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Il. [*8F]FMISO PRODUCT AGENT DESCRIPTION
1. AGENT DESCRIPTION

Fluorine-18 labeled misonidazole, 1H-1-(3-['8F]-fluoro-2-hydroxy-propyl)-2-nitro-
imidazole, or [*F]JFMISO, is a radiolabeled imaging agent that has been used for
investigating tumor hypoxia with positron emission tomography (PET). The University of
Washington pioneered the development and biodistribution evaluation of [*F]FMISO.
An ideal hypoxia-imaging agent should distribute independently of blood flow, which is
best achieved when the partition coefficient of the tracer js close to unity. Under these
circumstances, imaging can be done at a time when th cellular tracer distribution
has equilibrated with the tracer in plasma near the 8F]FMISO is an azomycin-
based hypoxic cell sensitizer that has a nearly ide coefficient and, when
reduced by hypoxia, binds covalently to cellul tes that are inversely
proportional to intracellular oxygen conce any downstream
biochemical interactions.!

n, rather tha

2. CHEMICAL STRUCTURE

[*8F]FMISO has not been marketec
knowledge, there has been no marke
The radiopharmaceutie
dissolved in a soluti
solution is stored i
pyrogen-free glass via

d, to the best of our

is drug in other countries.
ingredient and it is

% ethanol (v:v). The drug
ptum sealed, sterile,

of 12 hours. The injectable dose of

[*8F]FMISQ adioactive 8F at a specific activity of
greate i ioR. In the dose of [*8F]FMISO only a small
fraction'c i e. The amount of injected drug is < 15 pug
(80n MISO is administered to subjects by intravenous

Figure 1. The chemical structure of ['8F]-fluoromisonidazole

1H-1-(3-[*®F]-fluoro-2-hydroxy-propyl)-2-nitro-imidazole
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3. FINAL PRODUCT SPECIFICATIONS

The product components are listed in Table 1, the impurities in Table 2, and the final
product specifications in Table 3.

Table 1. Final Product Components per single injected dose

COMPONENTS Characterization Amount in Injectate
[*8F]FMISO, 1H-1-(3-[*8F]-fluoro-2-hydroxy- Same as for

propyl)-2-nitro-imidazole <10 mCi
[*°F]FMISO, 1H-1-(3-[*F]-fluoro-2-hydroxy-

propyl)-2-nitro-imidazole <15yug

Ethanol, absolute 5% by volume
Saline for injection 0.15M

Table 2. Final Product Impurities per single i

a
IMPURITIES Acceptance Highest Values in 9
Criteria Qualification Runs
Kryptofix® [2.2.2] None detected
Acetonitrile <50 ppm
Acetone <313 ppm
Other UV absorbi 4.9 pg (1 hr post synthesis)
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Table 3. Final Product Specifications

TEST SPECIFICATION

Chemical Purity (particulates) Clear and Colorless

pH 4.5-8

Residual Kryptofix® [2.2.2] < 50 pg/ mL Kryptofix®

Radiochemical Purity (HPLC) >95%

Chemical Purity (HPLC) FMISO < 15 pg/dose Other compounds
<35ug/dose

Radiochemical Purity (TLC) Rf >0.5 Pucity. > 95%

Residual Solvent Levels 00 ppm Acetonitrile <410 ppm

Radionuclidic Purity If-life 100-120 minutes

Bacterial Endotoxin Levels

Sterility h, must also pass filter

The drug solution is stored at room
temperature in a septum sealed, sterile,
pyrogen-free glass vial with a iration
time of 12 hours

specifications have b i i i iguity. These changes
atient. Justification for these

a concentration limit of 410 ppm. Acetone is a
D00 ppm so no specification change is needed for them.

2. FDA approved labe Wo very similar radiopharmaceuticals, F-18 FDG and NaF
F18, has both drugs spe d at pH 4.5-8. To be consistent with these drugs, we have
changed the F-18 FMISO specification to 4.5-8.1.
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lll. INTRODUCTION

[*8F]-fluoromisonidazole ([*8F]FMISO) is a radiolabeled imaging agent that has been used
for investigating tumor hypoxia with positron emission tomography (PET). ['8F] decays
by positron emission. FMISO binds covalently to cellular molecules at rates that are
inversely proportional to intracellular oxygen concentration. In hypoxic cells, FMISO is
trapped, which is the basis for the use of this tracer to measure hypoxia. Because tissue
oxygenation may serve as a marker of perfusion, response_to radiotherapy and
chemotherapy, tumor grade, and prognosis, developm a PET imaging agent for

Positron emission tomography (PET) is a quan hic imaging technique,
which produces cross-sectional images tha me elements
(voxels). In PET images, the signal intensi t upon the
concentration of the radionuclide within th mor) volume.
To obtain PET imaging data, the patient is plac tor array
Patients undergo two separate ima i | PET imaging procedure. One
is a transmission scan via a germani by CT
imaging of the body regi t of the study is the
emission scan which ic imagingfaco n over a specific area of

interest, or multiple isitior . typical PET study takes 20
minutes to 2 hours to i n the nature of the acquisitions and the

areas of the
The [ istered by intravenous injection. Imaging
can com ection for a fully quantitative study over one area of

IV. PHARMACOLOGY
1. PHYSICAL CHARACTERISTICS

Fluoromisonidazole is a small, water-soluble molecule with a molecular weight of 189.14
Daltons. It has an octanol:water partition coefficient of 0.41, so that it would be expected
to reflect plasma flow as an inert, freely-diffusible tracer immediately after injection, but
later images should reflect its tissue partition coefficient in normoxic tissues.
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2. MECHANISM OF ACTION

[*8F]FMISO is an azomycin-based hypoxic cell sensitizer that has a nearly ideal partition
coefficient and, when reduced by hypoxia, binds covalently to cellular molecules at rates
that are inversely proportional to intracellular oxygen concentration, rather than by any
downstream biochemical interactions®. The covalent binding of nitroimidazoles is due to
bioreductive alkylation based on reduction of the molecule through a series of 1-electron
steps in the absence of oxygen?. Products of the hydroxylamine, the 2-electron reduction
product, bind stably in cells to macromolecules such as DNA, RNA, and proteins. In the
presence of oxygen, a futile cycle results in which the firstgl-electron reduction product,
the nitro radical anion, is re-oxidized to the parent ni idazole, with simultaneous
production of an oxygen radical anion. FMISO is n ped in necrotic tissue because
mitochondrial electron transport is absent. The of elimination for FMISO is
renal. A small fraction of [*3F]FMISO is glucur eted through the kidneys
as the conjugate.

Therapeutic Implications of Hypoxi rs from that of normal tissue
in several significant i n result in hypoxia when
growth outpaces mands of accelerated cellular
proliferation exceé Use hypoxia increases tumor
radioresistance, it is i i tients whose disease poses this risk for

oke model”®, pig livers¥, rat livers.12
merous cancer studies in cell cultures, animals and

chemical reduction tha place in hypoxic tissue, covalently binding the chemical to
macromolecules in that tissue. The specificity of the reaction is enhanced by the fact that
both the reduction and the binding occur within the same cell*’*'8, The reduction reaction,
depicted in Figure 2, is reversible at the first step, depending upon the oxygenation status
of the tissue, so that some FMISO eventually returns to the circulation and is excreted?®.
The reduction of the nitro group on the imidazole ring is accomplished by tissue
nitroreductases that appear to be plentiful and therefore do not represent a rate-limiting
factor!. The 1-electron reduction product (labeled as “II” in Figure 2) may be further
reduced to “llI” or it may competitively transfer its extra electron to O; and thus reform
“1.” This binding takes place at a rate that is inversely related to cellular oxygen
concentration®.
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Prodacts -——b Exits Cell

labeled at the end of tf side chain with *8F, a positron emitter with a 110 minute
half-life?>24. Fluorine-carbon bonds are highly stable and so the radioactive *¥F would be
expected to remain on the molecule of interest.

