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II. INTRODUCTION  

3'-deoxy-3'-[F-18] fluorothymidine [F-18]FLT is a structural analog of the DNA constituent, 
thymidine, that enters proliferating cells and is phosphorylated by human thymidine kinase 1, 
which is regulated during the cell cycle. The 3' substitution prevents further incorporation into 
replicating DNA, and the now ionic [F-18]FLT-MP is trapped inside proliferating cells. [F-18] 
decays with positron emission. 
 
Positron Emission Tomography 
 
Positron emission tomography (PET) is a quantitative tomographic imaging technique which 
produces cross-sectional images that are composites of volume elements (voxels). In PET 
images, the signal intensity in each voxel is dependent upon the concentration of the 
radionuclide within the target tissue (e.g., organ, tumor) volume. To obtain PET imaging data, 
the patient is placed in a circumferential detector array.  
 
Patients will undergo two separate components for a typical PET imaging procedure. One 
component is a transmission scan via a CT scan. In the past a germanium rod source was used 
over the field-of-view of interest (specifically the tumor or the majority of the body with whole 
body PET/PET-CT imaging). This CT scan also provides limited anatomic information. The second 
component of the study is the emission scan which can be a dynamic imaging acquisition over a 
specific area of interest or multiple acquisitions over the whole body. The typical PET study 
takes about 20 minutes to 2 hours to perform depending on the nature of the acquisitions and 
the areas of the body that are imaged.  
 
The patient can be prepared by fasting for 4 – 6 hours, although this is not required. After the 
[F-18]FLT tracer (approximately 5 mCi) is injected, imaging can commence immediately for a 
fully quantitative study over one area of the body, or imaging can be performed after an uptake 
period of about 60 – 90 minutes if whole body semi-quantitative imaging is being performed. 
 
Although [F-18]FLT studies are designed to characterize FLT as a tracer of cellular proliferation 
in the primary tumor, comparison of [F-18]FLT images with other clinical imaging, and with 
surgical staging, will also provide data about [F-18]FLT's ability to depict regional tumor 
proliferation and distal metastases.  
 

III. [F-18]FLT PRODUCT AGENT DESCRIPTION 

1. AGENT DESCRIPTION 
3'-deoxy-3'-[F-18]fluorothymidine: [F-18]FLT (MW 243) is a structural analog of the DNA 
constituent, thymidine (Figure 1). It is a radiolabeled imaging agent that is produced by various 



Investigator’s Brochure:  [F-18]FLT 

 

Page 4 of 47 

but equivalent syntheses that has been proposed for investigating cellular proliferation with 
positron emission tomography (PET). Since FLT is not incorporated into DNA, due to 
phosphorylation by thymidine kinase, (a part of the proliferation pathway) FLT-monophosphate 
(FLT-MP) is trapped in the cell. As such, it has the potential to facilitate imaging of proliferating 
tumor in proportion to the DNA synthesis rate. Clinical and nonclinical studies support the use 
of FLT as an imaging probe for quantifying cellular proliferation with positron emission 
tomography (PET). Therefore, FLT is proposed as a radiolabeled imaging probe for quantifying 
cellular proliferation in malignant tumors with PET. 
 
2. CHEMICAL STRUCTURE 
[F-18]FLT has not been marketed in the United States and, to the best of our knowledge; there 
has been no marketing experience with this drug in other countries. The radiopharmaceutical 
product, [F-18]FLT is the only active ingredient and it is dissolved in a solution of ≤ 10 mL of 
0.01 M phosphate buffered saline (PBS): < 10% ethanol (v:v). The drug solution is stored at 
room temperature with an expiration time of 8 hours. The injectable dose of [F-18]FLT for most 
studies will be approximately 175 MBq (5 mCi) at the time of injection. In the dose of [F-18]FLT 
only a small fraction of the FLT molecules are radioactive. The amount of injected drug is ≤ 0.61 
µg/mL (≤ 2.5 nmol/mL) of FLT. [F-18]FLT is administered to subjects by intravenous injection of 
≤ 10 mL. 
 
There is no evidence that nonradioactive and radioactive FLT molecules display different 
biochemical behavior. 
 
 
 Figure 1. Chemical Structures  
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3. FINAL PRODUCT SPECIFICATIONS 
The drug is composed of a small amount of [F-18]FLT that is labeled with radioactive F-18 at the 
3'-position on the sugar ring with a specific activity above 200 Ci/mmol at the time of injection, 
as assured by the combined specifications of < 0.61 μg, ≤ 10 mL per dose and 5 mCi dose. The 
radiopharmaceutical product, [F-18]FLT is the only active ingredient and it is dissolved in a 
solution of ≤ 10 mL of 0.01 M phosphate buffered saline (PBS): < 10% ethanol (v:v). [F-18]FLT is 
administered to subjects by intravenous injection (≤ 10 mL). 
 
Table 1. Final Product Specifications 

SPECIFICATIONS  
Radiochemical Purity (TLC): 
 

Rf = 0.4 – 0.7 
Purity ≥ 95% 

Residual Solvent Levels: 
 

Acetone ≤ 5000 ppm 
Acetonitrile ≤ 410 ppm 
DMSO ≤ 5000 ppm 

Radionuclidic Purity: Measured half-life 100 – 120 minutes 
Bacterial Endotoxin Levels: < 175 EU per dose 
pH:  4.5-8.0 

Sterility:  no growth observed in 14 days, must pass 
filter test 

Residual Kryptofix® [2.2.2]:  < 50 µg/ mL Kryptofix® 
Radiochemical Purity (HPLC): ≥95% 

Chemical Purity (HPLC): FLT ≤ 6.1 µg/dose 
 

Chemical Purity (particulates):  Clear and Colorless 
 
The specifications for pH and acetonitrile have been updated. The purity specifications have 
been clarified to ≥ instead of > to avoid ambiguity. These changes are not considered major and 
will not increase risk to the patient and align these specifications with similar FDA approved PET 
radiopharmaceuticals. Many sites are now preparing FLT with pre-filled cassettes and 
automated synthesis instruments that were designed in compliance with these newer 
published limits.  
1. Acetonitrile is listed in the Guidance for Industry, QC3 – Tables and List, Revision 2, February 
2012 as a class 2 solvent with a concentration limit of 410 ppm. 2. FDA approved labeling for 
two very similar radiopharmaceuticals, F-18 FDG and NaF F18, has both drugs specified at pH 
4.5-8. To be consistent with these drugs, we have changed the F-18 FLT specification to 4.5-8. 
 
 
Table 2. Final Product Components 

COMPONENTS   
[18F]FLT, 3'-deoxy-3'- same as for [F-19]FLT  ≤ 5.0 mCi 
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[18F]fluorothymidine 
[19F]FLT, 3'-deoxy-3' 
[19F]fluorothymidine 

NSC# 140025 for [F-19]FLT ≤ 6.1 μg/dose 

Sodium phosphates  USP 0.01 M 
Ethanol, absolute USP < 10% by volume 
Saline for injection USP 0.15 M 
 
Table 3. Final Product Impurities 

IMPURITIES  Highest Values in 2 Site Qualification Runs (n = 17) 
Kryptofix [2.2.2.] < 50 µg/ml None detected 
Acetonitrile ≤ 410 ppm 86 ppm 
DMSO ≤ 5000 ppm 353 ppm 
Acetone ≤ 5000 ppm 190 ppm 

IV. PHARMACOLOGY 

The pharmacology of FLT is based on its action as an inhibitor of DNA synthesis (Langen, 1969; 1972; 
1972; Matthes, 1988). Intracellular metabolism of FLT produces nucleotides that inhibit endogenous 
DNA polymerases because they lack a 3'-hydroxyl substituent. This results in premature chain 
termination of DNA synthesis (Matthes 1987, Sundseth 1996). These biochemical properties can 
account for FLT's prominent hematological and liver toxicity in treatment studies. The proposed PET 
tracer studies using approximately 6 µg single dose [F-18]FLT are significantly lower than the oral 
0.125 mg/kg or 2 mg/day multi dose used in the human studies (Flexner, 1994; Faraj, 1994; 
Sundseth, 1996; Katlama, 2004; Ghosn, 2007). The pharmacology of FLT closely parallels that of the 
widely used prescription HIV-antiviral drug azidothymidine (AZT) (Lundgren, 1991; Kong, 1992). Both 
FLT and AZT are 3'-deoxythymidine analogs that act as inhibitors of DNA synthesis and are cleared 
from the body in the same way. Although FLT is significantly more cytotoxic than AZT in test cell lines 
(Faraj, 1994) at comparable levels of exposure, this is not a factor when [F-18]FLT exposure is limited 
to typical PET imaging microdose requirements. Cellular uptake of FLT and thymidine is greater than 
that of AZT. Transport of FLT and thymidine across cell membranes occurs by active transport and 
passive diffusion (Kong, 1992). 
 

