</td>
</tr>
<tr>
<td>2014</td>
<td>Breast</td>
<td>7</td>
<td>0.2</td>
<td>7.4</td>
<td>Ueda(^{111}) (UK 2014)</td>
</tr>
<tr>
<td>2014</td>
<td>Oral Squamous Cell Carcinoma</td>
<td>22</td>
<td>10.8</td>
<td>400</td>
<td>Sato(^{112}) (Japan 2014)</td>
</tr>
<tr>
<td>2014</td>
<td>Glioblastoma</td>
<td>1</td>
<td></td>
<td></td>
<td>Rockne(^{113}) (USA 2014)</td>
</tr>
<tr>
<td>Year</td>
<td>Disease</td>
<td>Count</td>
<td>Activity</td>
<td>Dose</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2014</td>
<td>Stroke</td>
<td>19</td>
<td>15</td>
<td>555</td>
<td>Lee(^{114}) (Korea 2014)</td>
</tr>
<tr>
<td>2014</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>10</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>de Figueiredo(^{115}) (France 2014)</td>
</tr>
<tr>
<td>2013</td>
<td>Non–Small Cell Lung Cancer</td>
<td>5</td>
<td>0.05 mCi/kg</td>
<td>2.0 MBq/kg</td>
<td>Thereau(^{116}) (France 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Various</td>
<td>10</td>
<td>0.2 mCi/kg</td>
<td>7.4 MBq/kg</td>
<td>Tachibana(^{117}) (Japan 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Pancreatic</td>
<td>10</td>
<td>0.19 mCi/kg</td>
<td>7 MBq/kg</td>
<td>Segard(^{118}) (Australia 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Oral Squamous Cell Carcinoma</td>
<td>23</td>
<td>10.8</td>
<td>400</td>
<td>Sato(^{119}) (Japan 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>11</td>
<td>11.2 ± 0.7</td>
<td>414 ± 26</td>
<td>Okamoto(^{120}) (Japan 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>39</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>Norikane(^{121}) (Japan 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>15</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>de Figueiredo(^{122}) (France 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>8</td>
<td>10</td>
<td>370</td>
<td>Chang(^{123}) (China 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>16</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>Bittner(^{124}) (USA 2013)</td>
</tr>
<tr>
<td>2013</td>
<td>Stroke</td>
<td>3</td>
<td>0.05 mCi/kg</td>
<td>1.85 MBq/kg</td>
<td>Alawneh(^{125}) (UK 2013)</td>
</tr>
<tr>
<td>2012</td>
<td>Glioma</td>
<td>2</td>
<td>12.2</td>
<td>450</td>
<td>Narita(^{126}) (Japan 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Head & Neck Cancer</td>
<td>7</td>
<td>10</td>
<td>370</td>
<td>Toma-dasu(^{127}) (Belgium 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Glioma</td>
<td>23</td>
<td>10.8</td>
<td>400</td>
<td>Hirata(^{128}) (Japan 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Glioma</td>
<td>30</td>
<td>0.1 mCi/kg Max 7</td>
<td>3.7 MBq/kg Max 260</td>
<td>Yamamoto(^{129}) (Japan 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Skull Base Chordoma</td>
<td>7</td>
<td>0.14 mCi/kg</td>
<td>5 MBq/kg</td>
<td>Mammar(^{130}) (France 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Head & Neck Cancer</td>
<td>40</td>
<td>10.8</td>
<td>400</td>
<td>Yasuda(^{131}) (Japan 2012)</td>
</tr>
<tr>
<td>Year</td>
<td>Tumor Type</td>
<td>Subjects</td>
<td>Minimum Dose (mCi/kg)</td>
<td>Maximum Dose (MBq/kg)</td>
<td>Investigators</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2012</td>
<td>Head & Neck Cancer</td>
<td>12</td>
<td>0.2 ± 0.05</td>
<td>7.3 ± 1.7</td>
<td>Chen (USA 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Head & Neck Cancer</td>
<td>25</td>
<td>6.8-8.1</td>
<td>250-300</td>
<td>Zips (Germany 2012)</td>
</tr>
<tr>
<td>2012</td>
<td>Various cancers</td>
<td>17</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>McKeage (New Zealand 2012)</td>
</tr>
<tr>
<td>2011</td>
<td>Glioma</td>
<td>10</td>
<td>5.3-9.4</td>
<td>197-348</td>
<td>Kawai (Japan 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Non-Small Cell Lung Cancer</td>
<td>5</td>
<td>0.05 mCi/kg</td>
<td>2.0 MBq/kg</td>
<td>Vera (France 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Sarcoma</td>
<td>10</td>
<td>7</td>
<td>259</td>
<td>Eary (USA 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>17</td>
<td>13.7-19.4</td>
<td>510-718</td>
<td>Kikuchi (Japan 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Head & Neck Cancer</td>
<td>10</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>Hendrickson (USA 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Glioma</td>
<td>1</td>
<td>8.3</td>
<td>307</td>
<td>De Clermont (France 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Renal Cell Carcinoma</td>
<td>53</td>
<td>0.14 mCi/kg</td>
<td>5 MBq/kg</td>
<td>Hugonnet (France 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Head and Neck Cancer</td>
<td>23</td>
<td>6.9</td>
<td>256 ± 37</td>
<td>Abolmaali (Germany 2011)</td>
</tr>
<tr>
<td>2011</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>13</td>
<td>13.7-19.4</td>
<td>510-718</td>
<td>Yamane (Japan 2010)</td>
</tr>
<tr>
<td>2010</td>
<td>Head & Neck Cancer</td>
<td>8</td>
<td>20</td>
<td>740</td>
<td>Choi (Korea 2010)</td>
</tr>
<tr>
<td>2010</td>
<td>Head & Neck Squamous Cell Carcinoma</td>
<td>9</td>
<td>10</td>
<td>370</td>
<td>Wang (USA 2010)</td>
</tr>
<tr>
<td>2010</td>