MISO and fluoromisonidazole (FMISO) are 2-nitroimidazoles with nearly identical
octanol:water partition coefficients, making them sufficiently lipophilic that they readily
diffuse across cell membranes and into tissues®®, yet maintain a volume of distribution
essentially equal to total body water?®. They are less than 5% protein bound, allowing
efficient transport from blood into tissues!’. The distribution kinetics of 2-
nitroimidazoles fit a linear two-compartment open model, except that high plasma
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concentrations after therapeutic level (gram) injections appear to saturate elimination
processes in both mice and humans and proceed to non-linear kinetics.

Metabolism and Elimination. /n vitro, MISO can be reduced using zinc, iron in HCI,
xanthine oxidase and NADH™. In HeLa and CHO (hamster ovary) cells, reduction appears
only under hypoxic conditions. Comparison with MISO indicates that the reduction
reaction is similar, but slightly slower for FMISO®. FMISO achieves higher tumor:blood
and tumor:muscle concentration ratios than MISO in murine tumors?’.

In vivo, under normal oxygen tension, MISO is metabolized primarily in the liver to its
demethylated form but FMISO is not a substrate for this tion. Additionally, ~7% (in
humans) to ~14% (in mice) is conjugated to glucuroni d small amounts (<5%) are
converted to aminoimidazole. Substantial amount are recoverable in feces.
Fecal bacteria are able to reduce misonidazole on ence of oxygen. At
treatment level dosing, the plasma half-lives ISO range from 8 —

17.5 hours?®. Parent molecule and glucur arily excreted in the
urine?30.31,

FMISO Mouse Studies. Biodistribuiti i i i ransplanted

significant uptake were those asso
i.e. liver and kidney. Mice bearing a ‘ ent sizes received a single

tumors, with a reported hypoxic
s in C3H mice have a hypoxic fraction of

ociated with increased uptake of labeled FMISO,
pes were more difficult, perhaps because of
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Table 4. Biodistribution of [*H]fluoromisonidazole in C3H mice3?

Turmor Drug dose Tumor: Tumor Estimated hypoxic
g Blood ratios volumes. mm3" fraction*

KHT 5 mmol/kg 2.41 175+ 16 7-12%
KHT 5 mmol/kg 2.29 110 £ 25
KHT 20 mmol/kg 2.76 159+ 39
KHT 20 mmol/kg 2.86 123 £37
KHT 5 mmol/kg 5.58 80 £ 26 >30%
KHT 5 mmol/kg 8.34 574 + 66
RIF1 5 mmol/kg 1.69 ~1.5%
RIF1 20 mmol/kg
RIF1 20 mmol/kg

C3HBA 5 mmol/kg 3-12%

C3HBA 5 mmol/kg 3.9 137 +37

* Tumor volumes are mean * stand iation for /group. Animals s
+ Hypoxic fractions are taken from M 1233 for tumors of comparable
size.

In individual KHT t lation between regional
flow and regional F tracer injection. The r?-values for KHT
and RIF1 tumors were 0:0) i . Regional blood flow did not correlate

The mouse bigdistributi i ibed above provided useful information about
on at a single time post-injection and demonstrated T:B

to provide biodistrib a for all tissues after sacrifice. The well-characterized
36B10 transplantable ratiglfoma was grown subcutaneously in Fischer rats34 to obtain
time-activity data for tumors and blood up to 2 hr after FMISO injection. These studies
showed that tumors steadily accumulated [2H]JFMISO activity that exceeded levels in
blood after ~20 min.

Dogs with spontaneous osteosarcomas, a tumor that is frequently radio-resistant, have
also been imaged after injection of [*F]FMISO. These images allowed the investigator to
draw regions of interest around tumor and normal tissue in each imaging plane. Timed
blood samples were also drawn and plasma was counted in a gamma well so that, after
decay correction, imaging and blood data could be converted to units of uCi/g. Blood

10
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time-activity curves for dogs were similar when presented in comparable units32. Time-
activity curves for blood, muscle and for a region from a forelimb osteosarcoma in one
dog are shown in Figure 3.

200000 200000
.
1 150000 . muscle
150000 . o pasma
L]
s H .
E 100000 & 100000 '.
E .
8 S Y
50000 50000 - Je o e . . . .
o T ] T
-2s e so 100 150 .28 o so 100 150
Time post injection, minutes Time post injection, minutes

Figure 3. FMISO blood and tissue cleara i with osteosarcoma

of FMISO by cells grow onolayer cultures depended strongly on oxygen
concentration, with maximtum uptake under anoxic conditions and a decrease to 50% of
maximum binding at levels between 700 to 2300 ppm in several different cell lines
(Table 4a). The O,-dependency of binding was a mirror image of the curve for
sensitization to radiation by O, an advantageous characteristic for a hypoxia tracer
intended to assess radiobiologically significant levels of hypoxia.

11
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Table 5. Inhibition of [2H]JFMISO Binding by Oxygen in vitro3®
02 concentration to inhibit

Cell Line binding by 50% (ppm)
RIF1 720
V79 1400
EMT6 1500
CaOsl 2300

Uptake of FMISO by multi-cellular spheroids provided visual and quantitative measures
of hypoxia. Autoradiographs of 0.8 mm V79 spheroids after4 hr incubation with
[*H]FMISO revealed heavily labeled cells in an interme zone between the well
oxygenated periphery and the necrotic center. Upt noxic spheroids matched that
in anoxic monolayer cultures; oxygenated spher ccumulate tracer, and

Whitmore et al. performed preliminary to Chinese hamster
ovary cells®’. Uncharacterized toxic products troso or
hydroxylamine derivatives forme capable of
sensitizing both hypoxic and aerc ing effects of radiation. These
products have been further charact are differently distributed
depending upon the species. In huma 2 lecule never exceeds 10%
of the total MISO, ang ine neve lar fluid3L. The

and FMISO are 0.43 and 0.41, respectively;
or MISO and FMISO are 1.8 mg/g (1.3-2.6) and 0.9
mg/g, respe . ~ 25 of orally administered MISO and FMISO in
mice were 2.3 | . 92) and 2.0 hrs (range 1.79-2.24), respectively. A

i to 32 g, nine-month old, female C3H/HeJ mice gave

of FMISO in humans is similar to MISO (8-17 hrs). FMISO is cleared primarily through the
kidneys. Its volume of distribution is large, approximating that of total body water.
Favorable tumor-to-normal tissue ratios for imaging are obtained at low doses of
administered drug. These ratios were obtained in 15 kg dogs with a dose of 1 mg/kg.