V. TOXICOLOGY AND SAFETY  

1. MECHANISM OF ACTION FOR TOXICITY 
Intracellular metabolism of FLT produces nucleotide phosphates that inhibit endogenous DNA 
polymerases and can prematurely chain terminate DNA (Matthes, 1987; Sundseth, 1996). These 
biochemical properties can account for FLT's prominent hematological and liver toxicity when 
dose at high dose in treatment studies. The proposed PET tracer studies using approximately 6 
µg single dose [F-18]FLT are a thousand fold lower than the oral 0.125 mg/kg multi-dose used in 
the human studies (Flexner, 1994; Faraj, 1994; Sundseth, 1996; Katlama, 2004; Ghosn, 2007). 
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2.  [F-19] FLT ANIMAL TOXICITY STUDIES  
A preliminary study of FLT's toxic effects was reported for cynomologus monkeys receiving 
multiple doses of FLT by subcutaneous (s.c.) injection (3 x 0.25 mg/kg s.c.; Lundgren, 1991). 
Table 4 lists the standard hematological parameters, liver enzymes, and serum creatinine for 
the FLT-treated monkeys and controls that were studied. 
 
Table 4. Laboratory Values for Cynomologus Monkey Study 

 DAY 
1 

DAY 
0 

DAY 
10 

DAY 
41 

Analyte FLT CONTROL FLT CONTROL FLT CONTROL 

Albumin (g/L) 32 32 32 32 40 32 

Creatinine (µmol/L) 83 88 68 75 76 75 

GGT (µkat/L) 1.03 1.60 0.62 1.26 0.82 1.58 

SGOT (µkat/L) 0.60 1.53 0.95 1.36 0.68 0.72 

SGPT (µkat/L) 2.11 2.67 1.61 2.11 1.05 1.45 

CK (µkat/L) 6.78 4.17 5.70 2.64 8.02 5.53 

LDH (µkat/L) 33 36 29.2 35.2 28.5 25.2 

WBC (x10-9/L) 4.92 8.2 4.72 7.5 5.84 9.52 

RBC (x10-12/L) 6.06 5.6 4.9 4.71 5.74 5.78 

HGB (g/L) 112 102 89 85 105 103 

HCT 0.37 0.35 0.30 0.29 0.36 0.36 

PLT (x10-9/L) 332 414 246 348 352 430 

MCV (fl) 61.6 62.9 59.8 62.0 62.0 62.1 

Standard hematological parameters, liver enzymes and serum creatinine values for FLT treated (3 x 0.25 mg/kg; 
s.c.: n = 2) and controls (n = 4) for cynomologus monkeys (1.0 kat/l = 58.8U/L)  

 
Unpublished studies filed to the NCI IND (studies are the property of Medivir) in mice, rats, and 
dogs reported only minor hematological effects at doses up to 900 mg/kg intravenously 
administered (iv) in mice and rats and 1000 mg/kg iv in dogs. 
 
3. [F-18]FLT ANIMAL TOXICITY STUDIES 
There are currently no published animal toxicity data for [F-18]FLT. Since the half-life of 
Fluorine 18 is only 109 minutes toxicity studies are not possible with the radiolabeled agent. 
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The [F-19] data presented would be the basis for both animal and human toxicity 
characterization. 
 
4. [F-19]FLT HUMAN TOXICITY 
The pharmacology of FLT is based on its action as an inhibitor of DNA synthesis (Langen, 1969; 
1972; 1972; Matthes, 1988). This is the mechanism of the toxicity that is seen with the drug. 
Intracellular metabolism of FLT produces FLT-phosphates but these nucleotides inhibit 
endogenous DNA polymerases because they lack a 3'-hydroxyl substituent. This results in 
premature chain termination of DNA synthesis (Matthes 1987, Sundseth 1996). These 
biochemical properties can account for FLT's prominent hematological and liver toxicity 
(Flexner, 1994; Faraj, 1994; Sundseth, 1996). The pharmacology of FLT closely parallels that of 
the widely used prescription HIV-antiviral drug azidothymidine (AZT) (Lundgren, 1991; Kong, 
1992). Both FLT and AZT are 3'-deoxythymidine analogs that act as inhibitors of DNA synthesis 
and are cleared from the body in the same way. However, FLT is significantly more cytotoxic 
than AZT in test cell lines (Faraj, 1994). Cellular uptake of FLT and thymidine is greater than that 
of AZT. Transport of FLT and thymidine across cell membranes occurs by active transport and 
passive diffusion (Kong, 1992). 
 
FLT was investigated as an oral anti-AIDS drug in humans (Flexner 1994). Toxic effects and 
death were reported for some subjects receiving FLT during randomized concentration-
controlled trials during a 16-week treatment of oral multi-dosing. Doses of 0.125 mg/kg every 
12 hours, produced a mean cumulated drug exposure (AUC12: area under curve) of 417 ng-
h/mL. At this level, serious (grade 3) hematologic toxicity occurred in 6 of 10 subjects. At 300 
ng-h/mL, grade 2 or greater (fall in hemoglobin to ≤ 9.4 g/dL) anemia developed within four 
weeks in 9 of 12 subjects. At 200 ng-h/mL almost no clinically significant anemia developed, but 
dose-limiting granulocytopenia (< 750 granulocytes/mm3) occurred in 5 of 14 subjects. Mild 
peripheral neuropathy occurred in 2 of 15 subjects at 50 ng-h/mL, but was not dose-limiting. 
 
FLT drug trials were terminated after two subjects died unexpectedly of hepatic failure. One of 
these subjects, who was assigned to 200 ng-h/mL, developed progressive liver failure and died 
after 12 weeks of FLT therapy. A second subject, receiving a fixed dose of 10 mg/day, developed 
progressive liver failure and died at 12 weeks. All surviving subjects were followed closely for 
four weeks after stopping FLT and none had evidence of clinically significant liver disease or 
other adverse effects. Overall, 25 of the 44 subjects receiving at least two doses of FLT 
completed the 16-week study without clinically significant adverse effects. 
 
FLT (Alovudine) was withdrawn from development for several years, and then reinvestigated 
for multi-drug resistant HIV infection. Fifteen patients with multi-drug resistance HIV received 
7.5 mg each day for 28 days along with their on-going therapy (Katlama, 2004). No serious 
adverse events were observed. 
 



Investigator’s Brochure:  [F-18]FLT 

 

Page 9 of 47 

A randomized, double-blind, placebo-controlled trial investigating three doses of alovudine 
(0.5, 1 and 2 mg) or placebo added for four weeks to a failing regimen in patients with evidence 
of NRTI resistant HIV strains. Seventy-two patients were enrolled in the study: 21, 13, 18, and 
20 in the placebo and 0.5, 1, and 2 mg arms, respectively. There was no significant change in 
CD4 cell count. Alovudine was well tolerated; diarrhea and nausea were reported in up to one-
third of the patients and mean hemoglobin decreased slightly in the highest dose group (Ghosn, 
2007). 
 
5. [F-18]FLT HUMAN TOXICITY STUDIES 
Since the half-life of fluorine 18 is only 109 minutes toxicity studies are not possible with the 
radiolabeled agent. The [F-19] data presented would be the basis for both animal and human 
toxicity characterization. 
 
It is important to note that [F-19] clinical repeat dosing, as reported above, results  in total 
exposure that is up to several thousand times greater, as measured by AUC12, than that 
produced by typical [F-18] dosing in a PET imaging setting. 
 
6. [F-18]FLT HUMAN SAFETY STUDIES 
In a study performed at the University of Washington, Turcotte and colleagues (Turcotte, 2008) 
assessed the toxicity of [F-18]FLT in twenty patients with proven or suspected diagnosis of non-
small cell lung cancer (Table 5). Blood samples were collected for each patient at multiple times 
before and after [F-18]FLT-PET and assayed for comprehensive metabolic panel, total bilirubin, 
complete blood and platelet counts. In addition, a standard neurological examination by a 
qualified physician was performed for each patient before and immediately after [F-18]FLT-PET. 
All [F-18]FLT doses were calculated based on patient weight (2.59 MBq/kg = 0.07 mCi/kg) with a 
maximal dose of 185 MBq (5.0 mCi). Starting with the [F-18]FLT injection, dynamic PET images 
were acquired for 90 or 120 minutes. By placing a region-of-interest in the center of the left 
ventricular chamber, blood time-activity curves were generated for each patient from the 
dynamic PET data and then extrapolated to 720 minutes. This provided a measure of the area 
under the [F-18]FLT concentration curve for 12 hours (AUC12). A separate estimation of the 
AUC12 was also obtained from sequential blood samples collected during PET data acquisition. 
No side effects were reported by patients or observed. No change was observed in the 
neurological status of patients. A neurological examination was performed by an experienced 
neurologist prior to [F-18]FLT administration, the day after [F-18]FLT administration, and at four 
weeks post [F-18]FLT administration. Only albumin, red blood cell count, hemoglobin, and 
hematocrit show a statistically significant decrease over time (Table 5). These changes were 
attributed to IV hydration during PET imaging and to subsequent blood loss at surgery. The 
AUC12 values estimated from imaging data are not significantly different from those found from 
serial measures of [F-18]FLT blood concentrations (P = 0.66). No significant neurologic sequelae 
have been attributed to [F-18]FLT use in pet imaging to date. As a result, peripheral 
neuropathy, which had been listed as a possible risk based upon observations at significantly 
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higher doses in early therapeutic HIV studies, is no longer considered a risk of [F-18]FLT use in a 
micro-dose imaging setting. Screening for peripheral neuropathy is not justified based upon the 
available evidence in multiple [F-18]FLT imaging trials. 
 
