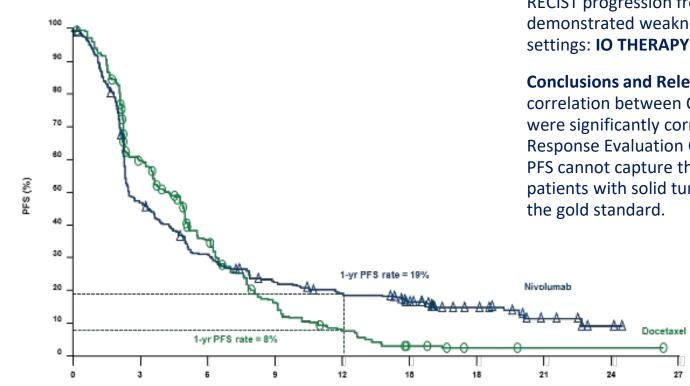

Imaging in the immuno-oncology era: between immune response, pseudoprogression and hyperprogression:

what do we have to know?

COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Lawrence Schwartz, MD Department of Radiology LSCHWARTZ@COLUMBIA.EDU

Unusual Response Patterns


Response and Immunotherapy

• We know

- Unusual response patterns well described *especially in melanoma*
- Immune based therapies are a major advancement in patient care, as access to immunotherapies increases, OS will be increasingly confounded as a primary endpoint in randomized studies due to crossover, so reliance of PFS will be critical
- Recent analyses of randomized studies indicate that immunotherapies may yield an improvement in OS with minimal or no improvement in PFS, as assessed by RECIST 1.1

Response and Immunotherapy

- We don't know
 - True frequency of unusual response patterns
 - Optimal response criteria or how to implement them

RECIST progression free survival (PFS) has demonstrated weaknesses across a number of settings: **IO THERAPY**

Conclusions and Relevance There was no significant correlation between OS and PFS ... but their HRs were significantly correlated.Traditional Response Evaluation Criteria in Solid Tumors–based PFS cannot capture the benefit of PD-1 inhibitors in patients with solid tumors, and OS should remain the gold standard.

CheckMate 057 trial, Paz-Arez et al, ASCO, 2015 JAMA Network Open. 2018;1(2):e180416

Variable Presentation of Progressive Disease Complicates Assessment

Are these two PD's the same ?

Background: Immune Response Criteria

- irRC *consensus* based recommendations (2009)
 - Based on WHO, bi-dimensional measures
 - New lesion measures <u>included</u> in sum of measures of target lesions
- Subsequent modifications proposed
 - Based on RECIST/RECIST 1.1

Variable Presentation of Progressive Disease Complicates Assessment

• The irRC are guidelines but are not definitive rules:

Baseline

Cycle 2 – SD or PD

Confirming PD ?

- irRC / irRECIST are based more on instinct rather than outcomes correlations
- Analysis of existing imaging and outcomes can standardize and optimize irRECIST

Response Criteria Summarized

	RECIST 1.1	irRC (+ unidimensional variant)	"irRECIST /irRECIST1.1" variants
Bi/unidimen.?	Unidimensional	Bidimensional	Unidimensional
N Target	5	15; (≥5 × 5mm)	10 / 5 (≥10mm/ ≥10mm (15 for nodes))
New target lesions added to sum or measures (SOM)?	No	(≥5 × 5mm); Yes - does not automatically define PD	(RECIST or RECIST 1.1 rules) Yes
How many ?	NA	10 visceral, 5 cutaneous	10 / 5 (RECIST 1.1 rules)
Definition of progression (PD)	≥ 20% 个 compared to nadir (≥ 5mm 个)	≥ 25% 个 compared to baseline (BL), nadir/ reset BL	≥ 20% 个 compared to nadir (≥ 5mm 个)
Confirmation ?	No	Yes, required	Yes, recommended
How confirmed?	NA	Not defined	Not defined; not improved? Imager feels is worse?

The Tower of Babel !