<td>Soft Tissue & H & N</td>
<td>18</td>
<td>10.8</td>
<td>400</td>
<td>Mortensen (Denmark 2010)</td>
</tr>
<tr>
<td>2009</td>
<td>Brain Cancer</td>
<td>11</td>
<td>0.1 mCi/kg</td>
<td>3.7 mCi/kg</td>
<td>Szeto (USA 2009)</td>
</tr>
<tr>
<td>2009</td>
<td>Brain Cancer</td>
<td>24</td>
<td>0.1 mCi/kg</td>
<td>3.7 mCi/kg</td>
<td>Swanson (USA 2009)</td>
</tr>
<tr>
<td>2009</td>
<td>Head & Neck Cancer</td>
<td>28</td>
<td>10</td>
<td>370</td>
<td>Lee (USA 2009)</td>
</tr>
<tr>
<td>Year</td>
<td>Tumor Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Brain Cancer</td>
<td>22</td>
<td>0.1 mCi/kg 7 mCi</td>
<td>3.7 mCi/kg 260</td>
<td>Spence149 (USA 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>Head & Neck Cancer</td>
<td>7</td>
<td>10</td>
<td>370</td>
<td>Lin150 (USA 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>Head & Neck Cancer</td>
<td>15</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Thorwarth151 (Germany 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>Head & Neck Cancer</td>
<td>28</td>
<td>9.3-11</td>
<td>344-407</td>
<td>Lee152 (USA, 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>Head & Neck Cancer</td>
<td>3</td>
<td>~10.8</td>
<td>~400</td>
<td>Thorwarth153 (Germany, 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>Head & Neck Cancer</td>
<td>20</td>
<td>9.3-11</td>
<td>344-407</td>
<td>Nehmeh154 (USA, 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>Rectal Cancer</td>
<td>10</td>
<td>8.9-11</td>
<td>330-398</td>
<td>Roels155 (Belgium 2008)</td>
</tr>
<tr>
<td>2007</td>
<td>Advanced Head & Neck Cancer</td>
<td>14</td>
<td>9.4-12.2</td>
<td>350-450</td>
<td>Eschmann156 (Germany 2007)</td>
</tr>
<tr>
<td>2007</td>
<td>Advanced Non-Small Cell Lung Cancer</td>
<td>4</td>
<td>7</td>
<td>259</td>
<td>Spence157 (USA, 2007)</td>
</tr>
<tr>
<td>2007</td>
<td>Head & Neck Cancer</td>
<td>38</td>
<td>9.6</td>
<td>356</td>
<td>Gagel158 (2007 Germany)</td>
</tr>
<tr>
<td>2007</td>
<td>Head & Neck Cancer</td>
<td>13</td>
<td>10.8</td>
<td>400</td>
<td>Thorwarth159 (Germany 2007)</td>
</tr>
<tr>
<td>2006</td>
<td>Head & Neck</td>
<td>24</td>
<td>9.7 ± 0.7</td>
<td>360 ± 25</td>
<td>Zimny160 (Germany 2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Non-small cell lung cancer</td>
<td>21</td>
<td>10</td>
<td>370</td>
<td>Cherk161 (Australia 2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Head and Neck Cancer</td>
<td>45</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Rischin162 (Australia 2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Head and Neck Cancer</td>
<td>73</td>
<td>Nominally 7.0 Max 10</td>
<td>Nominally 260 Max 370</td>
<td>Rajendran163 (USA 2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Non-Small Cell Lung Cancer</td>
<td>8</td>
<td>8.9 ± 0.10</td>
<td>329 ± 36</td>
<td>Gagel164 (Germany, 2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Glioma</td>
<td>17</td>
<td>0.05 mCi/kg</td>
<td>18.5 MBq/kg</td>
<td>Cher165 (Australia 2006)</td>
</tr>
<tr>
<td>2005</td>
<td>Head & Neck cancer</td>
<td>26</td>
<td>9.4-12.2</td>
<td>350-450</td>
<td>Eschmann60 (Germany 2005)+</td>
</tr>
<tr>
<td>2005</td>
<td>Non-Small Cell Lung Cancer</td>
<td>14</td>
<td>3.3-11.4</td>
<td>123-421</td>
<td>Bruehlmeier166 (Switzerland 2004)</td>
</tr>
<tr>
<td>2004</td>
<td>Various brain tumors</td>
<td>11</td>
<td>Average = 7.8</td>
<td>Average = 291</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Tumor Type</td>
<td>No.</td>
<td>Activity</td>
<td>SUV or Uptake</td>
<td>Investigator (Location, Year)</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2004</td>
<td>Various cancers</td>
<td>49</td>
<td>0.1 mCi/kg</td>
<td>3.7/Kg nom 260</td>
<td>Rajendran^54 (USA 2004)</td>
</tr>
<tr>
<td>2004</td>
<td>Head & Neck cancer</td>
<td>16</td>
<td>7.9 ± 0.9</td>
<td>292 ± 35</td>
<td>Gagei^167 (Germany 2004)</td>
</tr>
<tr>
<td>2003</td>
<td>Ischemic Stroke</td>
<td>19</td>
<td>nom 3.5</td>
<td>nom 130</td>
<td>Markus^168 (Australia, 2003)</td>
</tr>
<tr>
<td>2003</td>
<td>Soft tissue tumors</td>
<td>13</td>
<td>5.9-11.3</td>
<td>218-418</td>
<td>Bentzen^169 (Denmark 2003)</td>
</tr>
<tr>
<td>2003</td>
<td>Soft Tissue Sarcoma</td>
<td>29</td>
<td>0.1 mCi/kg nom 7</td>
<td>3.7 MBq/kg nom 260</td>
<td>Rajendran^170 (USA 2003)</td>
</tr>
<tr>
<td>2000</td>
<td>Ischemic Stroke</td>
<td>24</td>
<td>nom 3.5</td>
<td>nom 130</td>
<td>Read^171 (Australia 2000)</td>
</tr>
<tr>
<td>1996</td>
<td>Various cancers</td>
<td>37</td>
<td>0.1 mCi/kg nom 7</td>
<td>3.7 MBq/kg nom 260</td>
<td>Rasey^172 (USA 1996)</td>
</tr>
<tr>
<td>1995</td>
<td>Non-Small Cell Lung Cancer</td>
<td>7</td>
<td>0.1 mCi/kg nom 7</td>
<td>3.7 MBq/kg nom 260</td>
<td>Koh^53 (USA 1995)</td>
</tr>
<tr>
<td>1992</td>
<td>Various cancers</td>
<td>8</td>
<td>0.1 mCi/kg</td>
<td>3.7 MBq/kg</td>
<td>Koh^173 (USA 1992)</td>
</tr>
<tr>
<td>1992</td>
<td>Glioma</td>
<td>3</td>
<td>~10</td>
<td>~370</td>
<td>Valk^59 (USA 1992)</td>
</tr>
<tr>
<td></td>
<td>Total No. Subjects</td>
<td>2,342*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*It is possible that some patients are represented more than once.