Table 5. Laboratory Values (mean ± SD) At Each Time Point 

 Pre- 
[F-18]FLT 

Immediate  
< 5 hours 5 – 24 hours 1 – 7 days > 1 week P* 

Sodium (mEq/L ± SD) 139.4 ± 1.5 138.2 ± 2.1 138.3 ± 2.0 137.5 ± 1.8 138.1 ± 2.3 0.064 
Potassium (mEq/L ±S D) 4.2 ± 0.5 4.2 ± 0.4 4.1 ± 0.4 4.2 ± 0.3 4.2 ± 0.4 0.968 
Chloride (mEq/L ± SD) 102.3 ± 3.3 104.2 ± 3.7 104 ± 3.8 102.3 ± 2.4 101.2 ± 3.1 0.055 
Glucose (mEq/L ± SD) 95.1 ± 14.8 96.6 ± 20.7 98.5 ± 23.1 105.4 ± 17.7 109.5 ± 14.6 0.175 
Creatinine (mEq/L ± SD) 0.885 ± 0.198 0.882 ± 0.207 0.881 ± 0.180 0.910 ± 0.190 0.844 ± 0.217 0.949 
BUN (mEq/L ± SD) 15.8 ± 5.0 15.1 ± 5.6 15.2 ± 6.3 14.3 ± 5.2 15.3 ± 5.7 0.959 
SGOT (U/L ± SD) 20.8 ± 5.0 22.0 ± 5.1 22.0 ± 5.3 22.2 ± 11.4 21.8 ± 6.7 0.973 
SGPT (U/L ± SD) 18.7 ± 6.7 18.5 ± 6.6 19.1 ± 6.5 17.6 ± 5.3 17.2 ± 6.5 0.978 
Albumin (g/dL ± SD) 3.9 ± 0.5 3.5 ± 0.4 3.44 ± 0.3 3.1 ± 0.6 3.2 ± 0.8 0.003 
Alk Phos (U/L ± SD) 73.8 ± 19.4 61.1 ± 14.7 58.3 ± 17.0 59.5 ± 22.7  0.081 
Bilirubin (mg/dL ± SD) 0.647 ± 1.81 0.573 ± 0.246 0.581 ± 0.263 0.621 ± 0.286 0.752 ± 0.418 0.714 
RBC (X109 /ml ± SD) 4.5 ± 0.4 4.3 ± 0.5 4.2 ± 0.5 3.8 ± 0.3 3.7 ± 0.4 <0.000

1 
Hematocrit (% ± SD) 40.9 ± 3.1 39.1 ± 4.4 38.4 ± 4.0 35.2 ± 3.4 35.0 ± 3.4 <0.000

1 
WBC (X106/ml ±S D) 7.6 ± 2.1 7.7 ± 3.4 7.9 ± 3.3 9.5 ± 2.8 9.0 ± 3.2 0.262 
Platelets (X106/ml ± SD) 278.1 ± 96.9 259.1 ± 103.1 255.9 ± 103.0 230.1 ± 76.7 233.5 ± 69.5 0.674 

*one-way ANOVA P values (from Turcotte et al, 2007) 
 
 
The single dose AUC12 values derived from blood clearance studies performed at the University 
of Washington ranged from 0.22 to 1.34 ng-h/mL with a mean of 0.80 ng-h/mL. This range 
corresponds to 0.46% to 2.7% of the Flexner therapeutic clinical trial AUC12 of 50 ng-h/mL. In 
the Flexner trial the only dose-limiting toxicity was hematologic, either anemia or 
granulocytopenia, and the threshold for this response was greater than 50 ng-h/mL. The only 
adverse event at the 50 ng-h/mL level was a peripheral neuropathy in 2 of 15 patients that 
manifested at about 40 days. The peripheral neuropathy was detected by vibration sensation 
scores and was not a dose limiting toxicity. For FLT, the average arterial blood curve (% injected 
dose per mL of blood) from 16 University of Washington FLT two-hour studies were 
extrapolated to 12 hours using the conservative estimation that there would be no more 
clearance of FLT from the plasma and that all the radioactivity in the blood was in the form of 
the unmetabolized FLT. It was then assumed that 100% of the dose (6.1 µg = 6100 ng) was in a 
plasma volume of 3,000 mL. The dose in nanograms was multiplied by the fraction of the 
injected dose per mL divided by the plasma volume to obtain ng/mL for each time point. The 
area under this curve was 0.5 ng-h/mL. Thus, the AUC12 of a single injected dose of FLT will be < 
1% of the single dose and less than 0.01% of the cumulative 40- day dose of the lowest mass 
associated with any reported toxic effect in humans, 50 ng-h/mL and will not lead to clinically 
detectable toxic effects. 
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An NCI-sponsored study (Spence, 2008) was conducted at University of Washington in Seattle 
beginning in 2005. Twelve patients with brain tumors were enrolled. Overall, 2 of the 12 
subjects receiving FLT experienced an elevation in BP from baseline to two hours post infusion: 
Subjects 1 (119/56 – 133/66) and 4 (120/78 – 163/74). In Subject 4, abnormal BP was attributed 
to discomfort from the head immobilization device. There were no clinically relevant events 
reported. All subjects performed consistently on the pre- and post- neurological exams and 
there were no changes in status. The clinical chemistry data are shown in Table 6. 
 
Four of these analytes demonstrated statistically significant changes on one-way ANOVA: 
potassium, carbon dioxide, total protein, and albumin. Some of the other values were above or 
below normal, but no pattern was seen except that many were lower on the day of the study. 
These decreases are attributed to two main factors. Normal saline infusion, which expands 
blood volume, and arterial blood sampling for kinetic analysis are performed during the 
procedure, both of which will cause a general lowering of the concentration of blood 
components. The subsequent recovery of these values to baseline is consistent with this 
explanation and consistent with the results obtained by Turcotte (2008). 
 
The AUC12 values, estimated from assaying arterial blood samples, ranged from 0.004 to 0.035 
ng-hr/ml, with a mean of 0.016 ng-hr/ml. These mass levels correspond to 0.008% to 0.07% of 
the least toxic single dose of 50 ng-hr/ml in the Flexner trial (a 40-day, 2 dose per day study). If 
comparison is made to the cumulative dose, the [F-18]FLT is at 0.0001% to 0.0009% of the 
therapeutic dose. 
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Table 6. Laboratory Values (mean ± SD) At Each Time Point 

Analyte Pre Mean ± SD Immediately 
Pre-Mean ± SD 

Day 1  
Mean ± SD 

Day 28 
Mean ± SD 

Amylase 75.4 ± 23.1 68.5 ± 27.6 77.8 ± 33.9 75.4 ± 33.7 
Na+ 140.8 ± 2.6 138.4 ± 4.6 139.3 ± 3.3 141.1 ± 3.1 
K+ 4.27 ± 0.42 3.88* ± 0.20 4.20 ± 0.28 4.08 ± 0.30 
Cl- 106.0 ± 3.7 106.0 ± 4.6 104.5 ± 3.6 106.5 ± 3.3 
CO2 total 27.6 ± 2.9 24.6* ± 2.3 26.9 ± 2.1 26.8 ± 2.5 
Ion Gap 6.29 ± 1.60 7.83 ± 2.29 7.70 ± 2.21 7.67 ± 3.08 
Glucose 121.8 ± 47.7 98.7 ± 33.4 125.2 ± 73.5 116.9 ± 71.6 
BUN 12.45 ± 4.06 10.58 ± 4.01 11.00 ± 3.03 13.73 ± 4.63 
Creatinine 1.00 ± 0.17 0.85 ± 0.17 0.97 ± 0.24 1.01 ± 0.27 
Protein total 6.45  ±  0.38 5.66* ± 0.37 6.14 ± 0.57 6.33 ± 0.76 
Albumin 4.15  ±  0.25 3.66* ± 0.18 4.01 ± 0.51 3.99 ± 0.50 
Bilirubin total 0.68  ±  0.16 0.79 ± 0.24 0.79 ± 0.17 0.65 ± 0.12 
Ca++ 9.35  ±  0.19 9.01 ± 0.29 9.38 ± 0.39 9.24 ± 0.54 
AST (GOT) 26.3 ± 5.9 22.5 ± 4.4 23.7 ± 5.0 26.8 ± 5.1 
Alk Phos 86.0 ± 22.7 78.5 ± 26.4 84.3 ± 27.9 86.5 ± 30.3 
GPT 39.4 ± 15.8 30.2 ± 9.6 32.7 ± 11.2 33.0 ± 7.7 
GGT 44.7 ± 21.1 42.3 ± 22.4 47.2 ± 23.3 44.3 ± 26.0 
LDH 224.9 ± 104.9 151.8 ± 41.9 174.9 ± 57.9 248.6 ± 205.4 
Phosphate 3.15 ± 0.55 3.03 ± 0.55 3.16 ± 0.59 3.07 ± 0.41 
Prothrombin 12.74 ± 1.39 13.59 ± 0.52 13.12 ± 0.94 12.82 ± 1.39 
INR 1.02 ± 0.04 1.05 ± 0.05 1.01 ± 0.09 1.01 ± 0.06 
PTT 26.8 ± 3.1 29.4 ± 5.7 30.9 ± 15.8 26.3 ± 2.8 
WBC 6.13 ± 1.91 5.75 ± 1.40 6.96 ± 3.98 5.85 ± 2.10 
RBC 4.65 ± 0.42 4.37 ± 0.39 4.50 ± 0.38 4.48 ± 0.52 
Hgb 14.5 ± 1.1 13.4 ± 0.9 13.9 ± 1.1 13.9 ± 1.6 