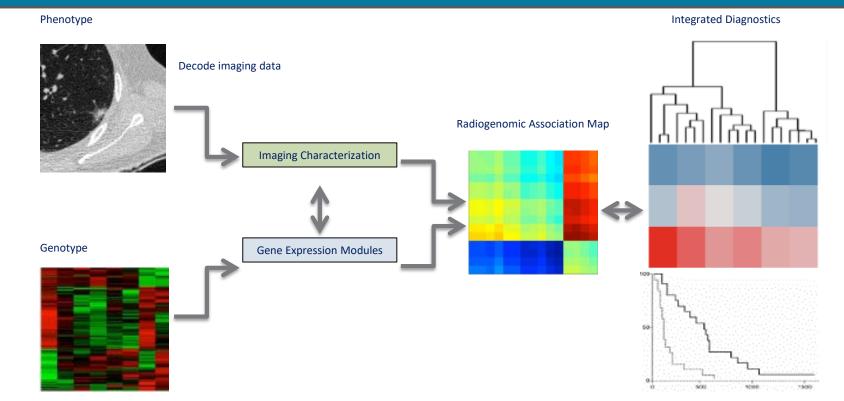
Testing and Validating for Trials of Immunotherapy

iRECIST Addresses

- Standardise data management and collection develop consensus guidelines (termed iRECIST)
- Recommendations on
 - Terminology ("i" prefix)
 - Data to be collected after RECIST 1.1 defined PD
 - Definition of "events"
 - Primary endpoints versus exploratory endpoints
- They are not treatment decision guidelines
- These are not (yet) validated response criteria
- They are internationally agreed data recommendations from academia, pharma and regulatory authorities

iRECIST vs RECIST 1.1: Unchanged

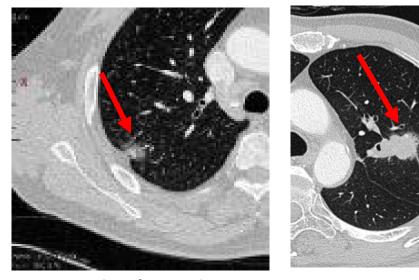
RECIST 1.1	iRECIST
Definitions of measurable, non-measurable disease	\checkmark
Definitions of target (T) and non target (NT) lesions	\checkmark
Measurement and management of nodal disease	
Calculation of the sum of measurement (SOM)	\checkmark
Definitions of CR, PR, SD and their duration	\checkmark
Confirmation of CR and PR	\checkmark
Definition of progression in T and NT (iRECIST terms i-unconfirmed progression (iUPD))	\checkmark


iRECIST vs RECIST 1.1: Changes

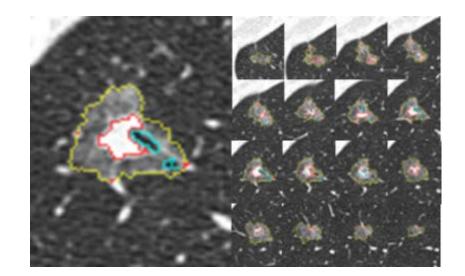
RECIST 1.1	iRECIST
Management of new lesions	NEW
Time point response after RECIST 1.1 progression	NEW
Confirmation of progression required	NEW
Collection of reason why progression cannot be confirmed	NEW
Inclusion and recording of clinical status	NEW

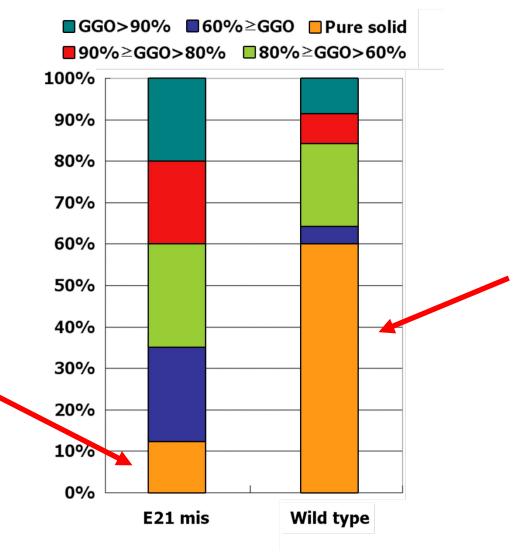
iRECIST vs RECIST 1.1: Changes

- Treatment past PD should only be considered if patient clinically stable*
 - No worsening of performance status.
 - No clinically relevant *↑* in disease related symptoms
 - No requirement for intensified management of disease related symptoms (analgesics, radiation, palliative care)
- Record the reason iUPD not confirmed
 - Not stable
 - Treatment stopped but patient not reassessed/imaging not performed
 - iCPD never occurs
 - Patient has died