After oral dosing that exceeds a schedule-dependent cumulative threshold,
misonidazole induces a peripheral neuropathy in humans, although such dosing far
exceeds the PET imaging dose requirements. Because FMISO will be administered
intravenously, the neurotoxicity of intravenous administration was evaluated in rats
using a battery of routine clinical, neurofunctional, biochemical, and histopathologic

12
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screening methods?*®. Male Sprague-Dawley rats were administered intravenous doses
of misonidazole at 0 (vehicle control), 100, 200, 300, or 400 mg/kg daily for 5 days per
week for 2 weeks. Animals were evaluated for functional and pathological changes
following termination of treatment and at the end of 4 weeks. During the dosing phase,
hypoactivity, salivation, rhinorrhea, chromodacryorrhea, rough pelage and ataxia were
observed at 400 mg/kg and body weight gain of the 300 and 400 mg/kg groups was
significantly decreased relative to the vehicle controls (24% and 49% respectively) and
related to reductions in food consumption of 8% and 23%. Although most 400 mg/kg
animals appeared normal immediately after the dosing regimen, rotorod testing
precipitated a number of clinical signs including: ataxia, impaired righting reflex,
excessive rearing, tremors, vocalization, circling, head j , excessive sniffing and
hyperactivity. All animals recovered and appeared through study termination.
There were no treatment-related effects on mot coustic startle response,

regions was observed in the 300
results show that intravenous a azole to rats causes dose-

peripheral nervous tissue.

ial 3-fold enhancement ratio

owledge of the toxic effects of 2-
incipally on misonidazole, a close analog of

es that used doses that were considered
effective to en icity of radiotherapy. These human studies, no longer in
. There have been no reported harmful effects until

ew grams, which is approximately 5 to 6 orders of

dosing required for PET imaging.

cumulative doses ex
magnitude greater than

Gray reported preliminary human pharmacokinetic measurements using six healthy
volunteers®. Subjects received single oral doses ranging from 1 g to 4 g. The peak serum
level at 2 hours was 65 pg/mL and the drug serum half-life was 13.1 + 4.0 hrs. A linear
relationship was demonstrated between administered dose and serum level. Based on
animal studies, a serum level of 100 pg/mL was considered necessary for effective
radiosensitization and the oral dose calculated to achieve that serum level was 6.5 g.
Single oral doses of 4-10 g were administered to 8 patients with advanced cancer and a
life expectancy limited to 12 months. All patients experienced some degree of nausea,
vomiting and anorexia for 24 hours. One of the eight had insomnia. At 10 g the nausea

13
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and vomiting were extreme, and the anorexia lasted for a week. Peak serum levels were
obtained between 1 and 3 hrs. The serum half-life ranged from 9-17 hrs with the
median at 14 hrs.

Clinical studies employing multiple dosing of MISO have also been reported and
peripheral neuropathy (PN) was the manifestation of toxicity that became dose limiting
with daily doses of 3-5 g/m2. The results of a sequential dose reduction study*® are
shown in Table 6:

Table 6. Clinical toxicity of misonidazole

Dose Affected
(g/m?) Doses/wk. Weeks Patients

% Pts. with peripheral
neuropathy

3-5 5 3 12
2 2 3
0.4-0.8 3-5 3-6

75

of 10 at 3g/m? for . i act that the drug, which has
3 etely from the body. Dische had a similar

The above data supports®he conclusion that FMISO’s primary toxicity is likely to be
peripheral neuropathy, which is dependent upon frequency and dose level. There is no
evidence to suggest that FMISO poses a risk for PN when administered as an imaging
agent for PET as described herein. The risk for PN in fact appears to be minimized or
absent even at therapeutic doses that far exceed those necessary for PET imaging.

5. [**F]JFMISO HUMAN TOXICITY

A search for recent articles dealing with the human toxicity of fluoromisonidazole
(FMISO) yields no results. Therefore, this assessment relies on animal studies and

14
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similarities among related chemical entities. The octanol/water partition coefficients for
MISO and FMISO are 0.43 and 0.41, respectively; the LD50's in adult male Balb/C mice
for MISO and FMISO are 1.8 mg/g (1.3-2.6) and 0.9 mg/g, respectively3® and in CH3
mice the LD50 is 0.6 mg/g for FMISO3°. Using the relative toxicity factors from Paget
(1962)>! of 1.0 for mice and 9.8 for humans, the projected LDsp values are:

LDso values Misonidazole Fluoromisonidazole
Concentration for human 0.184 g/kg 0.06-0.09 g/kg
Dose for 70 kg subject 12.86 g 6.43 g

The MISO values by this calculation are conserva mpared with the findings

in early human trials (see Section 7, MISO Hu . The serum half-lives
of orally administered MISO and FMISO in 1.87-2.92) and 2.0
hrs (range 1.79-2.24), respectively. The lo half-life of FMISO
in humans is similar to MISO (8-17 hrs). FMI h the kidneys.
The maximum dose to humans ref cols was 1 mg/kg or 70 mg for
a 70 kg subject; no adverse events se studies are reported in
Part VII. This is about 0 imaging doses of the

2 ¢ : oromisonidazole and less
than 35 g of othegnitroimida ivative isi % of the projected LD50.

included in M i 3 ients studied with tracer doses of
ion 9).

R is only 110 minutes, toxicity studies are not possible
with the radiolab . The misonidazole data presented and the [*°F]FMISO
sections 4 and 5 should be the basis for both animal and
on and conclusions. The radiation dose associated with
parated in Part VI.

human toxicity charac
[*8F]FMISO is discussed s

7. MISO HUMAN SAFETY STUDIES

Misonidazole for Therapy. In addition to their role as imaging agents, nitroimidazoles
have been studied as therapeutic radiosensitizers (oxygen mimetics). These studies of
over 7000 patients in 50 randomized trials have been reviewed**. Oral MISO was the
agent in 40 of the trials involving about 5400 patients. The maximum doses used were 4
g/m?in a single dose and 12 g/m? as a total dose. The most common serious/dose
limiting side effect was peripheral neuropathy with a latency period of several weeks.

15
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The neuropathy was prolonged and, in some cases, irreversible. Nausea, vomiting, skin
rashes, ototoxicity, flushing and malaise have also been reported at therapeutic dosing
levels that vastly exceed imaging dose requirements. While these molecules are no
longer used as clinical radiosensitizers, the results show the range of human experience
with nitroimidazoles, and, in particular, support a reliable trend towards safety at
imaging range dosing.

A 1978 study of oral misonidazole (MISO) as a radiosensitizing agent in human
astrocytoma found good absorption, peak plasma levels between 1 and 4 hours and a
half-life between 4.3 and 12.5 hours. Doses limited to 12 2 produced some nausea
and vomiting but no serious side effects*®. In an earlier, , Gray found a wide
variation in tumor/plasma distribution ratios in six f advanced human metastatic
breast cancers and soft tissue sarcomas*. The m
which caused a week of anorexia. Patients recéivi g/kg tolerated the drug
well.

8. [*°F]JFMISO HUMAN SAFETY STUDIES
We are unaware of, nor did a lit y human studies of [**F]FMISO

safety in humans beyond the carri d with the [*F]FMISO human
studies described below.