Hct 42.5 ± 3.1 39.9 ± 3.4 41.1 ± 3.0 41.2 ± 4.5 
MCV 91.5 ± 3.3 91.3 ± 3.5 91.3 ± 3.2 92.1 ± 3.3 
MCH 31.4 ± 1.6 30.8 ± 1.4 31.0 ± 1.4 31.2 ± 1.3 
MCHC 34.3 ± 0.9 33.7 ± 0.8 33.9 ± 0.6 33.9 ± 0.8 
Platelets 233.9 ± 54.2 226.2 ± 42.7 220.9 ± 47.8 220.0 ± 52.4 
ANC 4.08 ± 1.42 3.79 ± 1.15 5.02 ± 3.34 3.89 ± 1.42 
Spec Gravity 1.02 ± 0.01 1.01 ± 0.00 1.02 ± 0.00 1.02 ± 0.00 
pH 6.05 ± 1.01 6.88 ± 0.80 6.60 ± 0.97 5.85 ± 1.08 
* statistically significant change (p < 0.05); one-way ANOVA 
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The published studies on [F-18]FLT are discussed in Section VII of this Investigator’s Brochure. 
While none of these studies reported explicit safety information, the majority of these 
publications did indicate that Institutional Review Board (IRB) or Ethics Committee approval 
was obtained for the study, so the patients would have been observed for clinically evident 
adverse events, none of which were reported. 
 
7. [F-19] GENOTOXICITY AND MUTAGENICITY 
There are some literature reports on the mutagenic properties of FLT. Ehrlich ascites tumor 
cells incubated with 10 µM FLT for extended periods (12, 24, 36 hours: AUC 120, 240, 360 nmol-
h/mL) showed chromosome damage (Wobus, 1976). The most prominent effects were breaks 
and gaps, however, much less damage was seen if a recovery time was included (12, 24 h) and 
the damage could also be largely reversed by post-treatment with thymidine (10 µM). FLT 
anabolism, FLT incorporation into DNA and the effects of FLT on cellular genome integrity have 
been studied in cultured CEM (CD4+ human lymphoblastoid) cells (Sundseth, 1996). FLT 
concentrations of 10 and 100 µM produced chromosome fragmentation characteristic of cells 
undergoing apoptosis. In contrast, at 1 µM FLT the level of fragmentation was similar to the 
controls without FLT exposure. Despite prominent levels of intracellular FLT anabolites, the 
fraction of FLT in DNA was low (10-6 total). At the minimum specific activity permitted by the 
overall specifications, the dose to patients (5 mCi) will correspond to an initial, maximal plasma 
concentration of about 5 nM. This is 200 times lower than the level of FLT where no 
chromosomal damage was seen in CEM cells (1 µM). Based on these data, the administration of 
approximately 5 mCi of FLT to humans does not pose a probable threat of mutagenesis. 
 
8. ADVERSE EVENTS AND MONITORING FOR TOXICITY 
As discussed above, the mechanism of action of FLT’s toxicity at therapeutic dosing levels is 
based on inhibition of DNA synthesis (Langen, 1969; 1972; 1972; Matthes, 1988). Total 
exposure to the radiolabeled agent for PET imaging, will be several thousand times lower than 
the exposure at which toxicity has been observed in humans. Nevertheless, as with all 
investigational drugs, patients receiving FLT should be observed for adverse events, and 
promptly treated should any adverse effects occur. 
 
In the Flexner HIV therapeutic dosing study mild peripheral neuropathy occurred in 2 of 15 subjects 
at 50 ng-h/mL, but was not dose-limiting. In the Katlama study, no serious adverse events were 
observed. Four patients experienced fatigue, three experienced loss of appetite, two grade 1 and one 
grade 2 transaminase elevations and one fall in hemoglobin. In a recent randomized, double-blind 
placebo-controlled study of NRTI-resistant HIV patients a four-week course of 2 mg/day FLT 
significantly reduced their viral load and showed no significant signs of toxicity (Ghosn, 2007). 
 
In considering potential adverse effects that may be reasonably anticipated, based upon the available 
evidence for [F-18]FLT use in imaging, it is critical to note that for a single imaging study, at the 
minimum specific activity permitted by the overall specifications, the dose to patients receiving ≤ 5.0 
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mCi will correspond to an FLT injected mass of 25 nmoles. This is 10,000 times less than the 
cumulative dose of 56 mg, and 300 times lower than the daily 2 mg dose of FLT used in the most 
recent therapeutic patient studies. 
 
Based on these data, the administration of a total 10 – 15 mCi of [F-18]FLT over several imaging time 
points required to assess the effects of therapeutic intervention (baseline and typically two time 
points during therapy) to humans poses a minimal risk for an adverse effect. Therefore, the risk 
profile for [F-18]FLT used as described in this Investigator’s Brochure consists of allergic 
reaction/anaphylaxis, which appears to be highly unlikely, and risks that would be associated with 
any clinical IV infusion/injection. 
 

VI. BIODISTRIBUTION AND RADIATION DOSIMETRY OF [F-18]FLT 

1. MOUSE BIODISTRIBUTION 
Preclinical development of [F-18]FLT was undertaken at the University of Washington; studying 
the uptake of FLT in cultured tumor cells, biodistribution studies with rodents (Rasey, 2002) and 
monkeys and PET imaging in monkeys. Tumor cell cultures with a high S-phase fraction strongly 
sequester and retain labeled FLT and this uptake is proportional to the percentage of cells in S-
phase. On this basis, imaging tumors with [F-18]FLT and modeling of data is designed to 
visualize regions of proliferation (high S-phase fraction). 
 
2. NON-HUMAN PRIMATE BIODISTRIBUTION 
Investigators at the University of Washington imaged four juvenile male monkeys (Macaca 
nemestrina): two normal monkeys and two acutely infected with human HIV. Approximately 4 
mCi of [F-18]FLT was injected intravenously over 60 seconds and images were taken for 120 
minutes. Blood samples were withdrawn via an arterial line, initially at 10 second intervals and 
then at progressively longer times. This study provided estimates of organ specific dosimetry in 
a species closely related to humans. 
 
Table 7 shows the biodistribution data. The data showed the following primary observations: (i) 
[F-18]FLT was avidly taken up in normally proliferating tissue, such as bone marrow; (ii) blood 
[F-18]FLT levels fell to low background levels within 20 minutes, (iii) [F-18]FLT and its primary 
metabolite cleared by the kidneys into urine (30-50% of the injected dose within two hours); 
(iv) the two HIV infected animals that were autopsied after imaging showed elevated levels of 
radioactivity (twice marrow levels) in lymphoid tissues, such as spleen and lymph nodes. These 
data are consistent with the more complete human data shown in the next section. 
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Table 7. [F-18]FLT Biodistribution in Juvenile Male Macaca Nemestrina Infected with Human 
HIV 