Radiomics and immune-related patterns of response

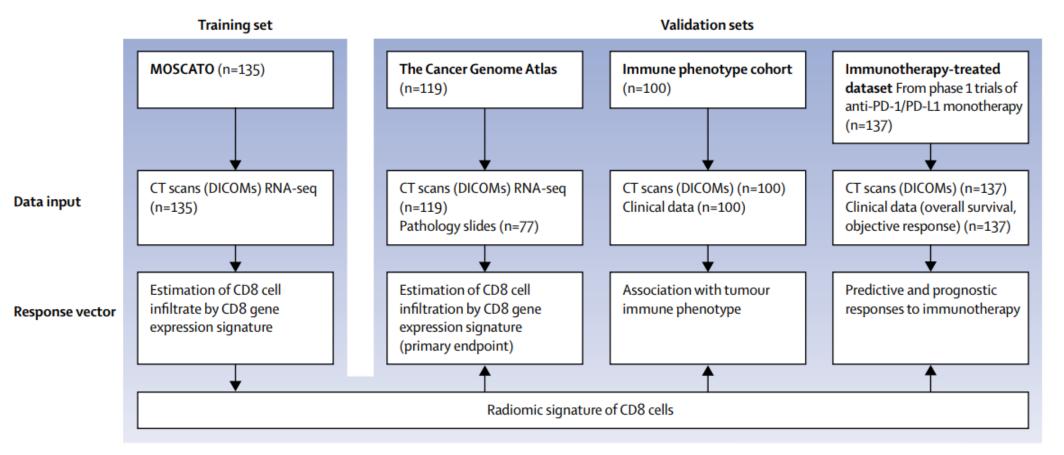
- Quantitative molecular imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology
- Imaging features may serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer

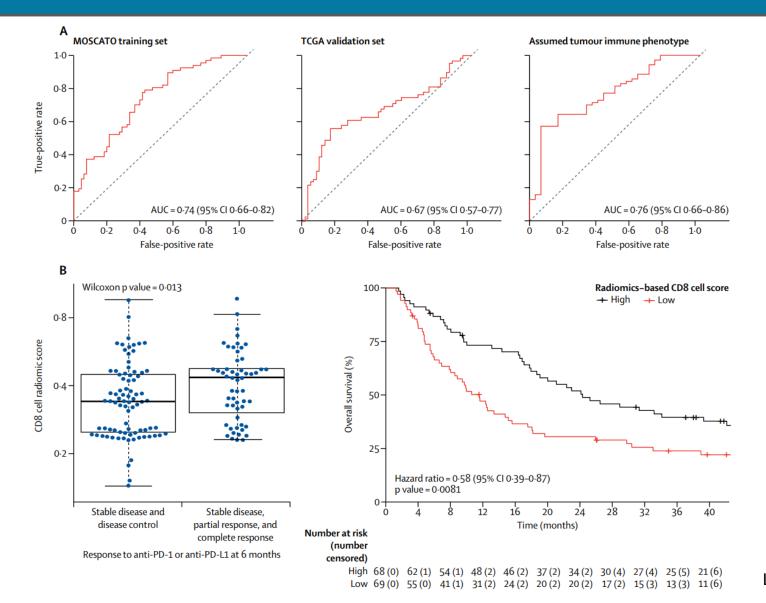

Radiomics


Creating a link between molecular diagnostics and diagnostic imaging

E21mis; EX-S

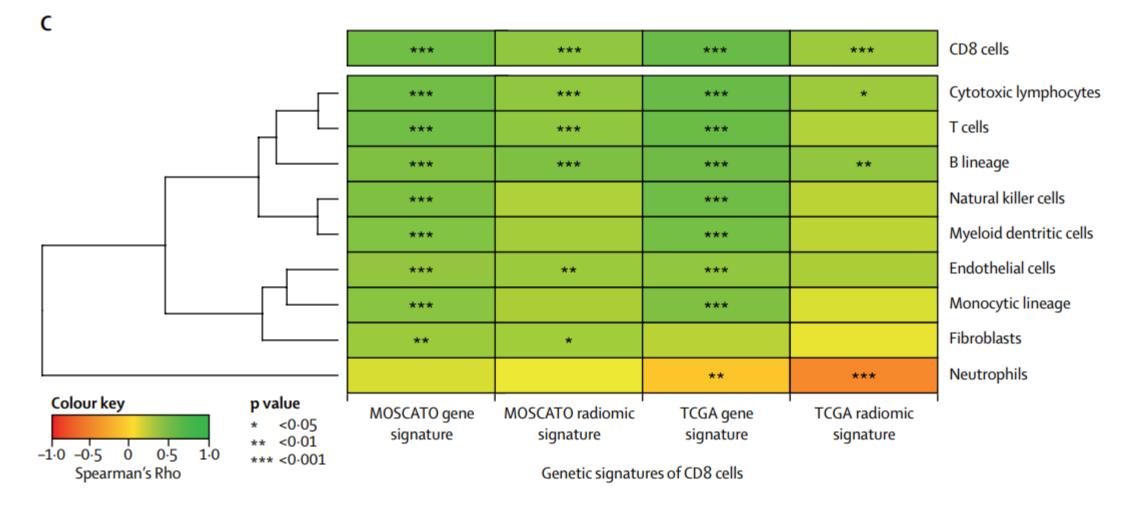
WT; EX-S



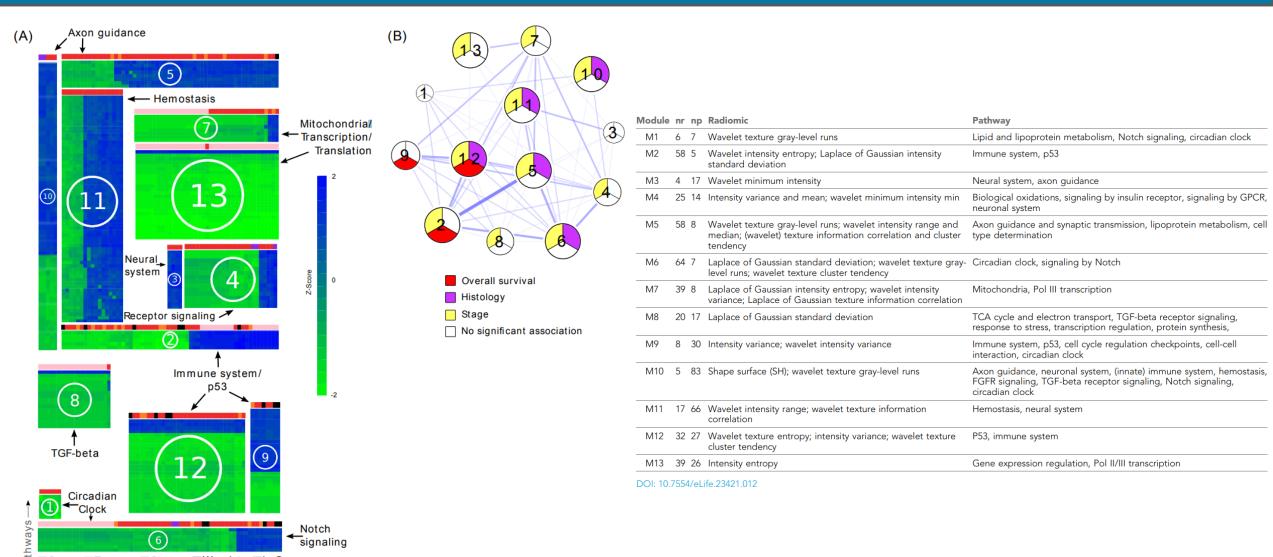

Radiomics

Creating a link between molecular diagnostics and diagnostic imaging

A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study



A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study



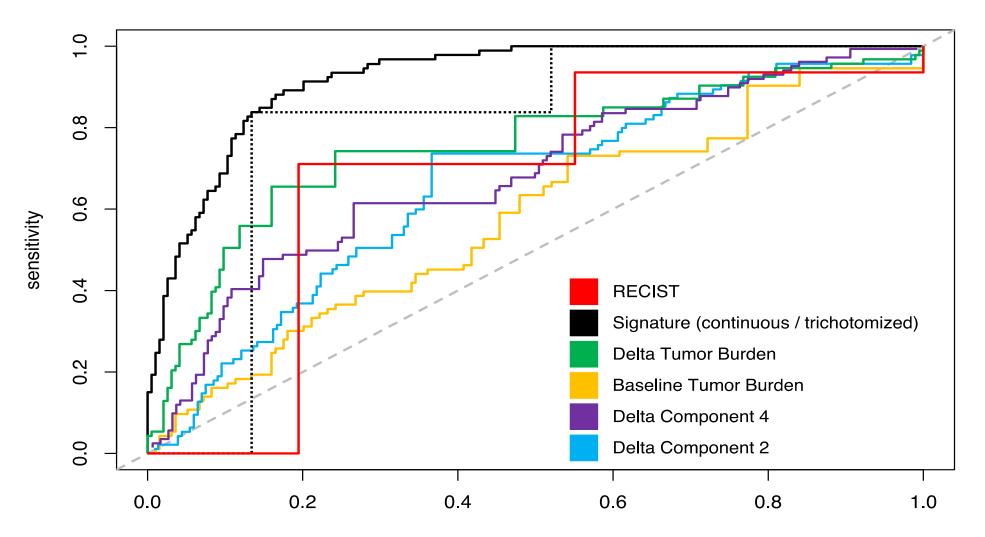
Lancet Oncol 2018; 19: 1180–91

A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study

Defining the biological basis of radiomic phenotypes in lung cancer

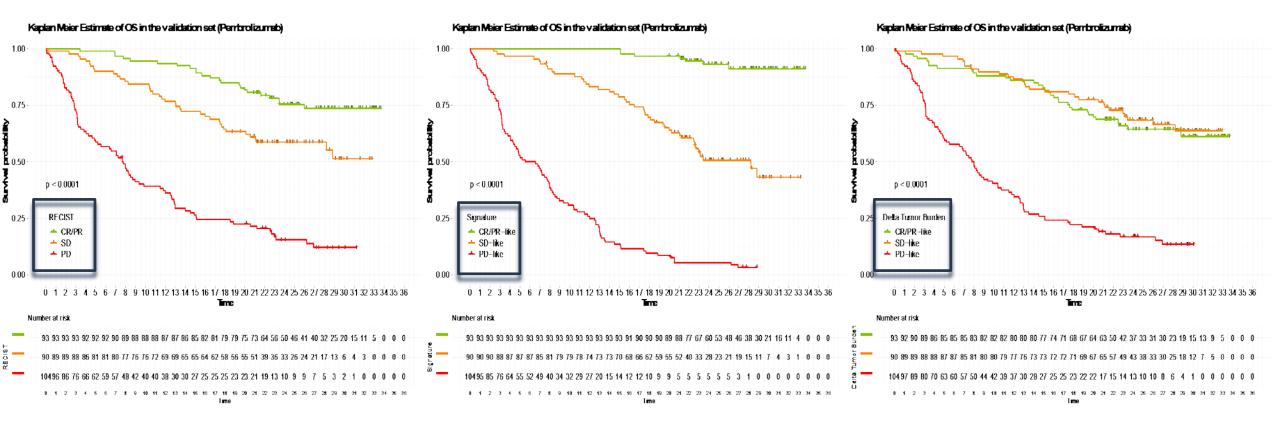
■Stats ■Texture ■Shape ■Wavelet ■LoG Radiomics →

Grossmann et al. eLife 2017;6:e23421.


Radiomic Change Analysis – IO - Melanoma

Patients with advanced melanoma

			Överall Keynote 0 Keynote 0		n n nic core	n=1374 n=540 n=834 n=1090			_
			Keynote 0 Keynote 0	002 006	n	n=432 n=658			
			Received CT Overall Keynote 0 Keynote 0		n	n=991 n=426 n=565			
			Measurable Overall Keynote 0 Keynote 0		n	n=705 n=307 n=398			
			Measurable Overall Keynote 0 Keynote 0		n	linical data 1=668 1=285 1=383			
Ipilimumab-treate Overall Training set Validation set	↓ d patients n=110 n=74 n=36	+ Pembrolizumab ₁₀₀₂ Overall Training set Validation set	- treated patients n=140 n=92 n=48	Pembrolizumab ₁₀₀ Overall Training set Validation set	₃ -treated patients n=231 n=86 n=145	Pembrolizur Overall Training s Validation		Chemotherapy-tre Overall Training set Validation set	ated patients n=93 n=0 n=93
					,				
			Overall Training su Validation Pembr External v Ipilimu	set olizumab alidation set	n= n=				