The overall conclusion, based upon the studies summarized above, is that [18F]FMISO PET identifies hypoxic tissue that is heterogeneously distributed within human tumors. It promises to help facilitate image-guided radiotherapy and to also guide the use of hypoxia-selective cytotoxins. These are two ways, out of several, that this agent might potentially help circumvent the cure-limiting effects of tumor hypoxia. In addition, [18F]FMISO has identified a discrepancy between perfusion, blood-brain barrier disruption, and hypoxia in brain tumors and a lack of correlation between FDG metabolism and hypoxia in several types of malignancies. Hypoxic tissue also does not correlate either with tumor volume or vascular endothelial growth factor (VEGF) expression.

[18F]FMISO PET was able to identify post-radiotherapy tumor recurrence by differential uptake of tracer. The standardized uptake value (SUV) ratio between recurrent tumor and muscle was >1.6, while that between tumor and normal mediastinum was >2.0. One study concluded that [18F]FMISO was not feasible for the detection of tumor hypoxia in human soft tissue tumors. In ischemic stroke, [18F]-FMISO was able to identify the areas of brain tissue into which a stroke had extended. In addition to the FMISO imaging studies summarized above, alternative nitroimidazoles have been evaluated as imaging agents in single-center pilot studies. A 2001 study from Finland...
used [^{18}\text{F}]fluoroerythro-nitroimidazole (^{18}\text{F}-\text{FETNIM}) to evaluate 8 patients with head and neck squamous cell cancer at doses of ~370 MBq without adverse effect174 (Lehtio 2001). Other agents, fluoropropyl-nitroimidazole and fluoroocetyl-nitroimidazole, have not proved as useful in visualizing hypoxic tissue175 (Yamamoto 1999), probably because of their higher lipophilicity. A derivative that is more hydrophilic than FMISO, [^{18}\text{F}]fluoroazomycin-arabinofuranoside (FAZA) had been recommended for further study176 (Sorger 2003) and shows considerable clinical promise.