9. ['F]JFMISO HU}

[*8F]FMISO is a radiol aging has been used for investigating tumor
hypoxia wijt i ) g romisonidazole labeled with < 10 mCi

: in several recent publications?°%>3:54,
[8F]FMISO is a i maceutical useful in obtaining images to quantify
hypoxia using PE T 2997 |t is the most commonly used agent for PET imaging of

Positron emission scanning with 8F-FMISO has been studied over the past ten years in
Australia, Switzerland, Denmark, Germany, China, and the United States under RDRC
approval or its equivalent. Several published studies from the United States are from the
University of Washington in Seattle and were conducted under an IND. Since 1994 up to
4 injections of FMISO, each followed by a PET scan, have been performed in Seattle
alone on approximately 300 patients; data have been published on over 133 of these.
[*8F]FMISO has been used to image ischemic stroke, myocardial ischemia and a wide
variety of malignancies. Although, if totaled, the papers in Table 8 would list
approximately 700 patients, we have taken a more conservative approach to reduce

16
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possible duplication from multiple papers using the same patient data. Nonetheless as
many as four 8F-FMISO injections and PET scans have been performed in over 600
different patients represented in the published papers as listed in Part VII, “Previous
Human Experience.” Administered doses ranged from approximately 3 to 30 mCi (100-
1100 MBq). As would be expected based upon the above safety assessment of the agent
when dosed and used for imaging, no adverse events have been attributed to ¥F-FMISO
in any of these reports.

10. FMISO GENOTOXICITY AND MUTAGENICITY

isonidazole and related
% cell line (mouse embryo
cy of <107 but these cells

Multiple studies have found genetic transformations d
nitroimidazoles using in vitro assays. The murine C3
fibroblast) has a normal spontaneous transforma

undergo oncogenic transformation in vitro w emical and physical
agents. The frequency of transformants wi mM drug was 2.27+
0.38 x 10* for FMISO and 4.55 +0.95x 1 gh these values
are about three to five times the backgroun sure would
require about 10 grams of drug ing . ill inj ug, or about
0.00015%.

protocol using specific
wth of revertants from

FMISO and MISO were mutagenlc w
Salmonella typhimuri

0 at 1 pg drug per ate a 6,000 at 1,000 pg per plate
containing 0.1 mL O 3 O showedfewer revertants, ~1,000 at
100 pg drug per plate 3 ~6( at 10 pg per plate®. In other cell lines,
the freque i used as an index of genotoxicity. In
this as i its'ef dpm/ug of DNA is used to quantify

rate was 54 6 for hepatocytes, 187 + 14
+ 11 for JB1 (transformed) cells®, with very
similar valué . , the control rate of DNA synthesis was 54 + 4,
179+ 15and 1 ely for the three cell lines. This work concluded that in
act much more with thiols than with DNA. While each of
these three tests dete evel alterations to DNA, exposure was both several
orders of magnitude gre than, and of longer duration than that required in PET
imaging with [*8F]FMISO. Drug exposure for imaging studies is below the levels where
any genotoxicity was observed.

11. ADVERSE EVENTS AND MONITORING FOR TOXICITY
No adverse events have been attributed to PET imaging/diagnostic administration of
['8F] FMISO at the levels described herein in well over 1,000 injections, based upon up

to 4 injections administered to each of over 600 patients. Thus no adverse effects are
expected as a result of the IV administration of [*®F]FMISO for typical PET imaging
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applications such as tumor hypoxia. The proposed [8F]FMISO imaging dose is less than
0.001% of the recommended safe intravenous dose.

For purposes of informed consent regarding reasonably foreseeable risks to subjects in
trials utilizing [*8F]FMISO, the following potential adverse effects are considered
extremely rare:

= Risks related to allergic reaction that may be life threatening

= |njection related risks that may include infection, or extravasation of the dose that
may lead to discomfort, localized pain, temporary loss of local function, and self
limited tissue damage,

These risks are minimized by the requirement th iately trained and
licensed/certified personnel prepare, deliver ini e agent. The subject
should be monitored per institutional stan i udies. Emergency

associated with other widely used ¢ y i rocedures and are well
below the maximum ipdividual dose st al radiopharmaceuticals
by the FDA.

12. SAFETY A IPONENTS OF THE FINAL ['8F]FMISO

DRUG P
The [ ent of 5% ethanol, USP. The injected dose
isinup paximum of 0.5 mL of ethanol. This is less than 5%
of the amoU the Registry of Toxic Effects of Chemical
Substances (R S ethanol is given as 1.4 g/kg orally for producing sleep,

headache, nausea i Based upon widespread and routine use of ethanol in

reason to suspect that tal ethanol from [*®F]FMISO purification would pose any
danger of toxicity when used in imaging studies.

The other components of the final product solution are USP grade sterile water for
injection and sterile saline. These are all nontoxic for USP grade injectables at the
concentrations used. The final product is at pH 7 and the final injection volume is <10
mL.

The potential contaminants in the final [*®F]FMISO drug product are: acetone,
acetonitrile, Kryptofix® [2.2.2], other reaction products and if they are not required for
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the system in use, they are not measured. Residual solvents in the final product are
limited to 5,000 ppm (ug/mL) of acetone and 410 ppm of acetonitrile. Acetone is used
to clean the TRACERLab FXrn and other related systems but not all new cassette based
systems do. Acetonitrile is used to dissolve the Kryptofix® [2.2.2] and is the solvent for
the reaction. The permissible level of acetonitrile in the final product is <400 ppm, the
USP permissible level of acetonitrile in 2-[*3F]FDG. The allowable level for acetone is
<5,000 ppm. Acetone is a Class three solvent. This class of solvents includes no solvent
known as a human health hazard at levels normally accepted in pharmaceuticals.
Therefore, this limit is based upon the FDA’s Guidance for Industry ICH Q3C-Tables and
List (November 2003 Revision 1), page 7, where it considegs 5,000 ppm in 10 mL, 50 mg
or less per day, of Class 3 residual solvents as an accep imit without additional
justification.

mice for chelation therapy after strontiu osed a maximum
e this maximum

There are trace amounts of other final product. The principal
trace impurity is 1-(2,3-dihydroxy)pr@ t other impurities are
possible. For this reasg tal of other materials in
the final injectate : C18 HPLC (Aquasil 2X150
mm at 0.3 mL/min)‘ane 254,280 0r 327 nm. The 35 ugis
determined by assumi compounds have the same molar
extinctio i

18F is a posi i i ifeldf 110 minutes. Intravenously injected [*8F]-
FMISO distribu e total body water space, crossing cell membranes,
including the bloog i r, by passive diffusion. [*8F]FMISO is bound and retained
within viable hypoxi i inverse relationship to the O, concentration. The uptake
of [*8F]FMISO in norma an tissues has been measured and used to estimate the
radiation absorbed dose associated with the imaging procedure. Dosimetry studies were
performed at the University of Washington and have been published in the peer-
reviewed Journal of Nuclear Medicine®>.