Radiomic Change Analysis – IO - Melanoma

ROC curve

1-specificity

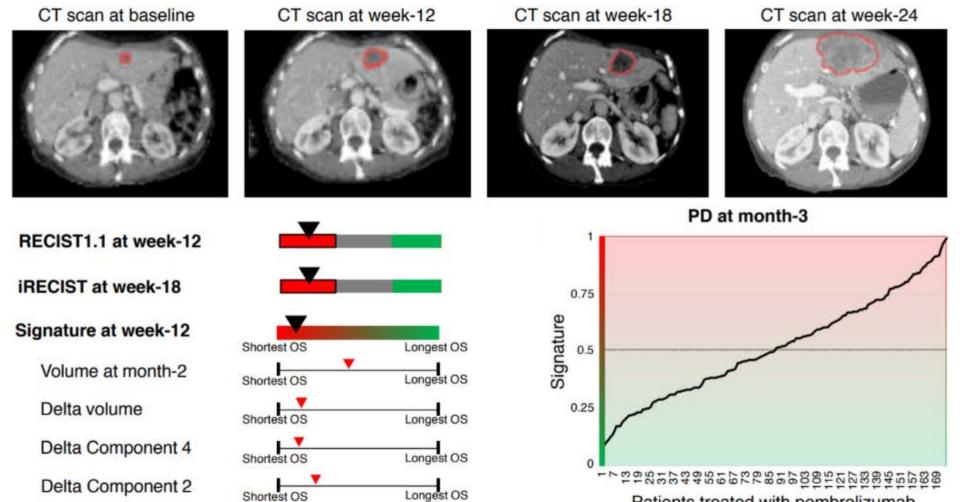
Radiomic Change Analysis – IO - Melanoma

Pseudoprogression – Is there a signature?

- The antitumor activity of Pembrolizumab is difficult to evaluate due to atypical patterns of response and progression
- Patterns seen:
 - Late Pseudoprogression
 - Early Pseudoprogression
 - Heterogeneous progression
 - Long term partial responders

Key Features – Biologic Relevance

Immunotherapy

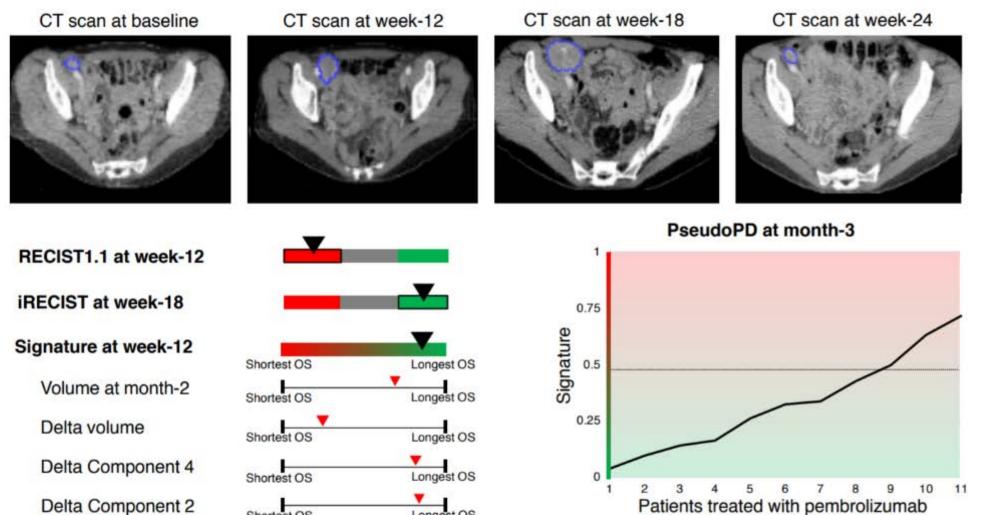


Radiomics signature ranging from 0% to 100%

Shortest	Longest
OS	OS

Key Features – Biologic Relevance

Progression per RECIST 1.1 at week-12 confirmed by iRECIST at week-18



Patients treated with pembrolizumab

Key Features – Biologic Relevance

Progression per RECIST 1.1 at week-12 reclassified as pseudoprogression by iRECIST at week-18