In human metastatic neck lymph nodes, comparison of FMISO tumor-to-muscle uptake ratio at 2 hours using the computerized polarographic needle electrode system (pO\textsubscript{2} histography) found average to high correlation, whereas no correlation was found with [^{18}\text{F}]2-fluoro-2-deoxyglucose (FDG)167. A significant correlation was found between hypoxic tissue identified by FMISO and by immunohistochemical staining for both pimonidazole and carbonic anhydrase IX177 (Dubois 2004).

Taken together, these imaging studies show that [^{18}\text{F}]FMISO is able to identify hypoxia, a unique feature of malignant and endangered tissues, thereby adding to the armamentarium of specific markers used to image tumors and potentially impact treatment for the benefit of individual patients. Low oxygenation status is often phenotypic of tumors that demonstrate a poor response to therapy, which justifies extensive investigation of the utility of agents like [^{18}\text{F}]FMISO to improve specific treatment regimens directed at hypoxic tumors.

The rationale for using a T:B ratio of 1.2 to separate normoxia from hypoxia is based on human and animal data. The initial animal results showed that normoxic myocardium ratios were near unity over a wide range of flows. In numerous other organs of normal mice, rats, rabbits and dogs, the mean of the distribution histogram was 1.035, median 0.96, for 1342 samples178. Therefore, a cut-off of 1.2 was selected, with confidence that any T:B ratio above that value was indicative of hypoxic tissue. This conclusion is further justified by the human study presented in Figure 7. In this patient with a primary brain tumor, the FDG image was co-registered with the FMISO image (left panel). In brain regions far from the right frontal tumor, the T:B values for FMISO were uniformly less than 1.2, as depicted by the blue dots in the right panel, even though FDG SUV spanned a range from about 3 to 13. In the tumor area, a substantial fraction of the pixels were still in the normal range, but many values exceeded the cut-off as shown by the colored pixels in the FMISO image. A distribution histogram of the red data points shows a continuous distribution, reflecting the fact that the level of oxygenation is a continuum from normoxic to hypoxic. One consequence of this continuous scale is that FMISO images exhibit only modest contrast. However, the evidence that uptake is independent of blood flow and numerous other physiologic parameters, as described about, provides confidence that FMISO images uniquely identify tumors with prognostically significant levels of hypoxia.
Investigator’s Brochure: [18F]FMISO

Figure 7. Right-frontal glioma post surgery.
VIII. REFERENCES

70. Ratai E, Zhang Z, Fink James, et al. ACRIN 6684: Multicenter, phase II assessment
of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy. PLOS ONE. June 14, 2018.

149.89. Spence AM, Muzi M, Swanson KR, et al. Regional hypoxia in glioblastoma multiforme quantified with [¹⁸F] fluoromisonidazole positron emission tomography
before radiotherapy: Correlation time to progression and survival. *Clin Cancer Res.* 2008; 14(9):2623-2630.