SAMPLE/TISSUE UPTAKE : Ci/g 

Urine 18.00 

Spleen 4.22* ; 3.86* 

Ileum 2.04 

Bone marrow 2.01 ; 1.78 

Colon 1.67 ; 1.66 

Jejunum 1.49 

Duodenum 1.41 

Liver 0.81 ; 0.65 

Testes 0.27 ; 0.27 

Muscle (right, left leg) 0.15 ; 0.13 

Pectoralis 0.14 ; 0.13 

Cerebellum 0.09 

Brainstem 0.09 

Cortex 0.08 ; 0.08 
 
 
3. HUMAN RADIATION DOSIMETRY OF [F-18]FLT 
Eighteen patients (11 men, 7 women) with known or suspected lung cancer were prospectively 
studied with [F-18]FLT PET imaging at the University of Washington from March 2000 to April 
2002 (Vesselle, 2003). Biodistribution data from these 18 patient studies were used for 
dosimetry calculations. The age range was 45 – 81 years of age (mean, 66 years) for men and 46 
– 75 years of age (mean, 62 years) for women. The weight range was 54 – 126 kg (mean, 83 kg) 
for men and 46 – 113 kg (mean, 75 kg) for women. The normal tissues in the imaging data that 
were used for dosimetry were distant from the site of any known tumor. During the course of 
the study, patients were hydrated with 500 mL of intravenous isotonic saline. All patients had 
normal renal function by medical history and as demonstrated by normal creatinine and normal 
blood urea nitrogen levels before PET. Two separate dynamic imaging sequences were used, 
either single or 2 - field of view (FOV) sequences. The imaging sequence for a single FOV protocol 
was eight 15 - second, four 30 - second, six 1 - minute, two 5 - minute, and ten 10 - minute 
imaging intervals. The imaging sequence for a 2 - FOV (FOV1 and FOV2) protocol was four 25 - 
second, three 50 - second, three 2 - minute, and ten 5 - minute imaging intervals for FOV1 and 
four 25 - second, three 50 - second, three 2 - minute, and nine 5 - minute imaging intervals for 
FOV2. FOV1 imaging and FOV2 imaging were interleaved from the start of imaging with 15 - 
second intervals taken to move between the 2 FOV's. This provided kinetic tracer uptake curves in 
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the thorax region containing the primary tumor (FOV1) and within another region (FOV2) for 
dosimetry studies. The additional FOV was the pelvis in six patients (bladder, ovary, and testicular 
dosimetric information), the testes without the bladder in 1, the brain in 1, and the entire 
abdomen in 2 patients. Upper abdominal imaging was included within the thoracic FOV1 for 
patients with a thoracic lung lesion located in the lower lungs. Urine was collected at the end of each 
study. 
 
ROIs were manually drawn within the boundaries of normal organs. The distribution of absorbed 
dose was calculated according to the MIRD method using the S values provided by the MIRDOSE3 
software (ORISE; Oak Ridge, TN). The MIRD method assumes that the integrated activity is known 
for each of the source organs. Observed source organs where [F-18]FLT was concentrated were 
the urinary bladder, liver, kidneys, and bone marrow. 
 
The integrated activity concentrations ( C , MBq - h/g) were calculated for all organ ROIs using 
trapezoidal integration over time applied to the corrected time–activity curves over the duration 
of the dynamic dataset. A curve-fitting method was used to account properly for any outlying 
bladder time–activity curve and to allow calculation of urine reaccumulation after voiding. To 
test the effect of voiding on bladder dosimetry, two voiding scenarios were evaluated and 
applied to both male and female subjects. 
 
The data for the residence times in organs using each of the voiding scenarios is noted below in 
Table 8 (men) and Table 9 (women). The first scenario is conservative, whereas the second has 
a more realistic voiding scheme. Scenario 1: Single bladder voiding at six hours after [F-18]FLT 
administration with a 10% post-voiding bladder residual decayed to infinity. This scenario 
assumed no urine re-accumulation after six hours. Scenario 2: First bladder voiding at two 
hours after [F-18]FLT administration with a 10% post-voiding residual; urine re-accumulation 
between two and six hours at a rate determined by the bladder curve fit; second bladder 
voiding at six hours with a 10% post-voiding residual decayed to infinity. This scenario assumed 
no urine re-accumulation after six hours. 
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Table 8. Cumulated Activity and Residence Time of [F-18]FLT for 5 mCi (185 MBq) Injection in 
a 70-kg Man 

Source organ n  C  
(kBq-h/g) 

SD    C  
(kBq-h/g) 

Organ wt 
(g) 

 A =  C x 
wt 

(MBq-h) 

SD  A  
(MBq-h) 

tau 
(h) 

SD tau 
(h) 

Adrenals 1 1.93 0.339* 16.3 0.031 0.006 0.001 0.0002 

Brain 1 0.229 0.040* 1420.0 0.325 0.057 0.009 0.0015 

LLI 4 1.06 1.05 143.0 0.152 0.151 0.004 0.0041 

Stomach 3 2.18 0.654 260.0 0.566 0.170 0.015 0.0046 

Blood 11 1.14 0.198 454.0 0.516 0.090 0.014 0.0024 

Heart wall 10 1.20 0.348 316.0 0.378 0.110 0.010 0.0030 

Kidney 3 5.19 1.82 299.0 1.55 0.544 0.042 0.0147 

Liver 6 6.17 1.64 1910.0 11.78 3.13 0.318 0.0847 

Lung 11 0.572 0.157 1000.0 0.572 0.157 0.015 0.0042 

Pancreas 2 2.37 1.59 94.3 0.223 0.150 0.006 0.0040 

Marrow 11 7.70 2.27 1120.0 8.62 2.54 0.233 0.0688 

Spleen 5 1.77 0.839 183.0 0.324 0.153 0.009 0.0041 

Bladder† 
Void scenario 1 

 
5 

 
61.6 

 
45.7‡ 

 
211.0 

 
13.0 

 
9.64 

 
0.351 

 
0.261 

Void scenario 2  25.6   5.4  0.146  

Testes 3 1.36 0.753 39.1 0.053 0.029 0.001 0.001 

Remainder§  0.872 0.160 66234.3 57.76 10.473 1.561 0.2831 
 

* SD for organs with only 1 curve were calculated in proportion to SD of remainder. 
† Bladder average and SD of five patients.   
‡ SD for bladder was calculated from five patients with bladder curves. 
§ Remainder of body for 73.7-kg man. Both voiding scenarios yield same remainder values.  
wt weight; LLI lower large intestine. 
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Table 9. Cumulated Activity and Residence Time of [F-18]FLT for 4 mCi (147 MBq) Injection in 
a 56.8-kg Woman 

Source organ n  C  
(kBq-h/g) 

SD    C  
(kBq-
h/g) 

Organ 
wt 
(g) 

 A =  C x 
wt 

(MBq-h) 

SD  A  
(MBq-h) 

tau 
(h) 

SD tau 
(h) 

 

Brain 1 0.406 0.064* 1410 0.572 0.090 0.015 0.0024 
Breast 5 0.495 0.128 361 0.179 0.046 0.005 0.0012 
LLI 1 0.913 0.150* 109 0.100 0.016 0.003 0.0004 
Stomach 1 2.17 0.347* 195 0.423 0.068 0.011 0.0018 
Blood 6 1.60 0.381 347 0.555 0.132 0.015 0.0036 
Heart wall 6 1.71 0.341 241 0.413 0.082 0.011 0.0022 
Kidney 1 6.07 1.55 248 1.50 0.389 0.041 0.0105 
Liver 3 9.16 1.32 1400 12.83 1.85 0.347 0.0499 
Lung 6 0.705 0.613 651 0.459 0.399 0.012 0.0108 
Marrow 6 10.7 3.55 1050 11.24 3.73 0.304 0.101 
Spleen 3 3.86 0.633 123 0.475 0.078 0.013 0.0021 
Bladder‡ 
Void scenario 1 

5 61.6 45.7 160 9.86 7.31 0.266 0.1976 

Void scenario 2  25.6   4.09  0.111  
Remainder~  1.14 0.170 5050 57.7 8.43 1.56 0.228 
 

* SD for organs with only 1 curve were calculated in proportion to SD of remainder. 
† SD for kidney was calculated by pooling male and female kidney curves.  
‡ Bladder average and SD of five patients. 
§ SD for bladder was calculated from five patients with bladder curves. 
~Remainder of body for 56.8-kg woman. Both voiding scenarios yield same remainder values.  
wt weight; LLI lower large intestine. 
 
The effective dose equivalent (EDE) for uniform whole-body exposure was calculated for both 
male and female weights, assuming a relative biologic effectiveness of 1.0 and following the 
procedure described in Addendum 1 to ICRP Publication 53: Radiation Dose to Patients from 
Radiopharmaceuticals. The dose estimates for the gonads, breast, red bone marrow, lungs, 
thyroid, bone surfaces, and remainder of body were multiplied by their weighting factors (0.25, 
0.15, 0.12, 0.12, 0.03, 0.03, and 0.30, respectively) and summed to calculate the EDE. The 
weighting factor for the total body remainder was divided equally among the five remaining 
organs and tissues receiving the highest dose equivalent (weight of 0.06 per organ). For men, 
these were the urinary bladder wall, liver, kidneys, pancreas, and adrenal glands; for women, 
these were the urinary bladder wall, liver, kidneys, spleen, and uterus. 
 