Sixty men and women were subjects in the study. Of these, 54 had cancer, three had a
history of myocardial ischemia, two were paraplegic and one had rheumatoid arthritis.
After injecting 3.7 MBqg/kg (0.1 mCi/kg), urine and normal tissues distant from each
subject’s primary pathology were imaged repeatedly to develop time-activity curves for
target tissues. All tissues demonstrated a rapid uptake phase and first-order near-
logarithmic clearance curves. All tissues receive a similar radiation dose, reflecting the
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similarity of biodistribution to that of water. Total tissue uptake data were normalized
for a 1.0 MBq injection into a 70 kg man. The organ curves are shown in Figure 4 and

Figure 5°°:
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the integrated 8F urine activity of 42 samples
the data and was used to determine AUC for
e mean total excretion is about 30 kBq, or 3% of the

individual pati Note that

injected dose.
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Table 7. Radiation Absorbed Dose to Organs

Mean Mean Total / 7 mCi
Tissue (mGy/MBq) (mrad/mCi) (mrad)
adrenals 0.0166 61.4 430
Brain 0.0086 31.8 223
Breasts 0.0123 455 319
gall bladder wall 0.0148 54.8 383
lower large intestine 0.0143 52.9 370
small intestine 0.0132 48.8 342
stomach 0.0126 326
upper large intestine 0.0140 363
heart wall 0.0185 479
kidneys 0.0157 407
Liver 0.0183 474
Lungs 0.0099
Muscle 0.0142
Ovaries 456
pancreas 464
red marrow 282
bone surface 199
Skin 124
Spleen 60: 422
Testes 54.0 378
57.4 401
55.9 391
77.7 544
67.7 474
57.0 399
Total body 46.6 325

Calculated total bot 70 kg man injected with 3.7 MBqg/kg was 0.013
mGy/MBq; for a 57 Kg it was 0.016 mGy/MBq. Effective dose equivalents were
0.013 mSv/MBq for men'and 0.014 mSv/MBq for women. Ninety-seven percent of the
injected radiation was homogenously distributed in the body, leaving only 3% for
urinary excretion. Doses to smaller organs not directly determined by visualization, such
as the lens, were calculated assuming average total-body concentrations. The absence
of tracer visualized in images of those organs indicated that accumulation there was not

increased.
The radiation exposure from [*8F]FMISO is equal to or lower than that of other widely

used nuclear medicine studies. Increasing the frequency of voiding can reduce radiation
dose to the normal organ receiving the highest radiation absorbed dose, the bladder
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wall. Potential radiation risks associated with a typical PET study utilizing this agent are
within generally accepted limits.

Additional radiation exposure will occur with any PET study, but is site and procedure
specific. Attenuation correction is required, from either a germanium rod transmission
or a low dose CT scan. The radiation dose is larger with CT attenuation correction and
larger for body compared to head, but will depend on the exact equipment and
scanning protocol used. Each trial site will need to address this with their local
information.

VII. [*8F]FMISO PREVIOUS HUMAN EXPERIENC ASSESSMENT OF CLINICAL

intracellular O, concentration, rathe
composed of £ 15 ug @

properties do not result in high contrast images,
hours after injection that unambiguously reflect
en, Po,, and hypoxia in the time interval after the

Positron emission scan ith [*8F]FMISO has been studied over the past ten years in
Australia, Switzerland, Denmark, Germany and in the United States under RDRC
approval or its equivalent. Several published studies from the United States are from the
University of Washington in Seattle and were conducted under IND 32,353. Since 1994,
approximately 300 patients have undergone FMISO PET scans in Seattle, at least 133 of
whom are included in Table 8 of published studies. [*¥F]FMISO has been used to image
ischemic stroke, myocardial ischemia, and a wide variety of malignancies.

Based upon published papers we know, over 3,900 unique patients have undergone up
to 4 injections of the agent as described herein. Administered doses ranged from
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approximately 3 to 30 mCi (100 - 1100 MBq). No adverse events were noted in any of
these papers, which are summarized in Table 8. Representative recent papers from key
groups in [F-18]FMISO PET imaging are summarized below.

In a paper published by Mortensen in 2010% 18 F-FMISO PET was compared to
polarographic oxygen-sensitive electrodes. The aim of this study was to examine the
association between measures of hypoxia defined by functional imaging and Eppendorf
pO 2 electrodes. Nine patients with squamous cell carcinoma of the head and neck and
nine with soft tissue tumors were included. The tumor volume was defined by CT, MRI,
18 FDG-PET or by clinical examination. The oxygenation status of the tumors was
assessed using 18 F-FMISO PET imaging followed by Ep rf pO2 electrode
measurements. Data were compared in a ‘virtual v esulting in individual
histograms from each tumor. For 18 F-FMISO PET; tio ranged from 0.70 to

in three groups: Well oxygenated tumors wi i ordance between the

18 F-FMISO data and the Eppendorf mea i kewise with
concordance between the two assays, and i i oncordance
between the assays. The conclusi xia among
tumors that can be detected by . o correlation was observed, and

in general, tumors were more hyp f pO 2 measurements as
compared to 18 F-FMISO PET.

In a paper publishe 3 tients with glioblastoma who
surgical resection or biopsy,
fter radiation therapy. Abnormal regions
the necrotic center (T0), the region of
upted vasculature (T1Gd), and

3 -FMISO images were scaled to the blood
18F-FMI ivi : blood ratio (T/B) images. The hypoxic volume
(HV) was de g i greater than 1.2, and the maximum T/B
(T/Bmax) was d i e voxel with the greatest T/B value. They found that the

g ion'straddling the outer edge of the T1Gd abnormality and

into the T2. A significa ation between HV and the volume of the T1Gd
abnormality that relied @ e existence of a large outlier was observed. There was
consistent correlation between surface areas of all MRI-defined regions and the surface
area of the HV. The T/Bmakx, typically located within the T1Gd region, was independent
of the MRI-defined tumor size. Univariate survival analysis found the most significant
predictors of survival to be HV, surface area of HV, surface area of T1Gd, and T/Bmax.
They concluded that hypoxia may drive the peripheral growth of glioblastomas#’.

In a 2008 paper by Lin, seven patients with head and neck cancers were imaged twice

with FMISO PET, separated by 3 days, before radiotherapy. Intensity-modulated
radiotherapy plans were designed, on the basis of the first FMISO scan, to deliver a
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boost dose of 14 Gy to the hypoxic volume, in addition to the 70-Gy prescription dose.
The same plans were then applied to hypoxic volumes from the second FMISO scan, and
the efficacy of dose painting evaluated by assessing coverage of the hypoxic volumes
using Dmax, Dmin, Dmean, D95, and equivalent uniform dose (EUD). The authors found
similar hypoxic volumes in the serial scans for 3 patients but dissimilar ones for the
other 4. There was reduced coverage of hypoxic volumes of the second FMISO scan
relative to that of the first scan. The decrease was dependent on the similarity of the
hypoxic volumes of the two scans. They concluded that the changes in spatial
distribution of tumor hypoxia, as detected in serial FMISO PET imaging, compromised
the coverage of hypoxic tumor volumes achievable by dose-painting IMRT. However,

FMISO uptake in normoxic tissue a
FLT-PET/CT imaging seem most appre
cancer??,
Nehmeh et al. repo er patients in a 2008 paper. Of
hnical reasons. All patients underwent

alyzed, 6 had well-correlated intratumor
e of chronic hypoxia. They concluded that more
work is req d to i i ' g causes of changes in intratumor distribution
before single-t i MISO PET images can be used as the basis of hypoxia-
targeting intensit adiotherapy®’.