Shortest OS

Longest OS

Patients treated with pembrolizumab

Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings

QIF	1.255	1.25L	2.55	2.5L	1.255	2.55	1.255	1.25L	5L	1.255	2.5L	1.25L	1.25L	2.5L	1.25L	Average CCC	#Group	Non-redundant QIF group
groups	vs 2.55	vs 2.5L	vs 55	vs SL	vs 55	vs 5L	vs 5L	vs SL	vs 55	vs 2.5L	vs 2.55	vs 1.255	vs 2.55	vs 55	vs 55	of QIF groups	#Group	Non-redundant QIF group
1	0.980	0.994	0.973	0.963	0.945	0.848	0.808	0.969	0.827	0.905	0.927	0.883	0.910	0.894	0.881	0.914	1	Shape_SI9
2	0.980	0.980	0.981	0.912	0.954	0.970	0.964	0.839	0.966	0.942	0.895	0.884	0.825	0.843	0.764	0.913	2	Sigmoid-Offset-Mean
3	0.989	0.986	0.949	0.938	0.910	0.909	0.900	0.899	0.882	0.907	0.888	0.902	0.878	0.787	0.758	0.899	3	LoG_Entropy-s2.5
4	0.984	0.939	0.942	0.898	0.931	0.967	0.948	0.815	0.963	0.910	0.923	0.823	0.844	0.819	0.713	0.895	4	Sigmoid-Amplitude-Mean,Intensity_Mean_2D,Density_Mean,GLCM_Sum-Average,GLCM_Sum-Variance
5	0.954	0.945	0.949	0.909	0.943	0.820	0.825	0.867	0.876	0.817	0.865	0.855	0.903	0.875	0.864	0.884	5	LoG_Mean-s0,LoG_Mean-s2.5
6	0.939	0.946	0.916	0.896	0.919	0.877	0.894	0.902	0.824	0.892	0.858	0.883	0.853	0.806	0.822	0.882	6	Shape_SI6,Shape_SI7
7	0.978	0.974	0.936	0.946	0.928	0.842	0.851	0.941	0.790	0.837	0.822	0.833	0.825	0.757	0.756	0.868	7	Shape_SI2,Run_PLU,Shape_SI5,Shape_SI3,Shape_SI4,LoG_Uniformity-s2.5,Run_GLU,Uni,Bi,Vol
8	0.887	0.763	0.827	0.758	0.855	0.888	0.888	0.825	0.883	0.809	0.781	0.851	0.911	0.739	0.844	0.834	8	Eccentricity_2D
9	0.898	0.953	0.900	0.892	0.800	0.691	0.656	0.893	0.637	0.707	0.731	0.647	0.694	0.704	0.636	0.763	9	Shape_SI8
10	0.804	0.783	0.671	0.729	0.673	0.750	0.723	0.812	0.775	0.730	0.750	0.830	0.771	0.624	0.664	0.739	10	Solidity_2D,Compact-Factor,Round-Factor_2D
11	0.915	0.761	0.840	0.706	0.691	0.788	0.639	0.699	0.847	0.665	0.713	0.546	0.618	0.636	0.575	0.709	11	Density_Kurtorsis,Intensity_Kurtorsis_2D
12	0.913	0.925	0.922	0.944	0.791	0.609	0.635	0.803	0.602	0.636	0.582	0.562	0.512	0.538	0.433	0.694	12	EdgeFreq_Contrast,GTDM_Contrast
13	0.635	0.735	0.675	0.755	0.301	0.848	0.438	0.415	0.867	0.748	0.893	0.901	0.576	0.560	0.285	0.642	13	GTDM_Strength,EdgeFreq_Coarseness,GTDM_Coarseness
14	0.913	0.832	0.813	0.741	0.850	0.761	0.754	0.557	0.673	0.488	0.491	0.374	0.371	0.409	0.289	0.621	14	Wavelet_LH,Wavelet_H,Gabor_Energy-dir90
15	0.906	0.772	0.824	0.658	0.807	0.772	0.692	0.426	0.654	0.385	0.478	0.279	0.324	0.339	0.195	0.567	15	Gabor_Energy-dir0,Wavelet_V,Wavelet_LV,Wavelet_LD,Gabor_Energy-dir45,Wavelet_D,Gabor_Energy- sum,Gabor_Energy-dir135
16	0.941	0.790	0.929	0.781	0.852	0.496	0.553	0.527	0.495	0.426	0.388	0.281	0.259	0.373	0.246	0.556	16	Density_Skewness,Intensity_Skewness_2D,GLCM_Entropy-2,GLCM_Entropy- 1,Run_SPE,Run_PP,GLCM_Diff-Entropy,EdgeFreq_Mean,LoG_Entropy-s0
17	0.857	0.835	0.826	0.766	0.696	0.464	0.577	0.566	0.410	0.428	0.321	0.341	0.264	0.275	0.209	0.522	17	Intensity_SD_2D,Density_SD,Laws_Energy-1,GLCM_Contrast,GLCM_Squares,GLCM_Cluster- Tendency,Laws_Energy-2,Laws_Energy-11,Laws_Energy-8,Laws_Energy-5,Laws_Energy-3,Laws_Energy- 6,Laws_Energy-12
18	0.965	0.631	0.976	0.660	0.922	0.560	0.578	0.355	0.568	0.278	0.252	0.101	0.073	0.264	0.063	0.483	18	Spatial_Corr
19	0.892	0.674	0.933	0.709	0.787	0.264	0.372	0.350	0.226	0.215	0.161	0.110	0.084	0.135	0.068	0.399	19	Run_LPE,LoG_Uniformity-s0,GLCM_ASM,GLCM_Max-Prob,GLCM_Diff- Variance,GLCM_Homogeneity,GLCM_IDM
20	0.637	0.856	0.471	0.761	0.277	0.373	0.598	0.574	0.127	0.405	0.239	0.256	0.159	0.077	0.046	0.390	20	Fractal_Dimension-Mean,GLCM_IMC1
21	0.777	0.560	0.525	0.460	0.289	0.634	0.672	0.182	0.322	0.354	0.245	0.164	0.116	0.112	0.055	0.364	21	Sigmoid-Slope-Mean
22	0.611	0.534	0.292	0.339	0.116	0.523	0.466	0.155	0.181	0.369	0.184	0.180	0.088	0.044	0.016	0.273	22	GLCM_IMC2,GLCM_Corr,GLCM_MCC
23	0.801	0.711	0.712	0.563	0.489	0.059	0.097	0.297	0.034	0.039	0.025	0.021	0.014	0.015	0.008	0.259	23	Laws_Energy-10,Laws_Energy-14,GTDM_Complexity,Laws_Energy-4,Laws_Energy-13,Laws_Energy-
Average CCC of setting	0.875	0.820	0.815	0.768	0.725	0.684	0.674	0.636	0.627	0.604	0.583	0.543	0.515	0.504	0.441		L	7,Laws_Energy-9