The organ dose estimates are presented in the Tables 10 (men) and 11 (women) including 
information based on the different voiding scenarios. 
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Table 10. Mean Organ Dose Estimates for Standard Man Based on the Two Different Voiding 
Scenarios 

Organ Scenario 1 
(mean mGy/MBq) 

Scenario 2 
mean mGy/MBq) 

SD (mGy/MBq) 

Adrenal 2.01E-02 (75) 2.07E-02 (77) 2.03E-03 (8) 
Brain 3.25E-03 (12) 3.39E-03 (13) 3.72E-04 (1) 
Breasts 8.13E-03 (30) 8.39E-03 (31) 9.24E-04 (3) 
Gallbladder wall 1.65E-02 (61) 1.69E-02 (63) 2.12E-03 (8) 
Lower large 

 
1.51E-02 (56) 1.29E-02 (48) 4.55E-03 (17) 

Small intestine 1.47E-02 (54) 1.42E-02 (53) 1.94E-03 (7) 
Stomach 1.37E-02 (51) 1.41E-02 (52) 1.99E-03 (7) 
Upper large 

 
1.26E-02 (47) 1.24E-02 (46) 3.00E-03 (11) 

Heart wall 1.62E-02 (60) 1.67E-02 (62) 2.00E-03 (7) 
Kidney 3.52E-02 (13

 
3.56E-02 (132) 9.32E-03 (34) 

Liver 4.51E-02 (16
 

4.54E-02 (168) 1.07E-02 (40) 
Lungs 9.61E-03 (36) 1.01E-02 (37) 1.13E-03 (4) 
Muscle 1.58E-02 (59) 1.68E-02 (62) 2.45E-03 (9) 
Pancreas 2.24E-02 (83) 2.30E-02 (85) 7.63E-03 (28) 
Red marrow 2.39E-02 (89) 2.40E-02 (89) 5.27E-03 (19) 
Bone surface 1.55E-02 (57) 1.58E-02 (58) 3.04E-03 (11) 
Skin 4.31E-03 (16) 4.44E-03 (16) 6.26E-04 (2) 
Spleen 1.66E-02 (62) 1.71E-02 (63) 4.45E-03 (16) 
Testes 1.45E-02 (54) 1.32E-02 (49) 4.34E-03 (16) 
Thymus 1.05E-02 (39) 1.11E-02 (41) 1.11E-03 (4) 
Thyroid 9.71E-03 (36) 1.04E-02 (38) 1.14E-03 (4) 
Urinary bladder 

 
1.79E-01 (66

 
7.91E-02 (293) 1.28E-01 (47

 Lens 9.97E-03 (36) 1.05E-02 (39) 1.15E-03 (4) 
Total body 1.23E-02 (46) 1.26E-02 (47) 1.68E-03 (6) 

 

Values in parentheses are mrad/mCi. 
Scenario 1: bladder voiding at six hours only (10% post-voiding residual decayed to infinity). 
Scenario 2: bladder voiding at two and six hours (10% residual after each voiding with re-accumulation 
of urine between two and six hours. Residual urine decayed to infinity after six hours). 
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Table 11. Mean Organ Doses for Women Based on the Two Different Voiding Scenarios 

Organ Scenario 1 
(mean mGy/MBq) 

Scenario 2 (mean 
mGy/MBq) 

SD (mGy/MBq) 

Adrenal 2.01E-2 (74) 2.06E-02 (76) 1.58E-03 (6) 
Brain 5.07E-03 (19) 5.21E-03 (19) 5.71E-04 (2) 
Breasts 7.23E-03 (27) 7.47E-03 (28) 8.00E-04 (3) 
Gallbladder wall 1.96E-02 (73) 1.99E-02 (74) 1.59E-03 (6) 
Lower large 

 
1.62E-02 (60) 1.40E-02 (52) 3.78E-03 (14

 Small intestine 1.86E-02 (69) 1.80E-02 (67) 2.08E-03 (8) 
Stomach 1.49E-02 (55) 1.53E-02 (57) 1.25E-03 (5) 
Upper large 

 
1.40E-02 (52) 1.36E-02 (50) 1.51E-03 (6) 

Heart wall 2.23E-02 (83) 2.28E-02 (84) 2.17E-03 (8) 
Kidney 4.20E-02 (155) 4.23E-02 (15

 
7.88E-03 (29

 Liver 6.42E-02 (238) 6.45E-02 (23
 

8.38E-03 (31
 Lungs 1.26E-02 (47) 1.31E-02 (49) 2.96E-03 (11
 Muscle 2.37E-02 (88) 2.51E-02 (93) 3.01E-03 (11
 Ovaries 2.07E-02 (77) 1.88E-02 (69) 3.65E-03 (14
 Pancreas 1.96E-02 (72) 2.01E-02 (75) 1.44E-03 (5) 

Red marrow 3.30E-02 (122) 3.31E-02 (12
 

8.47E-03 (31
 Bone surface 2.00E-02 (74) 2.02E-02 (75) 4.43E-03 (16
 Skin 5.07E-03 (19) 5.18E-03 (19) 5.95E-04 (2) 

Spleen 2.89E-02 (107) 2.94E-02 (10
 

3.32E-03 (12
 Thymus 1.35E-02 (50) 1.41E-02 (52) 1.17E-03 (4) 

Thyroid 1.27E-02 (47) 1.33E-02 (49) 1.21E-03 (4) 
Urinary bladder wall 1.74E-01 (646) 7.76E-02 (28

 
1.24E-01 (45

 Uterus 2.53E-02 (94) 2.04E-02 (76) 7.20E-03 (27
 Lens 9.18E-03 (34) 9.68E-03 (36) 8.77E-04 (3) 

Total body 1.56E-02 (58) 1.59E-02 (59) 1.72E-03 (6) 
 
 
The individual organ and total body doses associated with [F-18]FLT-PET are comparable to 
those for other comparable nuclear medicine procedures. The EDE for a 5 mCi dose in standard 
man is estimated to be 510 mrem (5.1 mSv) and for a standard female is 720 mrem (7.2 mSv). 
 
A summary Table 12 of the relevant dosimetry is provided with the Total Body Exposure as well 
as the two other target organs of most concern. The bladder wall (independent on the voiding 
scenario) is the target organ with the liver receiving the next most significant radiation 
exposure in both man and woman. 
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Table 12. Summary of Dosimetry 

Organ of Interest Men mGy/MBq  (mrad/mCi) Woman mGy/MBq   (mrad/mCi) 

Total Body Dose Scenario 1  1.23E-02      (46)  
Scenario 2  1.26E-02     (47)                                     

Scenario 1  1.56E-02      (58)  
Scenario 2  1.59E-02     (59)                          

Bladder Scenario 1   1.79E-01     (662) 
Scenario 2   7.91E-02     (293)  

Scenario 1   1.74E-01     (646) 
Scenario 2   7.76E-02     (287)  

Liver Scenario 1  4.51E-02      (167) 
Scenario 2  4.54E-02     (168) 

Scenario 1  6.42E-02      (238) 
Scenario 2  6.45E-02     (239) 

 
Scenario 1: Single bladder voiding at six hours after [F-18]FLT administration with a 10% post-
voiding bladder residual decayed to infinity. This scenario assumed no urine re-accumulation 
after six hours. Scenario 2: First bladder voiding at two hours after [F-18]FLT administration 
with a 10% post-voiding residual; urine re-accumulation between two and six hours at a rate 
determined by the bladder curve fit; second bladder voiding at six hours with a 10% post-
voiding residual decayed to infinity. This scenario assumed no urine re-accumulation after six 
hours. The first scenario is conservative, whereas the second has a more realistic voiding 
scheme.  
 