In a 2008 paper Lee repogted on a study that examined the feasibility of ((18)F-FMISO
PET/CT)-guided IMRT with the goal of maximally escalating the dose to radioresistant
hypoxic zones in a cohort of head and neck cancer (HNC) patients. (18)F-FMISO was
administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose
PET/CT, and (18)F-FMISO PET/CT scans were co-registered using the same
immobilization methods. The tumor boundaries were defined by clinical examination
and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated
(18)F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an
IMRT boost. Additional targets and/or normal structures were contoured or transferred
to treatment planning to generate (18)F-FMISO PET/CT-guided IMRT plans. The authors
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found that the heterogeneous distribution of (18)F-FMISO within the GTV demonstrated
variable levels of hypoxia within the tumor. Plans directed at performing (18)F-FMISO
PET/CT-guided IMRT for 10 HNC patients achieved 84 Gy to the GTV(h) and 70 Gy to the
GTV, without exceeding the normal tissue tolerance. An attempt to deliver 105 Gy to
the GTV(h) for 2 patients was successful in 1, with normal tissue sparing. The conclusion
was that it was feasible to dose escalate the GTV(h) to 84 Gy in all 10 patients and in 1
patient to 105 Gy without exceeding the normal tissue tolerance. This information has
provided important data for subsequent hypoxia-guided IMRT trials with the goal of
further improving locoregional control in HNC patients?®®.

Thorwarth et al. published a 2008 paper on a dose pai
hypoxia-induced radiation resistance. 15 HNC patie
and dynamic 18F-FMISO PET before the start of

trategy to overcome
re examined with 18F-FDG
therapy. After approx. 20

Gy, a second dynamic 18F-FMISO scan was p | based 18F-FMISO PET
data were analyzed with a kinetic model, rmination of local
tumor parameters for hypoxia and tissue ion. i isti alysis showed
that only a combination of these two param tcome. They
concluded that a translation of the maglng dat iption can
only be reached via a TCP model ctional parameters. A model
was calibrated using the outcome @ ents. This model mapping of
locally varying dose escalation facto rapy planning. A planning
study showed that hy igher burden for the

organs at risk?%.
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Table 8. Published manuscripts reporting 18F-FMISO human imaging studies

Year Clinical Condition N mCi injected MBq injected Reference
Adenocarcinoma . Yoon®®
2021 (Biliary tract cancer) 20 15 mdi >3> MBa (Korea 2021)
Head and Neck Ro 67
. gasch
2021 Squamous Cell 8 0.1 mCi 3.7 MBa/ke), (Germany 2021)
Carcinomas
) Thureau®®
0.12 mCi/kg
2021 Lung 20 (France 2021)
Suzuki®?
2021 Glioma 87 (Japan 2021)
Riihle”®
2021 Head-and Neck 39 (Germany 2021)
Head and Neck audyal”
2021 Squamous Cell A 2021)
Carcinomas
oot Nehmeh'”
2021 20 (USA 2021)

cell

Breast

Lépez-Vega”?

(Spain 2021)

Lee™

370 MBq
(Australia 2021)
Lee”
370 MBq
(Australia 2021)
176
31 mCi ;8(3) :\-/IE;]MB Lazzeroni
8.2 + 0.6 mCi = q (Sweden 2021)
/ / Huang”’
2021 liobl 0.1 mCi/kg 3.7 MBag/kg
0 Glioblastoma (USA 2021)
2021 Glioblastoma 20 0.1 mCi >MBaq Collet™
(France 2021)
Carmona-Bozo”
2021 B t ) 8.3+0.4mCi 306 = 14 MBq
0 reas 9 (UK 2021)
2021 head and neck 50 Zschaeck®
squamous cell (Germany 2021)

carcinoma
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/ / Carles®!
-and- 0.12 mCi/kg 4 MBg/kg
2021 Head-and-Neck 35 (Germany 2021)
) Socarrds
2020 Head & Neck 196 6.7—12 mCi 250 - 444 MBq Fernandeza®?
(Germany 2020)
/ / Leimgruber®?
- 0.05 mCi/KG 1.85 MBa/kg
2020 Glioblastoma 10 (Australia 2020)
0.1 mCI/kg Nicolay®
Y
2020 Head and Neck 49 3.7 MBg/kg to a
Squamous Cell (Germany 2020)
Riihle®®
2020 Head and Neck 49 0.1 mCi/KG MBq/kg
Squamous Cell (Germany 2020)
2020 oral squamous Shima%
(Japan 2020)
et
2020 . ermany 2020)
carcinoma
2020 Non-small-cell Lung Thureau®

(France 2020)

Wiedenmann?®
2020 (Germany 2020)
2020 Zschaeck®®

(Germany 2020)

Andrzejewski®!
2019 (USA 2019)
2019 Bandurska-Luque®?

(Germany 2019)
5019 5+ 2.03 mCi 185 + 75 MBq Cogla®

(Poland 2019)
2019 Myocardium 26 0.1 mCike 3.7 MBa/ke Jagtap®*

(India 2019)
2019 Head-and-Neck 38 10.8 mci 400 MBq Kroenke®®

(Japan 2019)
2019 Head and neck 50 6.7-8.12mCi 250-300 MBq Léck®

squamous cell (Germany 2019)

carcinomas
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2019 | Non-Small 21 10ma 370 MBq McGowan®’
(United Kingdom
2019)
2019 | Brain 15 0.1 mCi/ke > MBa/ke Shimizu®
(Japan 2019)
2019 Prostate Cancer 9 0.08 mCi/ke 3 MBa/ke Supiot®®
(France 2019)
2019 Head & Neck 25 Thorwarth%
(Germany 2019)
2019 Non Small Cell Lung 54 Vera?0?
(France 2019
2019 Non Small Cell Lung 32 Watanabe®?
(Japan 2019)
2019 Pancreatic 25 anel0?
Adenocarcinoma (Japan 2019)
2019 Gliomas Abdo%*
(France 2019)
2019 Brain Kobayashil®
(Japan 2019)
2018 non-small cell |

Li 106

(China 2018)

2018 Non-small Ce 4.81 MBq/kg Lito”
0.13 mCi/kg (China 2018)
2018 Thureaul®
(France 2018)
Head & Neck
Wiedenmann10®
2018 Squa.mous Cell 10 6.6-9.0 243-332 (Germany 2018)
Carcinoma
. Tachibanal®
2018 Radiotherapy 22 0.2 mCi/kg 7.4 MBqg/kg (Japan 2018)
. Supiot*!
2018 Prostate 27 0.08 mCi/kg 3 MBq/kg (France 2018)
112
5018 Oral Squamous Cell 23 10.8 400 Sato

Carcinoma

(Jaban 2018)
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2018 | Glioblastoma 17 0.1 mCi/k 3.7 MBag/k Ratai’®
: g -/ MBa/ke (USA 2018)
2018 | Non—Small 23 10.5-11 388-407 Nehmeh ™
Cell Lung Cancer ) (USA 2018)
Non-Small McGowan!?®
2018 Cell Lung Cancer ? 10 370 (UK 2018)
Non—Small . Lit®
2018 Cell Lung Cancer 29 0.13 mCi/kg 4.81 MBa/kg (China 2018)
— +117
2018 Non-Small 5 Li _
Cell Lung Cancer (China 2018)
2018 I: ej:n?otlf 2;” Crispin-Ortuzar**
dqua (USA 2018)
Carcinoma
2018 I: ej:rr?otlse i:ken Chatterjee'
dqua dia 2018)
Carcinoma
120
2018 | Breast Asano