- Group (a) Fixing reconstruction algorithm while changing slice thickness
- Group (b) Fixing slice thickness while changing reconstruction algorithm

0

- Group (c) Smooth reconstruction algorithm (S) plus thin slice thickness versus sharp reconstruction algorithm (L) plus thick slice thickness
- Group (d) Sharp reconstruction algorithm (L) plus thin slice thickness versus smooth reconstruction algorithm (S) plus thick slice thickness
- 1 0.5

Proposed response criteria for Intratumoral Immunotherapy in solid tumors (itRECIST)

Annals of Oncology 29: 2163–2174, 2018 doi:10.1093/annonc/mdy423 Published online 8 October 2018

SPECIAL ARTICLE

Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT)

A. Marabelle^{1*}, R. Andtbacka², K. Harrington³, I. Melero⁴, R. Leidner⁵, T. de Baere⁶, C. Robert⁷, P. A. Ascierto⁸, J.-F. Baurain⁹, M. Imperiale¹⁰, S. Rahimian¹¹, D. Tersago¹², E. Klumper¹³, M. Hendriks¹⁴, R. Kumar¹⁵, M. Stern¹⁶, K. Öhrling¹⁷, C. Massacesi¹⁸, I. Tchakov¹⁹, A. Tse²⁰, J.-Y. Douillard²¹, J. Tabernero²², J. Haanen²³ & J. Brody²⁴

- Gregory Goldmacher
- Anuradha Khilnani

Response Criteria for Intratumoral Immunotherapy in Solid Tumors: itRECIST

*Gregory V. Goldmacher,¹ *Anuradha D. Khilnani,¹ Robert H. I. Andtbacka,² Jason J. Luke,³ F. Stephen Hodi,⁴ Aurelien Marabelle,⁵ Kevin Harrington,⁶ Andrea Perrone,¹ Archie Tse,⁷ David C. Madoff,⁸ Lawrence H. Schwartz⁹

¹Merck & Co., Inc., Kenilworth, NJ, USA; ²Seven and Eight Biopharmaceuticals, Edison, NJ, USA; ³University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA; ⁴Dana-Farber Cancer Institute, Boston, MA, USA; ⁵Gustave Roussy, University of Paris-Saclay, Villejuif, France; ⁶The Institute of Cancer Research, London, United Kingdom; ⁷CStone Pharmaceutical, Shanghai, China; ⁸Yale School of Medicine, Yale Cancer Center-Smilow Cancer Hospital, New Haven, CT, USA; ⁹New York Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, NY, USA

"Measure what is measurable, and make measurable what is not so"

- Galileo Galilei

Faculty members:	
Binsheng Zhao, Director	
Xiaotao Guo	
Lin Lu	
Pingzhen Guo	
Senior Staff Associate:	
Hao Yang	
Research Radiologists:	
Aiping Chen	
Feifei	
Lin Yi	Acknowledgments and THANK YOU!
Linning E	
Fatima-Zohra Mokrane	
Modelling:	
Susan Bates	
Krastan Blagoev	
Tito Fojo	
Wilfred Stein	
Julia Wilkerson	
PhD Candidates:	
Laurent Dercle	
Jingchen Ma	