VII. [F-18]FLT PREVIOUS HUMAN EXPERIENCE 

Preliminary studies using [F-18]FLT for imaging human subjects have been published (Table 13). 
[F-18]FLT has been studied for imaging in Germany and in the United States (e.g., UCLA, 
University of Washington in Seattle, Wayne State University). Imaging protocols used in 
Germany and the U.S. were pre-approved by their respective regulating committees and done 
under the Radioactive Drug Research Committee (RDRC) process. Patients received from 1.4 – 
11 mCi of [F-18]FLT.  
Since these early studies many sites have published studies in a wide variety of organ systems 
and diseases.  These and other studies are summarized in Table 13 below. 
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Table 13. A Summary of Published Manuscripts Reporting [F-18]FLT Human Imaging Studies 

 
Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2017 Blood 10 0.08/kg 2.96/kg Han (2017) 

2017 Prostate 7 4.96–9.72 184–360 Kairemo (2017) 

2017 Lung 55 0.1/kg 3.7/kg Wang (2017) 

2017 Lung 9 10 370 Crandall (2017) 

2017 Lung 60 0.1/kg 3.7/kg Everitt (2017) 

2015 Lung 9 4.1-10.3 151-381 Hoyng (2015) 

2015 Lung 23   Liu (2015) 

2015 Lung 12 8.1-10.8 300-400 Chen (2015) 

2014 Lung 15 5.5 – 8.8 205-327 Bhoil (2014) 

2014 Lung 10 10 370 Frings (2014) 

2014 Lung 20 0.1/kg 3.7/kg Everitt (2014) 

2014 Lung 60 0.1/kg 3.7/kg Leimgruber (2014) 

2014 Lung 7 6.9-9.8 254–361 Trigonis (2014) 

2013 Lung 62 0.12/kg 4.5/kg Beauregard (2013) 

2013 Lung 14 6.76 250 Frings (2013) 

2013 Lung 
14 

9 

6.76 

9.50 

250 

350 
Frings (2013) 

2013 Lung 40 8.1 300 Scheffler (2013) 

2013 Lung 162 0.1/kg 4~5/kg Xu (2013) 

2012 Lung 30 8.4+91 311+91 Kobe (2012) 

2012 Lung 30 8.2+89 305+89 Kahraman (2012) 

2012 Lung 1 - - Scheffler (2012) 

2012 Lung 68 8.1-10.8 300-400 Yang (2012) 

2011 Lung 34 8.1 300 Zander (2011) 

2011 Lung 20 8.1 300 Saga (2011) 

2011 Lung 50 7 259 Mileshkin (2011) 
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2011 Lung 25 
0.07/kg 

Max=5 

2.59/kg 

Max=185 
Brockenbrough (2011) 

2010 Lung 73 8.1–10.8 300-400 Xu (2010) 

2010 Lung 31 8.1–10.8 300–400 Yang (2010) 

2010 Lung 21 8 mCi 300 Koizumi (2010) 

2008 Lung 9 7.9-10.5 292-389 (373) Shields (2008) 

2008 Lung 28 15 555 Sohn (2008) 

2008 Lung 54 2.7-6.4 101-238 (158) Yamamoto (2008) 

2008 Lung 34* 8.1-10.8 300-400 Yamamoto (2008) 

2008 Lung 55 8.1-10.8 300-400 Tian (2008) 

2007 Lung 20 0.07 /kg 2.6 /kg Turcotte (2007) 

2008 Lung 54 Mean 3.51 

2.73-6.43 

Mean 129.9 

101-238 

Yamamoto (2008) 

2007 Lung 18* 3.92 145+26 Yamamoto (2007) 

2006 Lung 11 5.0 185  Yap (2006) 

2005 Lung 47 7.2-10.0 265-370 Buck (2005) 

2005 Lung 17 Max 5 

0.07/kg 

Max 185 

2.6 /kg 

Muzi (2005) 

2004 Lung 17 5.7 

3.5-11.4 

Mean=210 

130-420 

Cobben (2004)  

2004 Lung 28 (a) 9.0 

7.2-10.0 

Mean=334 

265-370 

Halter (2004)  

2003 Lung 16 5.4-10.8 200-400 Dittman (2003) 

2003 Lung 26* 9.0 

7.2-10.0 

Mean=334 

265-370 

Buck (2003)  

2002 Lung 30 (c) 9.0 

7.2-10.0 

Mean=334 

265-370 

Buck (2002)  

2002 Lung 10* 5.0 185 max Vesselle (2002)  

2008 Lung/Head/Neck 9/6 10 370 De Langen (2008) 

2013 Thyroid 20 0.1/kg 3.7/kg Nakajo (2013) 

2012 Thyroid 1 0.1 3.7/kg Nakajo (2012) 
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2016 Pelvis 32 0.07/kg 2.6/kg McGuire (2016) 

2015 Ovarian 6 8.0-10.0 296-370 Cho (2015) 

2011 Ovarian 6 5 185 Richard (2011) 

2017 Oropharynx 20 0.2/kg 7.4/kg Qi (2017) 

2012 Oropharynx 13 0.1/kg 5.2/kg Nyflot (2012) 

2015 Renal 20 5 185 Horn (2015) 

2015 Adrenal 43 0.1/kg 3.7/kg Nakajo (2015) 

2012 Uterus 15 8.6-11.5 319-424 Yamane (2012) 

2012 Stomach 1 5 185 McKinley (2012) 

2012 Liver 20 5.68 210 Contractor (2012) 

2010 Blood 8 5 185 Vanderhoek (2010) 

2008 Blood 10 7.1-10 265-370 (334) Buck (2008) 

2014 GI 21 5–7 185–259 Hoh (2014) 

2011 GI 21 0.1/kg 3.7/kg Kameyama (2011) 

2010 GI  21 8.1-10.8 300–400 Yue (2010) 

2009 GI 21 0.18 3.5 /Kg Kameyama (2009) 

2008 GI 5 8.7-12.7 328-470 Roels (2008) 

2016 Gastric 17 0.1/kg 3.7/kg Nakajo (2016) 

2016 Gastric 96 9.5 350 Staniuk (2016) 

2016 Gastric 10 5.6 ± 0.3 208.2 ± 10.4 Sharma (2016) 

2015 Gastric 64 0.2/kg 7.4/kg Wang (2015) 

2013 Gastric 104 9.5 ± 0.5 350 ± 20 Malkowski (2013) 

2011 Gastric 45 7.3-9.2 270-340 Ott (2011) 

2007 Gastric 45 7.3-9.2 270-340 Herrmann (2007) 

2017 Brain 27 0.07/Kg 2.6/kg Holdhoff (2017) 

2016 Brain 39 8.8 ± 1.04 317.1 ± 38.5 Kudomi (2016) 

2016 Brain 55 2.9-10.6 

mean, 7.7 ± 
1.6 

106-393 

mean, 285 ± 58 

Lin (2016) 

2016 Brain 37 0.1/kg 3.7/kg Mitamura (2016) 
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2016 Brain 10 0.07/kg 2.6/kg Lodge (2016) 

2015 Brain 12 5.3 195 Blanchet (2015) 

2015 Brain 26 0.054/kg 2.0/kg Ferdova (2015) 

2015 Brain 19 10.1±1.0 374.2±36.7 Zhao (2015) 

2015 Brain 39 0.14/kg 5.0/kg Collett (2015) 

2014 Brain 41 4.4–\8.7 161-323 Belohlavek (2014) 

2014 Brain 23 3.7-6.2 138–230 Nowosielski (2014) 

2014 Brain 56 0.1/kg 3.7/kg Zhao (2014) 

2013 Brain 21 7.5+72 279±72 Shinomiya (2013) 

2012 Brain 15 10 370 Enslow (2012) 

2012 Brain 24 0.03-0.18/kg 1.1-6.6/kg Harris (2012) 

2012 Brain 26 5.97 221 Idema (2012) 

2012 Brain 20 10 370 Jeong (2012) 

2012 Brain 2 5 185 Laymon (2012) 

2012 Brain 56 0.1/kg 3.7/kg Yamamoto (2012) 

2009 Brain 15 0.06/kg 2.1 /kg Tripathi (2009) 

2009 Brain 14 5.4 200 Price (2009) 

2008 Brain 13 8.7 322+85 Ullrich (2008) 

2007 Brain 21 0.05/kg 2.0/kg Chen (2007) 

2007 Brain 9 0.04/kg 1.5/kg Schiepers (2007) 

2008 Brain 41 Mean 4.35 

3.49-6.38 

Mean 161 

129-236 

Hatakeyama (2008) 

2008 Brain 12 Mean 4.74 

4.16-5.19 

Mean 175 

154-192 

Spence (2008) 

2006 Brain 12 5 185 Muzi (2006) 

2006 Brain 10 Mean 4.0 

2.8-5.4 

Mean 150 

104-202 

Yamamoto (2006) 

2006 Brain 25 10 370 Saga (2006) 

2005 Brain 25 Mean: 4.7 

3.8-5.9 

Mean 174 

141-218 

Chen (2005) 
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2005 Brain 26 10 370 Choi (2005) 

2005 Brain 25 Mean 8.7 

3.0-10.0 

Mean 322 

111-370 

Jacobs (2005) 

2017 Breast 13 5.9 220 Palmieri (2017) 

2016 Breast 10   O’Sullivan (2016) 

2015  Breast 15 0.095/kg 3.5/kg Crippa (2015) 

2015 Breast 43 3.0-5.5 110-204 Kostakoglu (2015) 

2014 Breast 15 4.1-10.3 153 – 381 Veronese (2014) 

2014 Breast 28 0.07/kg 2.59/kg Wang (2014) 

2014 Breast 30 10.4±1.5 385 ± 56 Marti-Climent (2014) 

2014 Breast 20 0.095/kg 3.5/kg Woolf (2014) 

2013 Breast 15 4.1-10.3 153-381 Willaime (2013) 

2012 Breast 5 5.4 200 Contractor (2012) 

2012 Breast 15 10 370 Lubberink (2012) 

2011 Breast 21 3.9-5.9 

(5.4) 

145-218 

(200) 

Contractor (2011) 