(Japan 2018)

2017

Head & Neck

Schwartz!?!
(USA 2017)

2017

Welz!??
(Germany 2017)

Uedal®

2017 0.2 mCi/kg 7:4 MBa/kg (Japan 2017)
Toyonaga®?*
+ +
2017 11.1+£0.76 413.9+28.2 (Japan 2017)
Head & Neck Simoncicl?s
2017 Squamous Cell 6 8.6-10.2 320-377
. (Germany 2017)
Carcinoma
Oral Squamous Cell Sato!?®
2017 Carcinoma 23 108 400 (Japan 2017)
2017 nasopharyngeal 8 10 370 Qiu'?’
cancer (China 2017)
2017 | Rectal 11 9-10.7 333-397 Puri’*®
: (UK 2017)
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2017

Glioblastoma

12

5.2+ 0.95

194.6 £35.0

Preibisch?®

(Germany 2017)
nasopharyngeal Nishikawa*=°
2017 | U 31 10.8 400 (Japan 2017)
Head & Neck i 131
2017 | Squamous Cell 25 8.5-12 315-444 :\gzrr':]':: 2017)
Carcinoma ’
Non-Small McGowan?!%?
2017 Cell Lung Cancer 9 10 372 (UK 2017)
Head & Neck Lock133
2017 Squamous Cell 25 6.8-8.1 (Germany 2017)
Carcinoma ’
5017 Non-Small 6 Kelada3*
Cell Lung Cancer (USA 2017)
135
2017 Glioblastoma 41 Kan:tnozoﬂ)
Head & Neck Grkovski3®
2017 Squamous Cell (USA 2017)
Carcinoma
Head & Neck Grkovskil37
2017 Squamous Cg (USA 2017)
Carcinoma
. Georg'3®
2017 | Cervical 200-350 (USA 2017)
Daniel*3®
3.0 MBa/kg (2017 Austria)
da Ponte!%
2017 0.14 mCi/kg 5.0 MBa/kg (France 2017)
. Chakhoyan'#
2017 | Glioma 0.14 mCi/kg >0 MBa/kg (France 2017)
Head & Neck 142
2017 Squamous Cell 9 ?g::(nian 2017)
Carcinoma !
. Bekaert!#
2017 | Glioma 3 0.14 mCi/kg >0 MBa/kg (France 2017)
Wei144
2016 | Lung 42 0.13 mCi/kg 481 MBa/ke (China 2016)
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Quintela-Fandino#

2016 Breast 107 72404 267 +15.3 (Spain 2016)
2016 ﬁi\r/’r?:rf?ipillomavirus 33 8-10 296-370 I(1?::6;016)
2016 gtz)l?[ljnmgagancer 10 9.6-11 336-407 (Gljls(zvzsglllg;
2016 ;;j:n%otl: ((:ZI;II 16 0.1 mCi/kg 3.7 MBa/kg ?ét;:;ﬁi 2016)
Carcinoma
2016 Glioma 4 7 ?S;aAJazsg;gs)
2015 2;?[3 nmgaga ncer 1 (ZSSZgZI(;(;S)
2015 gzﬁjnmgagan cer 13 Sac?r?;l:si;;s)
2015 Glioma 1 ?S;aAJazSgizs)
2015 2';?[3:1;2 fJZZ'%Sis)
2014 | Breast 7.4 MBq/kg tjuef 3(1;: "
2014 400 Zzt:::zou)
2014 ?Ssc/tnzeoliz)
2014 Stroke 15 555 I(.;ce)::; 2014)
2014 sqej:r:otlse el 10 | o1 make 37MBafkg | o rEueedo
Carcinoma
2013 El:ITILSmmgagancer > 0.05 mCi/kg >0 MBa/k .(Triﬁiu;:B)
2013 Various 10 0.2 mCi/kg 7.4 MBa/kg '(I;z;f;i:azrz)a;:;
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2013 Pancreatic 10 7 MBqg/k Segard™®!
0.19 mCi/kg arke (Australia 2013)
Oral Squamous Cell Satol®?
2013 Carcinoma 23 10.8 400 (Japan 2013)
Head & Neck
Okamoto 63
+
2013 Squa.mous Cell 11 112 0.7 414 + 26 (Japan 2013)
Carcinoma
Head & Neck
Norikane64
2013 Squa.mous Cell 39 0.1 mCi/kg 3.7 MBg/kg (Japan 2013)
Carcinoma
Head & Neck
de Figueiredo®®
2013 Squa.mous Cell 15 0.1 mCi/kg MBq/kg (France 2013)
Carcinoma
Head & Neck
Chang?®®
2013 Squa.mous Cell 8 (China 2013)
Carcinoma
Head & Neck
Bittner®’
2013 Squa.mous Cell 16 A 2013)
Carcinoma
Alawneh?®
2013 Stroke 3 (UK 2013)
i+~ 169
2012 | Glioma Narita

2012

Head & Neck

2012

(Japan 2012)

Toma-dasu'”®

(Belgium 2012)

400

Hirata”!

(Japan 2012)

Jo12 0.1 mCi/kg 3.7 MBqg/kg Yamamotol”2
Max 7 Max 260 (Japan 2012)
2012 0.14 mCi/kg 5 MBq/kg Mammar*”
(France 2012)
2012 | Head & Neck C 10.8 400 Yasuda™™
C (Japan 2012)
2012 | Head & Neck Cancer | 12 0.2+0.05 mCi/kg | 7.3 +1.7 MBa/kg | Chen™”
- (USA 2012)
2012 | Head & Neck Cancer | 25 6.88.1 250-300 Zips'’®
(Germany 2012)
0.1 mCi/kg 3.7 MBq/kg McKeagel??
. ge
2012 Various cancers 17 <10 <370 (New Zealand 2012)
5.3-9.4 197-348 :178
2011 | Glioma 10 _ _ Kawai
Median = 8.3 Median = 308 (Japan 2011)
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Non-Small Cell Lung . Veral”®
0.05 mCi/k 2.0 MBa/k
2011 Cancer > g a/ke (France 2011)
Eary180
7 259
2011 Sarcoma 10 (USA 2011)
Head & Neck 13.7-19.4 510-718 ; 181
Kikuchi
2011 Squamous Cell 17 .
Carci Mean 16 Median=592 (Japan 2011)
arcinoma
0.1 mCi/kg 3.7 MBqg/kg Hendrickson 182
2011 Head & Neck Cancer 10
Max 7 Max 370 (USA 2011)
] De Clermont*®3
2011 Glioma 1 8.3 (France 2011)
) . Hugonnet!®
0.14 mCi/k
2011 Renal Cell Carcinoma 53 g (France 2011)
Abolmaali’®®
6.9
2011 Head and Neck Cancer | 23 (Germany 2011)
Head & Neck 510-718 Yamanel®
2011 Squamous Cell 13
) Japan 2010)
Carcinoma
k Oi187
2010 Head & Neck Cancer 8 (Korea 2010)
Head & Neck Wang18
2010 Squa.mous Cell (USA 2010)
Carcinoma
i Mortensen®®
2010 Soft Tissue & 218 — 462 (Denmark 2010)
3.7 mCi/kg 189
5009 Szeto
260 (USA 2009)
3.7 mCi/k 190
2009 /ke Swanson
260 (USA 2009)
Lee191
370
2009 (USA 2009)
. 3.7 mCi/kg Spence192
2008 Brain Cancer 22 7 mGCi 560 (USA 2008)
10 370 Lins2
2008 Head & Neck Cancer 7 (USA 2008)
194
2008 | Head & Neck Cancer | 15 Not Reported Not Reported | Thorwarth
(Germany 2008)
9.3-11 344-407 Lee’®®
2008 Head & Neck Cancer 28 . (USA, 2008)
196
2008 Head & Neck Cancer 3 ~10.8 ~400 Thorwarth

(Germany, 2008)
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197
2008 | Head & Neck Cancer | 20 | 9.3-11 344-407 Nehmeh ™ (USA,
2008)
Roels19®
8.9-11 330-398
2008 Rectal Cancer 10 (Belgium 2008)
199
2007 Advanced Head & 14 9.4-12.2 350-450 Eschmann
Neck Cancer (Germany 2007)
- 200
2007 Advanced Non-Small 4 7 259 Spence
Cell Lung Cancer (USA, 2007)
Gagel??
9.6 356
2007 Head & Neck Cancer 38 (2007 Germany)
Thorwarth?2%2
10.8
2007 Head & Neck Cancer 13 (Germany 2007)
Zimny?203
2006 Head & Neck 24 (Germany 2006)
Non-small cell lung Cherk?%4
2006 cancer 21 (Australia 2006)
ischin20
2006 Head and Neck Cancer | 45 stralia 2006)
Nominally 7. Rai 206
jendran
2006 Head and Neck Cancer | 73 (USA 2006)
_ 207
2006 Non-Small Cell Gagel
Cancer (Germany, 2006)
208
2006 | Glioma MBa/kg Cher

(Australia 2006)

2005

350-450

Eschmann®
(Germany 2005)+

2004

Average =7.8

123-421
Average =291

Bruehlmeier 2%°
(Switzerland 2004)

2004 Various cance 0.1 mCi/kg 3.7/Kg Rajendran®
nom 260 (USA 2004)
Gagel?10
7.9+0.9 292 + 35
ermany
2004 Head & Neck cancer 16 + G 2004)
Markus?*!
i nom 3.5 nom 130
ustralia,
2003 Ischemic Stroke 19 (A lia, 2003)
5.9-11.3 218-418 212
2003 Soft tissue tumors 13 Bentzen
Average=10.8 Average= 400 (Denmark 2003)
0.1 mCi/kg 3.7 MBq/kg Rai 213
. jendran
2003 Soft Tissue Sarcoma 29
nom 7 nom 260 (USA 2003)
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2000 Ischemic Stroke 24 nom 3.5 nom 130 Read!*
(Australia 2000)
1696 Vari 0.1 mCi/kg 3.7 MBqg/kg Rasey?s
arious cancers 37 nom 7 nom 260 (USA 1996)
1995 Non-Small Cell Lung ; 0.1 mCi/kg 3.7 MBa/kg Koh®3
Cancer nom 7 nom 260 (USA 1995)
X KthlG
1992 | Various cancers 8 0.1 mCi/kg 3.7 MBa/kg (USA 1992)
1992 | Glioma 3 ~10 ~370 ngiglggz)
Total No. Subjects 3,904*
than once.

*|t is possible that some patients are represe

X
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The overall conclusion, based upon the studies summarized above, is that [*®F]FMISO
PET identifies hypoxic tissue that is heterogeneously distributed within human
tumors?®. It promises to help facilitate image-guided radiotherapy and to also guide the
use of hypoxia-selective cytotoxins. These are two ways, out of several, that this agent
might potentially help circumvent the cure-limiting effects of tumor hypoxia. In

addition, [*8F]FMISO has identified a discrepancy between perfusion, blood-brain barrier
disruption, and hypoxia in brain tumors?®® and a lack of correlation between FDG
metabolism and hypoxia in several types of malignancies?'3. Hypoxic tissue also does not
correlate either with tumor volume or vascular endothelial growth factor (VEGF)
expression?2°4,

[*8F]FMISO PET was able to identify post-radiotherap
uptake of tracer. The standardized uptake value (S

r recurrence by differential
between recurrent tumor
ediastinum was >2.0°°,

One study concluded that [*F]FMISO was n ection of tumor
hypoxia in human soft tissue tumors?!2. | SO was able to
identify the areas of brain tissue into whic 14 |n addition to
the FMISO imaging studies summarized abov have been
evaluated as imaging agents in sj i . A 2001 study Finland

used ['8F]-fluoroerythro-nitroimidaz evaluate 8 patients with head
and neck squamous cell cancer at d¢ ut adverse effect?!’ (Lehtio
2001). Other agents, fluo i tyl-nitroimidazole. have

not proved as usefulg i : 1 1999), probably because
of their higher lipophilicity. jvati hilic than FMISO, [*8F]-

fluoroazomycin-arabiQoi - nad been recommended for further study
(Sorger 2003) and sho i i

219

In hum - 1 son of FMISO tumor-to-muscle uptake

ratio 3 i i graphic needle electrode system (pO
histograp relation, whereas no correlation was found with
[8F]-2-fluo significant correlation was found between
hypoxic tissue ifi O and by immunohistochemical staining for both

pimonidazole and i drase 1X22° (Dubois 2004).

unique feature of malignamt and endangered tissues, thereby adding to the
armamentarium of specific markers used to image tumors and potentially impact
treatment for the benefit of individual patients. Low oxygenation status is often
phenotypic of tumors that demonstrate a poor response to therapy, which justifies
extensive investigation of the utility of agents like [*8F]FMISO to improve specific
treatment regimens directed at hypoxic tumors.

The rationale for using a T:B ratio of 1.2 to separate normoxia from hypoxia is based on
human and animal data. The initial animal results showed that normoxic myocardium
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ratios were near unity over a wide range of flows. In numerous other organs of normal
mice, rats, rabbits and dogs, the mean of the distribution histogram was 1.035, median
0.96, for 1342 samples??!. Therefore, a cut-off of 1.2 was selected, with confidence that
any T:B ratio above that value was indicative of hypoxic tissue. This conclusion is further
justified by the human study presented in Figure 7. In this patient with a primary brain
tumor, the FDG image was co-registered with the FMISO image (left panel). In brain
regions far from the right frontal tumor, the T:B values for FMISO were uniformly less
than 1.2, as depicted by the blue dots in the right panel, even though FDG SUV spanned
a range from about 3 to 13. In the tumor area, a substantial fraction of the pixels were
still in the normal range, but many values exceeded the cut-off as shown by the colored
pixels in the FMISO image. A distribution histogram of d data points shows a
continuous distribution, reflecting the fact that the f oxygenation is a continuum
from normoxic to hypoxic. One consequence of t us scale is that FMISO
images exhibit only modest contrast. Howeve t uptake is independent
of blood flow and numerous other physiol ribed about, provides
confidence that FMISO images uniquely i tically significant
levels of hypoxia.

rameters, as
fy tumors with pro
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Figure 7. Right-frontal glioma post surgery.

O
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