2007 Breast 15 4.1-10.3 153-381 Kenny (2007) 

2006 Breast 10 4.3-11.3 160-420 Been (2006) 

2005 Breast 15 4.1-10.5 153-389 Kenny (2005) 

2005 Breast 14 3.5 130 Pio (2005) 

2004 Breast 12 8.1-12.1 300-450 Smyczek-Gargya 
(2004)  

2013 Periampullary 21 7.2-10 265-370 Cheng (2013) 

2017 Pancreas  5.03 to 8.73 
Mean, 6.21 

186 to 324 

Mean, 230 MBq 

Pretz (2017) 

2016 Pancreas 15 0.1/kg 3.7/kg Nakajo (2016) 

2016 Pancreas 6 10.1±1.0 374.2±36.7 Debebe (2016) 

2015 Pancreas 7 10 ±1 370 ± 37 Goryawala (2015) 

2015 Pancreas 20 Mean 5.6 Mean 208.2 Challapalli (2015) 

2012 Pancreas 46 8.1 300 Herrmann (2012) 

2008 Pancreas 31 7.3-9.2 270-340 Herrmann (2008) 
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2008 Pancreas 5 5.2-7 192-259 Quon (2008) 

2016 Lymphoma 65 8.0 ± 0.8 296 ± 30 Schoder (2016) 

2016 Lymphoma 8 0.14/kg 5.2/kg Constantini (2016) 

2016 Lymph Nodes 70 10 370 Rayamajhi (2016) 

2015 Lymphoma 65 8±0.8 296 ± 30 Schoder (2015) 

2015 Lymphoma 26 5 185 Wondergem (2015) 

2014 Lymphoma 21 2.7-5.0 99.9-185 Mena (2014) 

2014 Lymphoma 22 5 185 Wondergem (2014) 

2014 Lymphoma 61 8.8-12 326–444 Lee (2014) 

2014 Lymphoma 54 7.3-9.2 270-340 Hermann (2014) 

2007 Lymphoma 22 Mean 8.11 

7.20-9.19 

Mean 300 

270-340 

Herrmann (2007) 

2007 Lymphoma 48 3.9 148.6 Kasper (2007) 

2006 Lymphoma 34 Mean 9.3 

7.1-10 

Mean 345 

265-370 

Buck (2006) 

2004 Lymphoma 7 4.3 - 13.2 Mean = 324 

159 - 489 

Buchmann (2004)  

2003 Lymphoma 11 7.5 280 Wagner (2003)  

2107 Melanoma 25   Heil (2017) 

2015 Melanoma 5 4.3-5.3 160–195 Algazi (2015) 

2010 Melanoma 12 5.3 mCi +/- 
10% 196.1 MBq +/- 10% Ribas (2010) 

2003 Melanoma 10 10.8 Med= 400 

185-430 

Cobben (2003)  

2017 Colorectal 39 9.5 350 Mogensen (2017) 

2017 Colorectal 32 0.1/kg 3.7/kg Nakajo (2017) 

2014 Colorectal 30 0.1/kg 3.7/kg Nakajo (2014) 

2013 Colorectal 18 4.3 

3.5-5.0 

Mean 159.1 

111-185 

Hong (2013) 

2013 Colorectal 28 0.1/kg 3.7/kg Nakajo (2013) 

2004 Colorectal 18 9.7 360 + 25 Visvikis (2004)  
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2003 Colorectal 10* 9.5 351 + 52 Francis (2003) 

2003 Colorectal 17  Mean 9.7 

8.4-11.1 

Mean=360 

 312-412 

Francis (2003)  

2015 Rectal 5 5 185 Manning (2015) 

2015 Rectal 20 0.11/kg 4/kg Rendl (2015) 

2013 Rectal 14 10 370 Dehdashti (2013) 

2011 Rectal 9 2.9-11.2 

(5.5) 

109-416 

(205) 

Muijs (2011) 

2007 Rectal 10 8.1 300 Wieder (2007) 

2017 Bone Marrow 15 0.08/kg 3/kg Vercellino (2017) 

2016 Bone Marrow 16 0.12/kg 4.5/kg Wyss (2016) 

2012 Bone marrow 1   Zade (2012) 

2011 Bone Marrow 
Pelvic 2 

0.07/kg 

Max=5 

2.6/kg 

Max=185 
McGuire (2011) 

2011 Bone marrow 17 10.8 400 Agool (2011) 

2010 Bone marrow 1   Agool (2010) 

2006 Bone marrow 18 10.8 400 Agool (2006) 

2008 Bone & soft tissue 22 9.5-11.5 350-425 Buck (2008) 

2004 Soft tissue 19 10.8 Mean=400 

115 -430 

Cobben (2004) 

2012 Sarcoma 20 5.7-8.1 

(6.6+0.5) 

210.9-299.7 

(244.2+0.5) 

Benz (2012) 

2007 Sarcoma 10 Mean 9.81 

3.24-11.62 

Mean 363 

120-430 

Been (2007) 

2015 Head & Neck 10   Nyflot (2015) 

2015 Head & Neck 22 2.2 80 Vojitsek (2015) 

2014 Head & Neck 32 0.1/kg 3.7/kg Hoshikawa (2014) 

2014 Head & Neck 5 0.07/kg 2.59/kg Liu (2014) 

2013 Head/Neck 46 6.76 250 Arens (2013) 

2013 Head/Neck 48 6.8 250 Hoeben (2013) 
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2013 Head/Neck 30 0.09/kg 3.5/kg Hoshikawa (2013) 

2012 Head/Neck 23 0.09/kg 3.5/kg Hoshikawa (2012) 

2012 Head/Neck 13 8.1 300 Inubushi (2012) 

2012 Head/Neck 28 0.09/kg 3.5/kg Kishino (2012) 

2011 Head/Neck 10 
0.07/kg 

Max=5 

2.6/kg 

Max=185 
McGuire (2011) 

2010 Head/Neck 10  250 Troost (2010) 

2007 Head/Neck 10 6.76 250 Troost (2007) 

2004 Head/Neck 21 9.2 Mean=340 

165-650 

Cobben (2004) 

2012 Head/Neck 8 0.07/kg 2.6/kg Larsson (2012) 

2010 Germ Cell Tumors 11 9.5-10.8 350 - 400 Pfannenberg (2010) 

2015 Esophagus 36 8.1-10.8 300-400 Ma (2015) 

2015 Esophagus 10 8.1-10.8 300-400 Zhang (2015) 

2015 Esophagus 100 10-20 370–740 Ma (2015) 

2014 Esophagus 34 9.2-12.2 340-450 Chen (2014) 

2012 Esophagus 22 8.1-10.8 300-400 Han (2012) 

2011 Esophagus 22 8.1-10.8 300-400 Han (2011) 

2005 Esophagus 10 Mean 11.0 

9.2-12-2 

Mean 410 

340-450 

Van Westreenen 
(2005) 

2016 Various Solid 46 
3.4–5.4 

Mean, 4.4 ± 
0.4 

126–200  

Mean, 164 ± 15 
Minamimoto (2016) 

2015 Various Solid 20   Bruce (2015) 

2013 Various Solid 16 ~6.5 ~240 Vanderhoek (2013) 

2016 Various 100 0.14/kg 5.0/kg Johnbeck (2016) 

2016 Various 15 
9.4–10.5 

Mean 10.1 

347–389 

Mean 372 
McHugh (2016) 

2015 Various 20 6.6-10.3 245-382 Ye (2015) 

2012 Various 4 6.76 250 Desar (2012) 

2003 Various 18 5.0 185 max Vesselle (2003)  
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Year Organ system N mCi injected 

(mean) 

MBq Injected (mean) Reference 

2010 Various 13 0.12/kg 4.5/kg Hayman (2010) 

2005 Various 33 Mean 9.5 

8.4-9.7 

Mean 350 

310-360 

Shields (2005) 

 Total No. 
Subjects: 

5123**    

 

*Papers marked with an asterisk in the “N” column were not counted towards the total as they could not be 
verified as unique with certainty. 
 
**The total number in the last row of the “N” column of Table 13 represents a conservative statement of 
apparently unique subjects.  
 
As is evident from the information in Table 13, many of the published studies did not 
specifically mention the specific activity of the [F-18]FLT or provide sufficient information to 
calculate it so it is not possible to actually assess the amount of FLT that was actually 
administered to the patient. This amount could be estimated if needed as most studies cite the 
method of synthesis and all of them are using no carrier added (nca) nucleophilic synthetic 
methods that give high specific activity. In addition, only the Turcotte (2008) and Spence (2008) 
papers specifically address safety issues by describing laboratory results post injection or assess 
for neurological sequelae such as mild peripheral neuropathy. This is addressed in Section 6 
where two studies with safety monitoring are detailed. However, the majority of these 
publications did indicate that IRB or Ethics Committee approval was obtained for the study, so 
the patients would have been observed for clinically evident adverse events, none of which 
were reported. 
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